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Entropy Production in Nonequilibrium Systems Described by a Fokker-Planck Equation
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We study the entropy production in nonequilibrium systems described by a Fokker-Planck equation. We have
devised an expression for the entropy flux in the stationary state. We have found that the entropy flux can be
written as an ensemble average of an expression containing the force and its derivative. This result is similar to
the one used by Lebowitz and Spohn for system following a Markovian process in discrete space. We have also
been able to obtain a fluctuation-dissipation type relation between the dissipated power, which was written as
an ensemble average, and the production of entropy for the case of systems in contact with one heat bath. We
have applied the results for a simple model for particles subjected to dissipative forces.
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I. INTRODUCTION

In the stationary state, irreversible systems are in a contin-
uous process of production of entropy. A measure of the dis-
tance from thermodynamic equilibrium can therefore be given
by the production of entropy since this quantity vanishes in
equilibrium. The rate of change of the entropy S of a system
can be properly decomposed into two contributions [1]

dS
dt

= Π−Φ, (1)

where Π is the entropy production due to irreversible
processes ocurring inside the system and Φ is the entropy flux
from the system to the environment. The quantity Π is posi-
tive definite whereas Φ can have either sign. In the stationary
state the rate of change of the entropy vanishes so that Φ = Π.
The quantity Φ is defined as the flux from inside to outside
the system, so that it will be positive in the nonequilibrium
stationary state.

Although in equilibrium the entropy is a well defined quan-
tity, in nonequilibrium systems the entropy as well as the pro-
duction of entropy do not have a universal definition. Accord-
ing to Gallavotti the problem of defining entropy in a system
out of equilibrium has not been solved yet [2]. In this sense it
is interesting to see how one can define those quantities in sys-
tems that evolve in time according to specified dynamics. In
deterministic Hamiltonian dynamics it is well known that the
Gibbs entropy is invariant [3]. This property is a consequence
of the incompressibility of the “fluid” that represents the sys-
tem in phase space. Irreversible systems, on the other hand,
are supposed to be described by non-Hamiltonian dynamics,
that is, by dynamics coming from nonconservative forces. In
this case, the “fluid” in phase space becomes compressible and
the production of entropy may be related to the contraction of
the phase space [2, 4, 5].

Here we are concerned with the definition and calcula-
tion of the entropy production in nonequilibrium systems de-
scribed by a Fokker-Planck equation or in an equivalent de-
scription by a Langevin equation [6, 7]. Systems described by

a Fokker-Planck equation are systems that follow a Makov-
ian process in continuous time and continuous configuration
space. The irreversible character is determined by the type of
force entering the Langevin and its associate Fokker-Planck
equation. As we shall see, if the forces are nonconserva-
tive the resulting entropy production is nonzero and positive.
When the force becomes conservative the production of en-
tropy vanishes. The study of production of entropy in systems
described by a Markovian process in continuous time but dis-
crete configuration space [7, 8] or, in other words, described
by a master equation, has been the object of several studies
[9–13] including the production of entropy in the majority
vote model [13, 14]. In this study we will relate the entropy
production Π with the dissipated power P occurring in non-
equilibrium systems subject to nonconservative forces and in
contact with a heat bath at a temperature T . We will show that
in this case Π = P/T , which is a fluctuation-dissipation type
relation.

II. FOKKER-PLANCK EQUATION

Let us consider a set of n interacting particles that evolve
in time according to the following coupled set of Langevin
equations

dxi

dt
= fi(x)+ζi(t), (2)

where xi is the position of the i-th particle and x stands for the
collection of variables {xi}. The quantity fi(x) = fi({xi}) is
the force acting on the i-th particle and ζi(t) is the additive
white noise, that is, a stochastic variable having the properties

〈ζi(t)〉 = 0, (3)

and

〈ζi(t)ζ j(t ′)〉 = 2Di δi jδ(t − t ′), (4)

where, for simplicity, we are assuming that Di ≥ 0 are con-
stants that might be distinct for each particle.
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The associated Fokker-Planck equation, that gives the time
evolution of the probability distribution P(x, t), is given by

∂
∂t

P(x, t) = −∑
i

∂
∂xi

[ fi(x)P(x, t)]+∑
i

Di
∂2

∂x2
i

P(x, t). (5)

It is convenient to write down the Fokker-Planck equation as
the following continuity equation

