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Dirac Equation: Representation Independence and Tensor Transformation
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We define and study the probability current and the Hamiltonian operator for a fully general set of Dirac
matrices in a flat spacetime with affine coordinates, by using the Bargmann-Pauli hermitizing matrix. We find
that with some weak conditions on the affine coordinates, the current, as well as the spectrum of the Dirac
Hamiltonian, thus all of quantum mechanics, are independent of that set. These results allow us to show that the
tensor Dirac theory, which transforms the wave function as a spacetime vector and the set of Dirac matrices as a
third-order affine tensor, is physically equivalent to the genuine Dirac theory, based on the spinor transformation.
The tensor Dirac equation extends immediately to general coordinate systems, thus to non-inertial (e.g. rotating)
coordinate systems.
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I. INTRODUCTION

The Dirac equation is associated with a specific transfor-
mation behaviour: although it has four components, the Dirac
wave function ψ is not transformed as a spacetime vector.
Instead, it is subjected to the so-called spinor transformation:
ψ 7→ Sψ, which arises because the Dirac matrices γµ are
supposed to stay invariant after a Lorentz transformation
L. The spinor representation: L 7→ S = S(L), is defined
(unambiguously up to a sign) for L ∈ SO+(1,3), the proper
orthochronous Lorentz group, but it cannot be extended to the
group of general linear transformations, GL(4,R) [1–3]. This
means that the use of the genuine Dirac equation is limited to
Cartesian coordinates. Thus, for instance, the genuine Dirac
equation cannot be used to describe the situation in a rotating
frame, which is relevant to Earth-based experiments. In such
non-inertial frames, one has to use [4–8] the extension of the
Dirac equation proposed independently by Weyl [1] and by
Fock [9], hereafter the “Dirac-Fock-Weyl” (DFW) equation.
However, the DFW equation does not transform as the Dirac
equation under a coordinate change: for the DFW equation,
the wave function ψ stays invariant after any coordinate
change, while the (ordered) set (γµ) transforms as a mixed
object which is only partially tensorial [10, 11]. Now one
lesson of relativity is that the physical consequences of an
equation may depend, not only on the equation itself, but also
on its transformation behaviour—for instance, the Maxwell
equations do not describe the same physics, depending on
whether Galileo transformation or Lorentz transformation
is used. Therefore, it is not a priori obvious that, if one
neglects gravitation (thus assuming a flat spacetime), the
DFW equation is physically equivalent to the Dirac equation.

It turns out to be possible [12] to transform the usual Dirac
equation covariantly, with the wave function transforming as

a spacetime vector, i.e.,

ψ′ = Lψ (ψ′µ = Lµ
ν ψν), Lµ

ν ≡
∂x′µ

∂xν , (1)

provided one simultaneously transforms the Dirac matrices γµ

in the following way:

γ′µ ≡ Lµ
ν LγνL−1. (2)

If, as usual, one writes the row index of the Dirac matri-
ces as a superscript and the column index as a subscript,
this equation means simply that the threefold array of the
components, γµρ

ν ≡ (γµ)ρ
ν, is a (2

1) tensor [13]. The very
possibility of applying a tensorial transformation to the usual
Dirac equation itself had not been recognized before—even
though there have been attempts at rewriting the Dirac
equation in a different form and with different fields, so as
to recover tensors: e.g. Eddington [14, 15], Whittaker [16]
(see also Taub [17]), Elton & Vassiliev [18]. In a presentation
of the Dirac equation starting from a special choice for
the γµ matrices (involving four “Pauli-like” 2× 2 matrices
σµ), Bade & Jehle [19] envisaged a (peculiar) possibility
in order that the Dirac equation be covariant with respect
to Lorentz transformations with non-fixed matrices. But
they immediately dismissed it, on the ground that “the σµ

will have the especially simple [Pauli-like] values only
in certain frames of references.” This argument might be
put forward in the same way against the general tensor
transformation (1)-(2): once the γµ matrices are changed
after a coordinate change, a special choice for them can be
taken only in special coordinate systems—which would seem
to “violate the spirit if not the letter of the relativity idea” [19].

However, another important point is that the choice of the γµ

matrices should not have any physical consequence, provided
they fulfil the relevant anticommutation relation,

γµγν + γνγµ = 2gµν 14, µ,ν ∈ {0, ...,3}. (3)
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As it appears more clearly in some derivations of the Dirac
equation, which adopt the 4-dimensional covariant formalism
from the beginning, there is indeed no reason to prefer any
set of anticommuting matrices (see e.g. Refs. [12, 20]). If it
turned out that the physical predictions of the Dirac equation
should depend on the set (γµ), this would certainly invalidate
the transformation behaviour (1)-(2), but it would be also a
very serious problem for the standard (spinor) transformation:
one would have to find good reasons to select a special choice,
say (γµ

0), and this would have to be made once and for all. It is
surprising that the possible dependence of the physical predic-
tions on the set (γµ) seems to be hardly discussed in the litera-
ture: almost always, some particular choice is made, generally
the “standard” choice, e.g. Bjorken & Drell [21]. Even when
some other sets are presented, such as the so-called “chiral”
matrices (e.g. Schulten [20]) or the Majorana matrices [22],
no attempt is made at showing that the physical predictions
are unaffected by this or another choice. Recently, Pal [23]
has derived various important identities involving Dirac ma-
trices and spinors, independently of any particular choice (γµ),
which represents a step towards showing the “representation
independence.” However, he restricts the consideration to sets
such that α0 ≡ γ0 and α j ≡ γ0γ j ( j = 1,2,3) are Hermitian
matrices, i.e., αµ∗T = αµ. This forces him to consider sim-
ilarity transformations that are defined by a unitary matrix,
whereas this limitation is not imposed by the anticommuta-
tion (3), nor—as will be shown here—by the condition that
the Hamiltonian be a Hermitian operator (this is because the
scalar product has to be specified). Moreover, Pal’s results
[23] do not directly enable one to answer the following ques-
tions:

• Does the probability current depend on the chosen set
(γµ)?

• Is there a positive definite inner product defined for the
wave functions relevant to the Dirac equation ?

• Does the inner product depend on the chosen set (γµ)?

• Does the spectrum of the Hamiltonian operator depend
on the chosen set (γµ)?

