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Hydrogen-like atoms are two-particle systems governed with spherically symmetric potentials, their non-
relativistic Schrödinger equations can be solved analytically yielding exact information about their spectra.
Vigorous interest in the investigation of their behavior under the influence of external fields has been increased
over the years. The main goal of the present work is to investigate the effect of a generalized van der Waals
potential on the energy spectra of the hydrogen-like atoms. Our treatment is based on the Oscillator Represen-
tation Method (ORM). The energy spectrum is studied for various parameters over an atom-surface distance
50nm-300nm for different hydrogen-like atoms, like H, He+, Li2+, Be3+, B4+, etc.
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1. INTRODUCTION

It is well known that a hydrogen-like atom is composed of
a single electron of charge – e moving around a positive nu-
cleus of charge +Ze. It is one of few exactly solvable quan-
tum mechanical problems, whose eigenvalues and eigenfunc-
tions can be determined exactly. However, in the presence of
external fields the atom shows a variety of nonlinear phenom-
ena depending upon the nature of perturbations (see Series
1988). By using the method of images, the Hamiltonian of
the hydrogen-like atom can be written as

H =
1
2

P2− Z
r
− Z2

4D
+

Z√
ρ2 +(2D+ z)2

− 1
4(D+ z)

, (1)

where (x;y;z) are the electron coordinates relative to the nu-
cleus, 2D is the distance between the nucleus and the image
nucleus, Z is the charge of the nucleus and r is the distance
between the electron of the atom and the nucleus. The cylin-
drical coordinates ρ , ϕ and z are related to the Cartesian co-
ordinates by: x = ρ cos ϕ, y = ρ sin ϕ and z = z. The used
units are Hartree atomic units in terms of which h = e = m
= 1, where e is the charge of the electron, m is its mass, and
h is planck’s constant. In the special case of Z = 1, when
the nucleus is a proton, the hydrogen-like atom is an ordinary
hydrogen atom.

Assuming that the atom is at a distance from the surface
much larger than the size of atom i.e. D2 >> r2 and by using
the binomial expansion, retaining only the quadratic terms,
the generalized van der Waals Hamiltonian is obtained by

H =
1
2

P2− Z
r
− (1−Z)2

4D
+

(1−Z)z
4D2 − 1

16D3 ×

×
[
Zρ

2 +β
2z2 (2−Z)

]
(2)

Furthermore, the energy spectrum of the instantaneous van
der Waals potentials (Z = 1) at arbitrary values of the param-
eter β has been considered by some authors (see Alhassied
1987 and Ganesan and Taylor 1996). Many level crossings
have been found, but the dynamics of these crossings are not
clear.

In the present paper, we extend the previous works (Gane-
san and Taylor 1996) to include not only the energy spectrum
of the hydrogen atoms but also that of hydrogen-like atoms
using the Hamiltonian defined by Eq. (2) in terms of the pa-
rameters β and D of the van der Waals potential. The Oscil-
lator Representation Method (ORM) (Dineykhan and Efimov
1994) of the Schrödinger equation is employed for calculat-
ing the energy spectrum of the axially symmetric potentials.
Moreover, the crossing behavior of the Rydberg states has
been investigated.

The material of the paper is organized as follows: In sec-
tion 2, the basic formulas of ORM are given. In section 3,
the method is employed for calculating the energy spectrum
of the generalized van der Waals Hamiltonian defined by Eq.
(2). The energy spectrum results are studied and discussed
for the hydrogen-like atoms in section 4.

2. DERIVATION OF THE ORM FOR AXIALLY
SYMMETRIC POTENTIALS

In this paper, the ORM developed by Dineykhan and Efi-
mov (1994) will be applied for calculating the energy spec-
trum of axially symmetric potentials. The first step in this di-
rection is to change the variables in the original Schrödinger
equation and obtain a modified equation, the solutions of
which possess an oscillator behavior at large distances. Since
this transformation is not canonical, it leads to a new system
with different set of quantum numbers and wavefunctions,
which contains, however, a subset of the original wavefunc-
tions. The transformation of variables that leads to a Gaussian
asymptotic behavior in the expanded space is one of the basic
elements of the ORM. The next step is to write Hamiltonian
in terms of the creation and annihilation operators a+ and a.
The pure oscillator part with some unknown frequency! is
extracted from the Hamiltonian, i.e. H → H0 +HI = ωa+a +
higher order terms. The remaining part, that is, the interaction
Hamiltonian HI is represented in terms of normally ordered
products of a+ and a. The requirement that this interaction
Hamiltonian does not contain quadratic terms in canonical
variables leads to the equation which determines the oscil-
lator frequency ω. This requirement is called the oscillator
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representation condition (ORC). Our starting point is to con-
sider the Hamiltonian with an axially symmetric potential