∂
∂t

P(x, t) = −∑
i

∂
∂xi

Ji(x, t), (6)

where Ji is the i-th component of the current of probability
J = {Ji}, defined by

Ji(x, t) = fi(x)P(x, t)−Di
∂

∂xi
P(x, t). (7)

The Fokker-Planck equation has to be solved inside a given
region R of the space spanned by the set of variables xi sub-
ject to a prescribed boundary condition which concerns the
behavior of P(x, t) and Ji(x, t) at the surface S that delimits
the region R . We will consider two types of boundary con-
ditions: periodic and reflecting. For periodic boundary condi-
tions both quantities are periodic. In this case, the forces fi(x)
must be periodic. For the reflecting boundary conditions the
component of the current of probability J perpendicular to S
vanishes. In this case the component of the force perpendicu-
lar to S is assumed to vanish. All results obtained below will
be valid under these two types of boundary conditions.

III. REVERSIBILITY

We will be concerned here with systems that are far from
equilibrium, that is systems that are irreversible even in the
stationary state. This means that the current of probability
does not vanish in the stationary state. If the current of proba-
bility vanishes in the steady state, the system is found to be in
a state of thermodynamic equilibrium and we say that the sys-
tem is reversible. In this case, the entropy production Π van-
ishes and the flux of entropy Φ vanishes as well. The property
of reversibility holds when the forces fi are conservative, that
is, when

∂ fi

∂x j
=

∂ f j

∂xi
, (8)

for any pair i, j and

Di = D (9)

is the same for any particle. In this case the fi is the gradient
of a certain potential V (x), that is,

fi(x) = −∂V (x)
∂xi

, (10)

and the stationary probability distribution Pe(x) is the solution
of

−∂V (x)
∂xi

Pe(x)−D
∂

∂xi
Pe(x) = 0, (11)

that is,

Pe(x) =
1
Z

e−V (x)/D, (12)

where Z is a normalization constant. Assuming that D is pro-
portional do the temperature T , this is the canonical distribu-
tion.

The Langevin equation and its associate Fokker-Planck
equations are capable of describing system in thermodynamic
equilibrium if fi and Di satisfy the relations (8) and (9). In
this case we interpret the equations as the ones appropriate do
describe a system in contact with a heat reservoir at temper-
arature T . In the following we will be concerned with sys-
tems for which the conditions given by Eqs. (8) and (9) do
not hold. The situation in which condition (8) holds but the Di
are not the same is appropriate do describe, for instante, the
contact of the system with two or more heat reservoirs with
distinct temperatures. In this case the stationary state will be
a nonequilibrium steady state. Another irreversible situation
is found when Di = D, but there exists at least one pair i, j for
which

∂ fi

∂x j
�= ∂ f j

∂xi
. (13)

This describes, for instance, the contact of an irreversible sys-
tem, containing nonconservative forces, with a heat reservoir.
In these nonequilibirum cases the production of entropy Π and
the flux of entropy Φ are both nonzero.

IV. ENTROPY

The Gibbs entropy S(t) of the system at time t is defined by

S(t) = −
∫

P(x, t) lnP(x, t)dx, (14)

where dx = dx1dx2 . . .dxn. Using the Fokker-Planck equation
in the form of Eq. (6), its time derivative can be written as

d
dt

S(t) =
∫

[lnP(x, t)+1]∑
i

∂
∂xi

Ji(x, t)dx. (15)

Integrating by parts we get

d
dt

S(t) = −
∫

∑
i

Ji(x, t)
∂

∂xi
lnP(x, t)dx. (16)

Now from the definition of current of probability given by Eq.
(7) it follows that

Di
∂

∂xi
lnP(x, t) = fi(x)− Ji(x, t)

P(x, t)
. (17)

Therefore, we may write

d
dt

S(t) =
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= −
∫

∑
i

1
Di

Ji(x, t) fi(x)dx+
∫

∑
i

[Ji(x, t)]2

DiP(x, t)
dx. (18)

The last term is clearly positive definite. We identify it with
the entropy production, that is,

Π =
∫

∑
i

[Ji(x, t)]2

DiP(x, t)
dx. (19)

Comparing with Eq. (1), it follows that the entropy flux Φ
should be given by

Φ =
∫

∑
i

1
Di

Ji(x, t) fi(x)dx. (20)

Multiplying the density of current given by Eq. (7) by fi
and integrating we have