In our opinion, these are crucial questions. The first part
of the present paper (Sects. II to IV) will be devoted to
answering them favorably, with some minor, but important,
restrictions on the affine coordinates discussed in Section
III. To do this, we present all the elements of quantum
mechanics, including the Dirac equation, positive probability
density and its conserved current, positive scalar product
for a Hilbert space, and the Hamiltonian, which we show
is a Hermitian operator, in affine coordinate systems that
are not Cartesian. This will enable us then to show, after a

summary of previous work on the tensor transformation of
the Dirac equation [12] (Sect. V), that the latter is physically
completely equivalent to the spinor transformation as long as
only Lorentz transformations are allowed (Sect. VI)—with
the advantage that the tensor transformation extends to the
case of affine coordinate transformations (Sect. VI) and to the
case of general coordinate changes (Sects. VI and VII).

In the appendices we prove some new extensions of Pauli’s
Theorems [24, 25], which have not been considered by previ-
ous authors, but are needed to extend the Hilbert space for the
Dirac equation to affine coordinates, and to get the positive
definiteness and uniqueness of the inner product. Part of these
results, with the notable exception of the positive definiteness
of the inner product, might be derived more or less directly
from the works of Pauli [24, 25] and Kofink [26], though not
in the general case that we need. We show that the positive
definiteness of the inner product is not valid in general, but re-
quires some weak conditions on the affine coordinates. These
weak conditions are always satisfied in practice in admissible
spacetimes (see Sect. III). 1

II. CURRENT CONSERVATION FOR A GENERAL SET
OF DIRAC MATRICES

Let us consider a general set (γµ) of Dirac matrices, i.e., an
ordered set of four 4× 4 complex matrices satisfying the an-
ticommutation relation (3), with (gµν)≡ (gµν)−1, where (gµν)
is the matrix of the components of a general metric g, that
is, a non-degenerate, real, and symmetric spacetime tensor.
(Spacetime indices will be lowered and raised using the met-
ric gµν and its inverse gµν.) The main tool to deal with a such
general set is the hermitizing matrix, first introduced for a par-
ticular set by Bargmann [27], and studied in a more general
case by Pauli [24, 25]. This is a nonzero 4×4 complex matrix
A such that

A† = A, (Aγµ)† = Aγµ µ = 0, ...,3, (4)

where M† ≡M∗T denotes the Hermitian conjugate of a matrix
M. The existence of a nonzero matrix A satisfying (4) for a
general set of Dirac matrices is proved in detail in Appendices
A and B. Due to Eq. (4)1, we define a Hermitian product
between 4-vectors u and v by setting

(u,v)≡ Aρνuρ∗vν = u†Av. (5)

The two properties (4) are equivalent to the two following
ones:

1 Theorem 4 and part of Theorem 5 that depends on Theorem 4 in Appendix
A are new. Theorems 6 and 7 in Appendices B and C are also new.

Aµν = A∗νµ, Aρν (γµ∗)ρ
σ = Aσρ (γµ)ρ

ν (µ,ν,σ ∈ {0, ...,3}). (6)
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The second property in (6), in turn, means exactly [13] that each of the γµ matrices is a Hermitian operator for the product (5),
that is,

(γµu,v) = (u,γµv), µ = 0, ...,3. (7)

Let ψ be a field defined on the spacetime manifold V, taking values in the vector space C4, and let us define the 4-current jµ by
[13]

jµ ≡ (γµψ,ψ) = Aρν (γµ∗)ρ
σ ψσ∗ψν. (8)

This may be rewritten as [cf. Eqs. (4) and (5)]:

jµ = ψ†γµ† Aψ = ψ† Aγµ ψ. (9)

Note that, until now, gµν, γµ, and A, may depend on the spacetime point X ∈ V. But, henceforth and until Sect. VII, we shall
assume that spacetime is flat. Thus, there are Cartesian coordinates on V, such that the metric is the Poincaré-Minkowski metric,
with component matrix

(ηµν)≡ (ηµν)−1 = (ηµν)≡ diag(1,−1,−1,−1). (10)

We shall use a coordinate system xµ derived from a Cartesian system by a linear transformation (an affine system), so that the
flat metric has a general form gµν, but is constant. In that case, also the γµ’s and A are constant. We get then from the definition
(8), by using (7):

∂µ jµ = (γµ∂µψ,ψ)+(γµψ,∂µψ) = (γµ∂µψ,ψ)+(ψ,γµ∂µψ). (11)

Let us assume now that the field ψ obeys the Dirac equation 2 in the presence of an electromagnetic field characterized by the
(real) potential Aµ:

iγµ(∂µ + iqAµ)ψ−mψ = 0 (~= c = 1). (12)

Entering that into (11) yields, using the sesquilinearity and (7):

∂µ jµ = −(imψ+ iqγµAµψ,ψ)− (ψ, imψ+ iqγµAµψ)
= im[(ψ,ψ)− (ψ,ψ)]+ iq[(γµAµψ,ψ)− (ψ,γµAµψ)]
= iq[(γµAµψ,ψ)− (γµψ,Aµψ)]. (13)

That is, the current is conserved:

∂µ jµ = 0 (14)

in the presence of an electromagnetic field for a fully gen-
eral choice of the Dirac matrices in a flat spacetime, expressed
with affine coordinates.

We now show that, in a fixed affine coordinate system, the
current (8) does not depend on the choice of the Dirac ma-
trices. Let (γ̃µ) be any other possible set, thus satisfying the
same anticommutation relation as does (γµ):

γ̃µγ̃ν + γ̃νγ̃µ = 2gµν 14. (15)

(Of course, metric gµν is unchanged, since we are not chang-
ing the coordinate system.) As shown by Pauli [24], there
exists a non-degenerate matrix S such that the second set is
obtained from the first one by the similarity transformation

2 In Sects. II to IV, we shall consider the Dirac equation and its associated
Hamiltonian operator in a fixed affine coordinate system in a flat spacetime.

(which is a linear change of representation for the field ψ): 3

∃S ∈ GL(4,C) : γ̃µ = SγµS−1, µ = 0, ...,3. (16)

Moreover, ψ obeys the Dirac equation (12) iff the similarity-
transformed wave function,

ψ̃≡ Sψ, (17)

obeys the corresponding Dirac equation, involving matrices
γ̃µ. Using (16) in (6), one finds that the following matrix is
hermitizing for the set (γ̃µ), i.e., after the similarity transfor-
mation:

Ã = (S−1)†AS−1 = (S†)−1AS−1, (18)

3 From Pauli’s Fundamental Theorem (see Theorem 3 in Appendix A) one
easily shows the existence of S for a general metric, using Eqs. (1) and (2).
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as is easily checked directly from (16) and (4). Hence, using
(16)–(18) in the definition (9) of the current, we find:

j̃µ ≡ ψ̃†γ̃µ† Ã ψ̃ = (Sψ)†(SγµS−1)† [(S†)−1AS−1]Sψ = jµ.
(19)

Thus, we have established the assertion that the current (8)
does not depend on the choice of the Dirac matrices.

III. HERMITIAN HAMILTONIAN FOR A GENERAL SET
OF DIRAC MATRICES

Multiplying the Dirac equation (12) by γ0 on the left and
using the anticommutation (3), one gets the Dirac equation in
Schrödinger form:

i
∂ψ
∂t

= Hψ, (t ≡ x0), (20)

with

H≡ mα0 +α j.(−i∂ j)+q(A0 +α jA j), (21)

and where

α0 ≡ γ0/g00, α j ≡ γ0γ j/g00. (22)

(We shall assume g00 6= 0 throughout this paper. Note that
p j ≡−i∂ j commutes with α j, because the latter is a constant
matrix when using an affine coordinate system.) In order to
study the hermiticity of the Hamiltonian (21), we shall use the
existence of a matrix, say B, that is hermitizing for the αµ ’s:

B† = B, (Bαµ)† = Bαµ µ = 0, ...,3. (23)

Indeed, we prove in Appendix B the following result:

Theorem 6. Consider the tensor Dirac theory, with
transformation laws (1)-(2). For any set of matrices γµ

satisfying the general anticommutation formula (3), there
exists a hermitizing matrix A for the matrices γµ. The matrix A
is nonsingular and unique, up to a real scale factor. Similarly,
a nonsingular hermitizing matrix B ≡ Aγ0 for the αµ’s exists
and is unique, up to a real scale factor. If, furthermore,
g00 > 0 and the 3× 3 matrix (g jk) ( j,k = 1,2,3) is negative
definite, then B ≡ Aγ0 is either a positive or negative definite
matrix. The sign of the matrix A can be chosen such that
B≡ Aγ0 is a positive definite matrix.

We note that both conditions, i.e., that g00 > 0 and that the
matrix (g jk) ( j,k = 1,2,3) be negative definite, must be true
in any physically admissible coordinate system [28]. The co-
ordinate systems for which these conditions are valid will be
called admissible. According to the above Theorem, we can
always introduce the Hermitian product

(u : v)≡ Bρνuρ∗vν = u†Bv. (24)

As for Eq. (4), it results from (23) that each of the αµ matrices
is a Hermitian operator for the product (24), that is,

(αµu : v) = (u : αµv), µ = 0, ...,3. (25)

If, moreover, the affine coordinate system considered is in fact
an admissible one, then Theorem 6 shows that B can be cho-
sen to be a positive Hermitian matrix, so that the Hermitian
product (24) is positive in that case, (u : u) > 0 if u 6= 0. Such
a choice will be always assumed henceforth. Finally, it is well
known that the operator p j ≡ −i∂ j is Hermitian for the Her-
mitian product defined for scalar functions of space:

(a | b)≡
∫

space
a(x)∗ b(x) d3x (x≡ (x j)), (26)

and it is easy to check that, when an operator O is extended
from scalar functions to ones taking values in C4 by O.(ψµ)≡
(Oψµ), its adjoint for the product

(ψ ‖ ϕ)≡
∫

space
(ψ(x) : ϕ(x)) d3x = Bρν(ψρ | ϕν) (27)

is the extension of the adjoint of O for the product (26)—so
that p j is also Hermitian for the product (27). From this, and
from (25), it follows that the Dirac Hamiltonian (21) is a
Hermitian operator for the Hermitian product (27), which is
a positive Hermitian product, if the coordinate system is an
admissible one.

Also, the Hermitian product must give rise to a conserved
probability density (ψ : ψ). Since B = Aγ0, the conserved
probability density in formula (9) becomes j0 = (ψ : ψ),
thus j0 = (ψ : ψ) ≥ 0 in admissible coordinates in the Dirac
theory with tensor transformation. Therefore, admissible
coordinate systems play in that theory the role played in the
DFW theory by the time-oriented tetrads. However, for the
DFW theory, there are few studies on the hermiticity of the
Hamiltonian in a generic coordinate system (even in general
affine coordinates in a flat spacetime), except for Leclerc’s
work [29]. Nevertheless, Leclerc assumes positive definite-
ness for the Hilbert space inner product, without proof. The
positive definiteness of the Hilbert space inner product in
general coordinates has not been addressed previously by
other authors for the DFW theory, and certainly not for the
Dirac theory with tensor transformation.

Let us investigate now, in a fixed admissible affine coordi-
nate system, the influence of the choice of the set (γµ) on the
eigenvalues and eigenfunction expansions associated with the
Dirac Hamiltonian (21). As in section II, let (γ̃µ) be another
set of constant gamma matrices, satisfying the same anticom-
mutation relation (3) as does (γµ). Thus, the set (γ̃µ) is ob-
tained from the set (γµ) by the similarity transformation (16),
from which it follows immediately that the matrices

α̃0 ≡ γ̃0/g00, α̃ j ≡ γ̃0γ̃ j/g00 (28)

are obtained from the αµ’s (22) by the same similarity trans-
formation:

α̃µ = SαµS−1, µ = 0, ...,3. (29)

Clearly, then, the Hamiltonian operator H̃ corresponding to
the set (γ̃µ), which is defined by (21) with the matrices α̃µ in
the place of the αµ’s, turns out to be simply

H̃ = SHS−1. (30)
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Moreover, matrix