∫
Ji(x, t) fi(x)dx =

=
∫

[ fi(x)]2P(x, t)dx−Di

∫
fi(x)

∂
∂xi

P(x, t)dx. (21)

Integrating the last term by parts, we get the following expres-
sion for the entropy flux,

Φ =
∫

∑
i
{ 1

Di
[ fi(x)]2 + fii(x)}P(x, t)dx, (22)

where fii(x) = ∂ fi(x)/∂xi. The right-hand side can be written
as an average over the probability distribution P(x, t), that is,

Φ = 〈∑
i
{ 1

Di
[ fi(x)]2 + fii(x)}〉. (23)

V. MASTER EQUATION

In this section we show that a discretized Fokker-Planck
equation can be viewed as a master equation. To this end let
us consider a Fokker-Planck equation in one variable

∂
∂t

P(x, t) = − ∂
∂x

[ f (x)P(x, t]+D
∂2

∂x2 P(x, t). (24)

If we use the discretization x = na then this equation can be
written as

d
dt

Pn(t) = −1
a
[ fn+1Pn+1(t)− fnPn(t)]+

+
D
a2 [Pn+1(t)−2Pn(t)+Pn−1(t)], (25)

where Pn(t) = P(x, t) and fn = f (x), which in turn can be iden-
tified as the master equation

d
dt

Pn(t) = w+
n−1Pn−1(t)−w+

n Pn(t)+

+w−
n+1Pn+1(t)−w−

n Pn(t) (26)

where

w+
n =

D
a2 (27)

is the transition probability of jumping from n to n+1 and

w−
n =

D
a2 − fn

a
(28)

is the transition probability of jumping from n to n−1.
According to Lebowitz and Spohn [10] the flux of entropy

in a system governed by a master equation is given by

Φ = 〈w+
n ln

w+
n

w−
n+1

+w−
n ln

w−
n

w+
n−1

〉, (29)

Now, if we take the limit a → 0 it is straightforward to show
that this expression becomes

Φ = 〈 1
D

[ f (x)]2 + f ′(x)〉, (30)

which is the expression given by Eq. (23) for the particular
case of one variable.

VI. TIME AVERAGE OF A STATE FUNCTION

Let us consider the time average of a state function E(x)
given by

U(t) =
∫

E(x)P(x, t)dx. (31)

We have

d
dt

U(t) = −
∫

E(x)∑
i

∂
∂xi

Ji(x, t)dx. (32)

Integrating by parts,

d
dt

U(t) =
∫

∑
i

Ji(x, t)Ei(x)dx, (33)

where Ei(x) = ∂E(x)/∂xi, or

d
dt

U(t) =
∫

∑
i

Ei(x) fi(x)P(x, t)dx−

−
∫

∑
i

DiEi(x)
∂

∂xi
P(x, t)dx. (34)

Integrating the last term by parts we get

d
dt

U(t) =
∫

∑
i

Ei(x) fi(x)P(x, t)dx+

+
∫

∑
i

DiEii(x)P(x, t)dx, (35)
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where Eii(x) = ∂Ei(x)/∂xi and we have assumed that Ei(x) is
either periodic or vanishes at the boundary, depending on the
type of boundary condition. The right-hand side can therefore
be written as an average,

d
dt

U(t) = 〈∑
i
{Ei(x) fi(x)+DiEii(x)}〉. (36)

VII. DISSIPATED POWER

The dissipated energy per unit time due to the forces fi, or
the dissipated power of the forces fi, is determined by

P = 〈∑
i

fi
dxi

dt
〉. (37)

If we use the Langevin equation this can be written as

P = 〈∑
i
[ fi]2〉+ 〈∑

i
fiζi(t)〉. (38)

Using now the Stratonovich prescription, it is possible to show
that 〈 fiζi(t)〉 = Di〈 fii〉, where fii = ∂ fi/∂xi〉, so that

P = 〈∑
i
{[ fi]2 +Di fii}〉. (39)

This expression has been obtained before [15] by means of
a similar reasoning. Using a reasoning similar to those used
before we can write this expression as

P =
∫

∑
i

Ji(x, t) fi(x). (40)

It is interesting to notice that there is a simple relationship
between the dissipated power and the entropy flux when the
system is in contact with a heat reservoir. In this case, as we
have seen, Di = D where D is proportional do the temperature
of the reservoir. Comparing these two expression with those
for the entropy flux Φ we see that

Φ =
P
D

. (41)

Writing D = kT and defining Φ∗ = kΦ we see that Φ∗ = P/T .
We remark that this relation is valid for systems that are in
contact with a heat reservoir but subject to nonconservative
forces.