B̃ = (S−1)†BS−1 = (S†)−1BS−1, (31)

is a hermitizing matrix for the set (α̃µ). With the set (γ̃µ),
the relevant scalar product defined for wave functions ψ̃ and
ϕ̃ is thus given by Eq. (27) with tildes. The respective wave
functions exchange by ψ̃ = Sψ, Eq. (17), since this is true for
solutions of the respective Dirac equations. Using these two
definitions and Eq. (31), it is straightforward to check, in the
same way as for the invariance of the current [Eq. (19)], that
the Hilbert space inner product (27) is invariant under similar-
ity transformations:

(ψ̃ ‖̃ ϕ̃) = (ψ ‖ ϕ). (32)

Since Eq. (30) implies that H̃ ψ̃ = H̃ψ, it follows then imme-
diately that

(H̃ ψ̃ ‖̃ ϕ̃) = (Hψ ‖ ϕ). (33)

The first equation means that the mapping ψ 7→ Sψ is an
isometry of the Hilbert space H , relevant to the Dirac equa-
tion based on the set (γµ), onto the Hilbert space H̃ , relevant
to the Dirac equation based on the set (γ̃µ). The second
equation means that, if one chooses any Hilbert basis (ψk)
of the Hilbert space H [taken such that ∀k, ψk ∈ Dom(H)],
then the matrix of the Hamiltonian H in the basis (ψk) is
the same as the matrix of the Hamiltonian H̃ in the Hilbert
basis (ψ̃k) ≡ (Sψk) of the Hilbert space H̃ . In particular, the
operators H and H̃ have the same eigenvalues, the eigenfunc-
tion expansions of the states ψ ∈ Dom(H) exchanging by the
mapping ψ 7→ ψ̃ ≡ Sψ. In short, the quantum mechanics is
fully unaffected by the choice of the set of Dirac matrices.

Note that the results of this section pertain to the tensor
Dirac theory with the transformation behavior (1) and (2).
These results have not been proved for the DFW theory, ex-
cept of course for Cartesian coordinates. They do not apply
to the genuine Dirac theory, except in the case of Cartesian
coordinates.

IV. A UNIQUENESS QUESTION

When discussing the current conservation in Sect. II and
the Hamiltonian in Sect. III, we did not assume the unique-
ness of the hermitizing matrix (4), nor did we assume the
uniqueness of the similarity transformation S that transforms
one set of Dirac matrices to another one, Eq. (16). We do
not need the uniqueness of the latter: any other possible
transformation will lead to the same results, Eqs. (19) and
(32), which express the absence of a dependence on the set of
Dirac matrices. However, the non-uniqueness of the hermitiz-
ing matrix would mean that, for a given set of Dirac matrices,
say (γµ): i) there may exist several conserved currents j, each
of them being given by Eq. (8) with a different matrix A,
that is hermitizing for the set (γµ); ii) there may exist several
Hermitian products, each of them being given by Eqs. (27)

and (24) with a different matrix B, that is hermitizing for
the set (αµ). Note that this problem arises already for the
standard set of Dirac matrices [21], for which A ≡ γ0 turns
out to be a hermitizing matrix, but is not necessarily the only
one possible.

Obviously, the hermitizing matrix, say A, as characterized
by property (4), may be replaced by λA with any λ ∈ R∗.
From the explicit computation of Kofink [26], it should follow
that this is the only ambiguity which exists in the choice
of the hermitizing matrix (denoted B in the present work)
for a set of alpha matrices (αµ) satisfying the “Euclidean”
anticommutation (C1) with hµν = δµν. To eliminate any
doubt, this result is proved in Appendix A. Therefore, at
least in the case of a Cartesian spacetime coordinate system,
the Hermitian product (27) with (24), with respect to which
the Dirac Hamiltonian is a Hermitian operator, is unique up
to a constant real factor—which is the best result that one
can hope, and does not affect the spectrum of H. It is also
shown in Appendix A that the uniqueness of the hermitizing
matrix is equally true for a set of gamma matrices (γµ) in
the case where the anticommutation relation involves the
Poincaré-Minkowski metric ηµν. That is, also the hermitizing
matrix A used in the definition (8) of the current, is unique
up to a non-zero real factor λ, at least in a Cartesian system.
Thus, the current (8) is also defined uniquely, up to a real
factor—which is harmless.

In Appendix B, the existence of the hermitizing matrices A
and B, and their uniqueness up to a real scale factor, are ex-
tended to any affine coordinate system, using the tensor trans-
formation (1)-(2). For admissible affine coordinates, with an
appropriate choice of sign, the positive definiteness of the her-
mitizing matrix B is established. It follows that the scalar
product (ψ ‖ ϕ) in (27), obtained from (ψ : ϕ) in (24), is a
positive Hermitian product, with respect to which the Dirac
Hamiltonian is a Hermitian operator. Furthermore, the scalar
product (ψ ‖ ϕ) is unique up to a positive real factor. This
assigns essentially a unique Hilbert space to each admissible
affine coordinate system. Acting in these Hilbert spaces, the
Dirac Hamiltonian is a Hermitian operator in every admissible
affine coordinate system

V. TRANSFORMING THE DIRAC EQUATION: THE
OPTIONS

In this section, we shall recall some results of previous work
[12], adding a new observation. Let us investigate the trans-
formation behaviour of the Dirac equation (12) under a linear
coordinate change:

x′µ = Lµ
νxν, or x′ = Lx (x≡ (xµ)). (34)

Let us restrict the consideration to those linear changes for
which matrix L belongs to some subgroup G of the group
GL(4,R) of all possible linear transformations. One finds [12]
that the covariance of the Dirac equation under a change (34)
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depends on the existence of a representation (a group homo-
morphism) S of the group G into GL(4,C): for any pair (G,S),
the Dirac equation (12) is covariant, i.e., remains valid (with
primes) in this same form (12) after any change (34) with
L ∈ G, if we apply simultaneously the following changes to
the wave function ψ and to the matrices γµ:

ψ′(x′) = S(L).ψ(x), (35)

γ′µ = Lµ
νSγνS−1, S≡ S(L). (36)

One may list three different possible choices for the pair
(G,S):

• i. G = SO+(1,3), the proper orthochronous Lorentz
group, with S being the spinor representation. This
is the standard choice, in fact Dirac’s original choice,
briefly discussed at the beginning of the present paper.

• ii. G = GL(4,R), with S being the identity represen-
tation defined by S(L) = L ∀L ∈ G. This is the “ψ =
vector and (γµ) = (2

1) tensor” transformation behaviour
[12], Eqs. (1)–(2) in the present work. It will be desig-
nated shortly as “the tensor transformation” of the Dirac
equation.

• iii. G = GL(4,R), with S being the trivial represen-
tation defined by S(L) = 14 ∀L ∈ G. (The possibility
of this choice had not been noted in the previous work
[12].) Thus Eqs. (35)–(36) become

ψ′(x′) = ψ(x), (37)

γ′µ = Lµ
νγν. (38)

This is nothing else than the transformation behaviour
associated [10] with the standard gravitational exten-
sion of the Dirac equation [1, 9], here named the Dirac-
Fock-Weyl (DFW) equation.

The two last possibilities, in contrast with the first one, are
defined for any linear coordinate change. This is the reason
why, after introducing some covariant derivative, they extend
to general coordinate changes. This is well known for the
DFW equation, associated with choice iii, and it will be shown
in Sect. VII for choice ii.

VI. TENSOR TRANSFORMATION OF THE DIRAC
EQUATION

As noted in the Introduction, it is a closed set of equations
together with their transformation behaviour that makes
a definite physical theory. It will be clear now that the
Dirac equation with tensor transformation [let us call it “the
tensor Dirac theory,” defined by the transformation scheme
ii in the foregoing section] is physically equivalent to the
Dirac equation with spinor transformation [“the spinor Dirac
theory,” defined by scheme i], in the domain of validity of the

latter, i.e., in inertial frames (with Cartesian coordinates). 4

To show this, we may choose the inertial frame as we wish,
since each of the two theories is covariant under Lorentz
transformations (Sect. V). But we were not allowed a priori
to select the same set (γµ) of Dirac matrices, since the tensor
Dirac theory does not leave the γµ’s invariant. However, we
now know that the choice of the set (γµ) is fully immaterial,
since the probability current j, as well as all scalar products
(ψ ‖ ϕ) and transition amplitudes (Hψ ‖ ϕ), are invariant
under any similarity transformation; i.e., any change of the set
(γµ) (associated with a linear change of representation of the
field ψ) [Sects. II and III]. Therefore, in our selected inertial
frame, we may after all take the same set (γµ) for the spinor
and the tensor Dirac theories. Thus, the two theories being
associated with just the same equation (with the same matrix
coefficients) in a given inertial frame, their equivalence is
obvious.

As a complementary check of the consistency of the tensor
Dirac theory, let us investigate the transformation properties
of a few additional objects under coordinate changes, accord-
ing to the tensor Dirac theory. Until Section VII, the Hamil-
tonian (21) is restricted to a flat spacetime with certain affine
coordinates. However, the tensor transformation of the wave
function and the Dirac matrices extends to general coordinate
changes, and this is also true for the transformation of the ob-
jects studied below.

• The hermitizing matrix A = (Aρν) may be characterized
by Eq. (6). Since γµρ

ν ≡ (γµ)ρ
ν is a (2

1) tensor, it follows
that (6) is covariant if we transform Aρν as a (0

2) tensor.
(This does not depend on the uniqueness of the hermi-
tizing matrix, which is studied in Appendices A and B.)
In other words, A = (Aρν) is a hermitizing matrix in the
coordinates xµ iff

A′ =
(
L−1)T

AL−1, Lµ
ν ≡

∂x′µ

∂xν (39)

is a hermitizing matrix in the coordinates x′µ. (It pre-
serves the hermiticity: A∗T = A and (39) imply that
A′∗T = A′.)

• The current j, with jµ ≡ Aρνγµρ∗
σ ψσ∗ψν [Eq. (8)], is

therefore a vector, as it is also in the spinor Dirac theory.

• The charge conjugation matrix may be defined to be a
matrix C = (Cρ

ν) such that 5

Cγµ∗ =−γµC, µ = 0, ...,3, (40)

hence in the tensor Dirac theory:

Cρ
νγµν∗

σ =−γµρ
ν Cν

σ, (41)

4 We consider the e.m. potential Aµ as given, hence the Dirac equation (to-
gether with the relevant boundary conditions, of course) is a closed system.

5 The matrix noted C here is often denoted as Cγ0. E.g., Eq. (40) is equiv-
alent to Eq. (5.4) on p. 67 in Bjorken and Drell [21], with here C in the
place of Cγ0 in Ref. [21].
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which shows that (Cρ
ν) is indeed a (1

1) tensor, i.e.,

C′ = LCL−1. (42)

In other words, C commutes with all coordinate trans-
formations.

• The “gamma-five matrix,” defined in a Poincaré-
Minkowski spacetime by

γ5 ≡ iγ0γ1γ2γ3, (43)

may be equivalently defined, in a general coordinate
system in a general spacetime with metric gµν, by

γ5 ≡ i
24

eµνρσγµγνγργσ, (44)

with the following (0
4) tensor (for transformations with

det(L) > 0):

eµνρσ ≡
√
|g| εµνρσ, (45)

where g≡ det(gµν) and εµνρσ is the signature of the per-
mutation (µνρσ) of {0, ...,3}. We have

(γµγνγργσ)τ
φ = γµτ

χ γνχ
ω γρω

ζ γσζ
φ ≡ Dµνρστ

φ , (46)

which is a (5
1) tensor. It follows thus from (44) and (46)

that T τ
φ ≡ (γ5)τ

φ is a (1
1) tensor, or

γ′5 = Lγ5L−1. (47)

Thus, γ5 commutes with all coordinate transformations,
as does C.

• The previous results allow us to study the transforma-
tion of the Hestenes tensor fields [30]. In the form given
by Takahashi [31] and extended to a general spacetime
by Reifler and Morris [32–34], these are a scalar field s
and a tetrad field eµ

K given by 6

s≡ (ψ,ψ)− (ψ,γ5ψ), (48)

eK ≡ |s|−1 JK , (49)

where the currents JK (K = 0, ...,3) are defined by

Jµ
K ≡ Re(ψ, iγµτKψ) , (50)

with

τ0ψ≡−iψ, τ1ψ≡ iCψ∗, (51)

τ2ψ≡Cψ∗, τ3ψ≡ iγ5ψ. (52)

6 In fact, this definition extends that of Reifler and Morris [34], in that it
uses the the general hermitizing matrix A, thus in Ref. [34] we would
define ψ̄≡ ψ†A instead of ψ̄≡ ψ†γ0. Matrix γ0 is a hermitizing matrix for
the standard set [21] of Dirac matrices.