VIII. NONCONSERVATIVE FORCE

From now one we will consider the case such that Di = D,
which correponds to the description of a system in contact
with a heat reservoir. In the stationary state, expression (23)
for the entropy flux Φ gives also the production of entropy Π
since the variation in entropy dS/dt vanishes. However, if the
system is in a transient state this expression will be a sum of
two terms: one is the production of entropy Π and the other
is minus the entropy variation −dS/dt of the system. Let us

compute each of these terms. To this end we start by splitting
the force fi(x) into two parts

fi(x) = f C
i (x)+ f D

i (x), (42)

such that f C
i (x) is conservative, that is, f C

i (x) is the gradient
of a potencial E(x), or

fC
i = −∂E

∂xi
, (43)

and f D
i (x) is a nonconservative force with a vanishing diver-

gence (solenoidal force), that is,

∑
i

∂ f D
i

∂xi
= 0. (44)

That such a splitting can always be done can be seen as fol-
lows. This last equation implies that

∑
i

∂ fi

∂xi
= ∑

i

∂ f C
i

∂xi
, (45)

or yet

∑
i

∂ fi

∂xi
= −∑

i

∂2E
∂x2

i
. (46)

Therefore, if we are given a generic force fi(x), this last equa-
tion can be solved to obtain E(x). From E(x) we get f C

i (x) by
means of Eq. (43) and f D

i (x) by using Eq. (42).
The flux of entropy is written as a sum of two terms, Φ =

ΦC +ΦD, where

ΦC = 〈∑
i
{ 1

D
f C
i (x) fi(x)+ fC

ii (x)}〉. (47)

and

ΦD =
1
D
〈∑

i
f D
i (x) fi(x)〉. (48)

Now, since f C
i (x) is the gradient of a state function E(x) we

may use the identification f C
i = Ei and Eq. (36) to conclude

that

ΦC =
1
D

d
dt
〈E(x)〉. (49)

In the stationary state, the right-hand side vanishes so that ΦC
vanishes and Π = Φ = ΦD.

IX. A SIMPLE MODEL

Let us consider a simple model with two variables, for
which the force is given by

f = −Kr+Aẑ× r, (50)
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where K and A are two parameters, and r = x1x̂ + x2ŷ and
f = f1x̂ + f2ŷ. As long as A �= 0 the force is nonconservative
since ∇× f = −2Aẑ �= 0. In this case

ΦC =
1
D
{K2〈r2〉−2DK} (51)

and

ΦD =
1
D

A2〈r2〉. (52)

The Fokker-Planck equation is

∂P
∂t

= −∇ · (fP)+D∇2P, (53)

which can be written as

∂P
∂t

= K∇ · (rP)−Aẑ · r×∇P+D∇2P. (54)

A solution of this equation can be obtained by assuming that
P is a function of |r| = r only. The vector product term in
(54) then vanishes and the equation becomes a Fokker-Planck
equation for a conservative force given by f = −Kr. The sta-
tionary solution is then

P(r) =
K

2πD
e−Kr2/2D, (55)

from which we get 〈r2〉 = 2D/K, and the results ΦC = 0 and

Π = ΦD =
2A2

K
. (56)

The entropy production Π is then proportional to A2 and van-
ishes when A → 0, that is, in the equilibrium case.

We may also determine the stationary current of probability.
From its definition

J(r)J(r) = f(r)P(r)−D∇P(r) (57)

we obtain the result

J(r) = A(ẑ× r)P(r). (58)

Hence, the current of probability is proportional to A and also
vaninhes in the equilibrium state, as expected.

X. CONCLUSION

We have devised an expression for the entropy flux in the
stationary state for systems that follow a Fokker-Planck equa-
tion. We have found that the entropy flux can be written as
an average value of an expression containing the force and
its derivative. This result can be compared with the one by
Lebowitz and Spohn. In fact they were able to show that the
entropy flux for markovian processes can be calculated as an
average of an state function at the steady state. We have also
shown that for a simple model for particles subjected to dissi-
pative forces the entropy flux, which equals the entropy pro-
duction, in the steady state is nonzero.
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