It results from (1), (39) and (47) that s is indeed an in-
variant scalar, and it results from (1), (42) and (47) that
each τKψ (K = 0, ...,3) is a spacetime vector. (Thus,
ψ itself being also a vector, each τK commutes with all
coordinate transformations, as also do C and γ5.) It then
follows that each of the currents JK (K = 0, ...,3), and
so also each of the eK’s, is a spacetime vector.

We end this section by noting that, in the past, “the ten-
sor Dirac theory,” or “the tensor formulation of Dirac the-
ory,” has designated formulations of the Dirac theory in terms
of the Hestenes tensor fields s and eµ

K . Those may be de-
fined independently of the transformation of the wave func-
tion and the gamma matrices, and it was actually the spinor
transformation scheme that was used previously when dis-
cussing the Hestenes tensor fields [30, 32–34]. Indeed all
bispinor observables, such as the electric and chiral cur-
rents, energy-momentum and spin-polarization tensors, as
well as the bispinor Lagrangian, can be expressed in terms
of Hestenes’ scalar and tetrad fields [35].

VII. CONCLUSION: TENSOR DIRAC THEORY IN
GENERAL COORDINATES

While concluding their well-known paper about the Dirac-
Fock-Weyl theory, Brill and Wheeler [10] asked: “What is
there about the geometry of space which is not already ade-
quately covered by ordinary scalars, vectors, and tensors of
standard tensor analysis?” and they noted that “spinors allow
one to describe rotations at one point in space completely
independently of rotations at all other points in space. Fully
to see at work this machinery of independent rotations at
each point in space, we do best to consider the spinor field
in a general curved space [...]. But the deeper part of such
rotations in the description of nature is still mysterious.”

In the present paper, after having established the matrix-
representation independence of the Dirac theory, we have
been able to show that the tensor Dirac theory is quantum-
mechanically fully equivalent to the genuine Dirac theory,
involving spinor transformation of the wave function and
Lorentz-invariant gamma matrices. Here, we mean by “tensor
Dirac theory,” the usual Dirac equation with vector wave
function and with the set of the components of the gamma
matrices building a third-order tensor, Eqs. (1) and (2) [12].
This physical equivalence is not an obvious result, as the
Dirac theory has been steadily associated, since its discovery,
to the spinor transformation. Thus, the answer to Brill and
Wheeler’s question seems to be that in fact, at least in a
flat spacetime, there is nothing to add to “standard tensor
analysis.”

In addition to its greater simplicity, the tensor Dirac equa-
tion has the advantage that, at least in a flat spacetime, it
extends immediately to a general coordinate system: since
all objects are tensors, we merely have to replace the par-
tial derivatives ∂µ in the Dirac equation (12) by the covariant
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derivatives Dµ with respect to the Levi-Civita connection, thus
defining

(Dµψ)ν = ∂µψν +Γν
ρµψρ, (53)

the Γν
ρµ’s being the Christoffel symbols, associated with met-

ric g. In the case that g is flat, indeed, we know that (53) is
the only covariant derivative that behaves as a tensor and co-
incides with ∂µψν in Cartesian coordinates [3]. 7 This opens a
new, more direct possibility to study problems in non-inertial
(e.g. rotating) frames for fermions, as compared to using the
Dirac-Fock-Weyl equation. On the other hand, in the case
that the space-time metric g is curved, we may keep the de-
finition (53) and we thus obtain a gravitational extension of
the tensor Dirac equation, which obeys the equivalence prin-
ciple [13]. But another extension is possible, that leads to a
theory with a physically-preferred reference frame [13]. Both
of these gravitational extensions of the tensor Dirac theory
have still a tentative status, because two important points re-
main to be studied: the possibility of defining i) a conserved
current and ii) a Hermitian scalar product making the Hamil-
tonian operator Hermitian. (These two questions are being
investigated in detail in a forthcoming work [37].) However,
we believe that they become more interesting, now that it has
been proved that the tensor Dirac equation itself is equivalent
to the genuine Dirac equation.

APPENDIX A: UNIQUENESS PROOF OF HERMITIZING
MATRICES WITH THE POINCARÉ-MINKOWSKI METRIC

Theorem 1. Any matrix that commutes with all four gamma
matrices γ]µ in the Dirac representation is a complex scalar
multiple of the identity matrix 14. Also, any matrix that
commutes with all four alpha matrices α]µ in the Dirac
representation is a complex scalar multiple of the identity
matrix.

Proof. Any matrix, which commutes with every gamma
(alpha) matrix, commutes with the entire Dirac algebra
generated by products of gamma (alpha) matrices. As is
well-known (see e.g. ref. [21]), the algebra D generated by
the gamma matrices contains every 4× 4 complex matrix.
This is hence also true for the algebra D ′ generated by the
alpha matrices, since γ]0 = α]0 and γ] j = α]0α] j belong to D ′.
But a 4× 4 matrix which commutes with all complex 4× 4
matrices is a multiple of the identity. Q.E.D.

Theorem 2. Any hermitizing matrix B] for the alpha matrices
α]µ in the Dirac representation is a real scalar multiple of the

identity matrix.

Proof. Since each α]µ in the Dirac representation is Her-
mitian, and B] is hermitizing for α]µ,

(
B]α]µ

)†
= α]µB] = B]α]µ, (A1)

so that B] commutes with all four matrices α]µ. Therefore
B] is a scalar multiple of the identity matrix. Since B] is
Hermitian, the scalar must be real. Q.E.D.

Theorem 3 (Pauli’s Fundamental Theorem). For any set of
matrices γµ satisfying the anticommutation formula with the
Poincaré-Minkowski metric:

γµγν + γνγµ = 2ηµν 14, µ,ν ∈ {0, ...,3}, (A2)

there is a similarity transformation (16), i.e., a change of
representation, that takes γµ to γ]µ , and takes αµ to α]µ,
giving the Dirac representation of the gamma and alpha
matrices. The similarity transformation is unique up to a
nonzero complex scalar multiple of the identity matrix.

Proof. The existence is a well-known result, obtained by
Pauli [24]. Note that, if a similarity transformation (16) takes
γµ to γ]µ, it follows from the general definition (22) of the
alpha matrices that it also transforms αµ into α]µ. Let us prove
the uniqueness. Let S and T be similarity transformations
both taking γµ to γ]µ. Then T S−1 commutes with each γ]µ,
and therefore, using Theorem 1, is a nonzero complex scalar
multiple of the identity matrix. Q.E.D.

Theorem 4. For any set of matrices γµ satisfying the anti-
commutation formula (3) with a general metric, let A be any
matrix that is hermitizing for the matrices γµ. Then

B≡ Aγ0 (A3)

is hermitizing for the alpha matrices αµ (22). Conversely, if
B is any matrix that is hermitizing for the matrices αµ, then
A = Bα0 is hermitizing for the gamma matrices γµ.

Proof. Since A is hermitizing for the γµ’s, we have

B† =
(
Aγ0)†

= Aγ0 = B, (A4)

so that B is a Hermitian matrix. Let us show that B is a hermi-
tizing matrix for the αµ’s. Using also the definition (22) and
the anticommutation (3), we get

7 For the DFW theory and its generalizations to more general spacetimes, ψν

is not a vector, and (Dµψ)ν is defined to be the “spinor derivative,” which
does not behave as a tensor with respect to both indices µ and ν [10, 36].

(
Bα0)†

=
(
Aγ0γ0/g00)†

= A† = A = Aγ0γ0/g00 = Bα0, (A5)

(
Bα j)† =

(
Aγ0γ0γ j/g00)†

=
(
Aγ j)† = Aγ j = Aγ0γ0γ j/g00 = Bα j, (A6)
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which shows that B = Aγ0 is hermitizing for the alpha matri-
ces αµ. The converse assertion is proved similarly. Q.E.D.

Theorem 5. For any set of matrices γµ satisfying the anti-
commutation formula with metric ηµν, Eq. (A2), there exists
a hermitizing matrix A for the matrices γµ. The matrix A is
nonsingular and unique, up to a real scale factor. Moreover,
matrix Aγ0 is hermitizing for the alpha matrices αµ. The
matrix Aγ0 is either positive definite or negative definite. The
sign of the matrix A can be chosen so that Aγ0 is a positive
definite matrix.

Furthermore, let B be any matrix that is hermitizing for the
matrices αµ. Then, B is a real scalar multiple of Aγ0.

Proof. Using Theorem 3, there is a similarity transforma-
tion S that takes γµ to γ]µ, and takes αµ to α]µ, giving the
Dirac representation of the gamma and alpha matrices. Then
A = S†γ]0S is a nonsingular hermitizing matrix for the matri-
ces γµ [cf. Eq. (18)]. Now let A′ be another nonzero hermi-
tizing matrix for the γµ’s. Let the similarity transformation S
take A′ to A], in the sense of Eq. (18). Thus, A] is hermitiz-
ing for the γ]µ’s. Then, by Theorem 4, A]γ]0 is hermitizing for
the α]µ’s. Using Theorem 2, we get A]γ]0 = λ14, where λ is a
nonzero real scalar. Hence, A] = λγ]0. Therefore,

A′ = S†A]S = λS†γ]0S = λA, (A7)

which shows that the matrix A′ is a nonzero real scalar
multiple of A. Thus, the matrix A is nonsingular and unique,
up to a real scale factor.

Now let B be any nonzero matrix that is hermitizing for the
alpha matrices αµ. Let the above-mentioned similarity trans-
formation S take B to B], in the sense of Eq. (31). Then B] is
hermitizing for the α]µ’s. Using Theorem 2, we get B] = µ14
where again µ is a nonzero real scalar. Therefore,

B = S†B]S = µS†S, (A8)

which, from the uniqueness of S as stated in Theorem 3,
establishes that the matrix B is unique up to a nonzero real
scalar factor. Furthermore, since µ is a nonzero real scalar,
formula (A8) shows that B is either a positive definite or a
negative definite matrix.

Using the equation γ]0 = Sγ0S−1 in formula (A7), we see
from formula (A8) that B = µAγ0 . Thus, since B is a nonzero
matrix, Aγ0 is a nonzero real scalar multiple of B, and hence
hermitizing for the alpha matrices αµ, and is either a positive
definite or a negative definite matrix. Clearly, the sign of the
matrix A can be chosen so that Aγ0 is a positive definite matrix.
The proof is complete.

APPENDIX B: UNIQUENESS OF HERMITIZING
MATRICES WITH A GENERAL METRIC IN THE TENSOR

DIRAC THEORY

Theorem 6. Consider the tensor Dirac theory, with
transformation laws (1)-(2). For any set of matrices γµ

satisfying the general anticommutation formula (3), there
exists a hermitizing matrix A for the matrices γµ. The matrix A
is nonsingular and unique, up to a real scale factor. Similarly,
a nonsingular hermitizing matrix B ≡ Aγ0 for the αµ’s exists
and is unique, up to a real scale factor. If, furthermore,
g00 > 0 and the 3× 3 matrix (g jk) ( j,k = 1,2,3) is negative
definite, then B ≡ Aγ0 is either a positive or negative definite
matrix. The sign of the matrix A can be chosen such that
B≡ Aγ0 is a positive definite matrix.

The proof of Theorem 6 uses the following

Lemma. If g00 > 0 and the 3×3 matrix (g jk) ( j,k = 1,2,3)
is negative definite, then there is a linear coordinate transfor-
mation L = (Lµ

ν) of the form

(
L0

0 L0
k

L j
0 L j

k

)
=

(
λ 0

λ j L j
k

)
, (B1)

that takes (ηµν) to (gµν), i.e.,

gµν = ηαβ Lα
µ Lβ

ν, (B2)

with λ > 0. The 4× 4 matrix L can be chosen as a unique
extension of a 3× 3 matrix l ≡ (L j

k), that takes (η jk) to
(g jk). Furthermore, M ≡ L−1 takes (ηµν) to (gµν), i.e., gµν =
ηαβ Mµ

α Mν
β, and has the form

(
M0

0 M0
k

M j
0 M j

k

)
=

(
λ−1 0

−∑3
k=1 λ−1

(
l−1

) j
k λk

(
l−1

) j
k

)
. (B3)

Thus, in particular, we have M0
0 > 0, and M0

k = 0.

Proof. We have to find L of the form (B1), such that Eq.
(B2) is satisfied. Since the 3× 3 matrices (η jk) and (g jk)

are both negative definite, there is a linear transformation
l ≡ (L j

k) of the spatial coordinates, that takes (η jk) to (g jk):

g jk = ηmn Lm
j Ln

k =−Lm
j Lm

k. (B4)
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Thus, the components (µ = j ∈ {1,2,3},ν = k ∈ {1,2,3}) of
Eq. (B2) are satisfied. Since the 3×3 matrix l is nonsingular,
we can then uniquely solve for λ j ≡ L j

0 in the components
(µ = j ∈ {1,2,3},ν = 0) of Eq. (B2), by imposing the condi-
tion L0

j = 0 ( j = 1,2,3):

g j0 =−
3

∑
k=1

Lk
jλ

k. (B5)

The components (µ = 0,ν = j ∈ {1,2,3}) of Eq. (B2) are then
automatically satisfied. Now, since g00 > 0, we can uniquely
solve for λ > 0 from the last component (µ = ν = 0) of Eq.

(B2):

g00 = λ2−
3

∑
k=1

(
λk

)2
. (B6)

Owing to (B2), L is the matrix of the transformation from the
starting coordinates xµ to the coordinates x′α, in which the
metric is g′αβ = ηαβ. By construction, L satisfies Eq. (B1),
thus

x′0 = L0
0x0, x′ j = L j

0x0 +
3

∑
k=1

L j
kxk, (B7)

and by inversion:

x0 =
(
L0

0
)−1

x′0, x j =
3

∑
k=1

(
l−1) j

k [x′k−Lk
0
(
L0

0
)−1

x′0], (B8)

whence the form (B3) for matrix M. Q. E. D.

Proof of Theorem 6. Choose a linear coordinate transfor-
mation, with matrix L, that takes gµν to ηµν. By Eq. (2), L
takes γµ to γ′µ, and the anticommutation relation transforms
covariantly [12], thus

γ′µγ′ν + γ′νγ′µ = 2ηµν 14, µ,ν ∈ {0, ...,3}. (B9)

By Theorem 5, there exists a nonsingular hermitizing matrix
A′ for the matrices γ′µ. As stated with Eq. (39), A≡ LT A′L is a
nonsingular hermitizing matrix for the matrices γµ. Moreover,
if Ã is another nonzero hermitizing matrix for the gamma
matrices γµ, then L takes Ã to Ã′ ≡ (

L−1
)T ÃL−1, which

is another nonzero hermitizing matrix for the matrices γ′µ.
Since Ã′ is a nonzero real scalar multiple of A′ by Theorem 5,
Ã = LT Ã′L is a nonzero real scalar multiple of A. Thus, the
matrix A is nonsingular and unique, up to a real scale factor.

As we have just shown, a nonsingular hermitizing matrix
A does exist for the gamma matrices γµ. By Theorem 4,
Aγ0 is a hermitizing matrix for the alpha matrices αµ. Since
α0 = (γ0)−1 from formula (22), it follows that the matrix γ0

is nonsingular. Thus, there exists a nonsingular hermitizing
matrix for the alpha’s, namely Aγ0. Theorem 4 also states
that, if B is any matrix that is hermitizing for the matrices αµ,
then A = Bα0 is hermitizing for the gamma matrices γµ. The
uniqueness (up to a real scale factor) of B follows thus from
that of A, proved in the above paragraph.

If now g00 > 0 and the 3×3 matrix (g jk) ( j,k = 1,2,3) is
negative definite, L as prescribed above and its inverse matrix
M = L−1 can be chosen as in the Lemma. In particular, we
have M0

k = 0. From this, using also (2) and the foregoing re-
lation A≡ LT A′L, we obtain the transformation for the matrix
Aγ0 as follows:

Aγ0 = LT A′LM0
νMγ′νM−1 = M0

0LT A′γ′0L, (B10)
where M0

0 > 0 by the Lemma. With an appropriate choice of
sign for A′, the matrix A′γ′0 is positive definite by Theorem
5. Equation (B10) shows that the matrix Aγ0 is then positive
definite, too. This completes the proof.

APPENDIX C: ANTICOMMUTATION RELATION FOR THE
ALPHA MATRICES

Theorem 7. Let the matrices γµ obey the general anticom-
mutation relation (3). In order that the matrices αµ given by
Eq. (22) satisfy an anticommutation of the form

αµαν +αναµ = 2hµν 14, µ,ν ∈ {0, ...,3}, (C1)

it is necessary and sufficient that the components g0 j ( j =
1,2,3) of the metric be zero. The components hµν are then
given by

h00 ≡ 1/g00, h0 j ≡ h j0 ≡ 0 ( j = 1,2,3), h jk ≡−g jk/g00 ( j,k ∈ {1,2,3}). (C2)

Proof. Consider the matrices α′0 ≡ g00α0 and α′ j ≡ g00α j, where as defined in (22), α0 ≡ γ0/g00, α j ≡ γ0γ j/g00. Using
(3), we find
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α′0α′0 +α′0α′0 = 2g0014, (C3)
α′0α′ j +α′ jα′0 = 2g0 jγ0, (C4)

α′ jα′k +α′kα′ j =
(−γ jγ0 +2g0 j14

)
γ0γk +

(
−γkγ0 +2g0k14

)
γ0γ j

= −2g jkg0014 +2
(

g0 jγ0γk +g0kγ0γ j
)

. (C5)

Setting g0 j = 0 ( j = 1,2,3), the result follows then imme-
diately from the definition (22). Q.E.D.

Note that for admissible coordinates (C2) shows that the
quadratic form hµνdxµdxν has Euclidean signature. (Note that
hµν is not a tensor.)

Theorem 7 restricts the consideration to special affine co-
ordinates such that g0 j = 0 ( j = 1,2,3), called Gaussian
affine coordinates. Note that Gaussian coordinates exist in a
neighborhood of every event in a Riemannian space-time, but
are not necessarily the coordinates of choice for rotating ob-
servers [8]. Theorem 6 of Appendix B allows us to consider
more general coordinates that include rotating coordinate sys-
tems.
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