H =
P2

2
+V (r,cosθ) . (3)

Axially symmetric potential has been used to study positron
(electron) - diatomic molecules scattering (El-Aasser and
Abdel-Raouf 2007). This kind of potentials were used for
studying many quantum mechanical systems subjected to var-
ious perturbations such as Zeeman effect (Ruder et al 1994).
They were also employed for investigating the behavior of
quantum dots under magnetic fields (Dineykhan and Nazmit-
dimov 1997), and for calculating the energies and the eigen-
functions of deformed nuclei (Bohr and Mottelson 1975)
and metallic clusters (de Heer 1993). In all these systems,
Schrödinger equations could not be solved exactly and we are
obliged to deal with approximations.

Our main goal in the present work is to study a quantum
mechanical system governed by the axially symmetric poten-
tial defined at Eq. (3). The Schrödinger equation of this sys-
tem can be written as{

−1
2

[
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

]
+V (r,cosθ)

}
Ψ(~r) = EΨ(~r) ,

(4)
The wavefunction Ψ(~r) can be represented by

Ψ(~r) = Φν,m (r)Yν,m (θ,φ) . (5)

The Spherical Harmonics are defined by

Yν,m (θ,φ)= (−1)m eimφ

√
2π

√
(2ν+1)

2
Γ(ν−m+1)
Γ(ν+m+1)

Pm
ν (cosθ) .

(6)
Pm

ν (cosθ)’s are the associated Legendre polynomials, m =
0,±1, ±2,. . . are the azimuthal quantum numbers. ν is an ar-
bitrary parameter which takes integer values only when the
potential of the given system is spherically symmetric. Thus,
the violation of the spherical symmetry property of the system
is controlled by the parameter ν, i.e. when ν assumes integer
values, the functions Yν,m (θ,φ) are the spherical harmonics.
The effects of the angular momentum operators l̂z, l±, and l̂2

on these functions are defined as

l̂zYν,m = mYν,m, l̂±Yν,m =−
√

ν(ν+1)−m(m±1)Yν,m±1,

l̂2Yν,m = ν(ν+1)Yν,m (7)

Let us rewrite Schrödinger’s equation (4) in the formZ
d~r Ψ(~r)

[
−1

2
∆+V (r,cosθ)−E

]
Ψ(~r) = 0 (8)

Substituting from (5) into (8) and taking (7) into account, we
obtain Z

∞

0
dr (rΦν,m (r))×

×

[
−1

2

(
d
dr

)2

+
ν(ν+1)

2r2 +
(
Ṽ (r,ν)−Em

)]
×

×(rΦν,m (r)) = 0; (9)

Ṽ (r,ν) =
1

N2
m (ν)

Z 1

−1
dxPm

ν (x)V (r,x)Pm
ν (x) , (10)

Nm (ν) is a normalization constant determined by

N2
m (ν) =

Z 1

−1
dxPm

ν (x)Pm
ν (x) . (11)

The first step in the ORM is to modify the variable r in the ra-
dial equation (9) and the wavefunction Φν,m(r) in order to de-
rive a modified Schrödinger equation having a solution with
Gaussian asymptotic behavior. For this purpose we put, (see
Dineykhan and Evmov 1994 for more details)

r = q2ρ and Φν,m (r) = q2ρν
Φ̃ν,m

(
q2) (12)

Substituting into equation (9) yieldsZ
∞

0
dqqd−1

Φ̃ν,m
(
q2){

−1
2

[
∂2

∂q2 +
d−1

q
∂

∂q

]
+

+W (q,ν,Em)}Φ̃ν,m
(
q2) = 0 (13)

where d = 2 + 2ρ + 4ρν and the potential W(q, ν, Em) is given
by

W (q,ν,Em) = 4ρ
2q4ρ−2 [

Ṽ (r,ν)−Em
]

. (14)

The first step towards the required solution is to consider the
Schrödinger equation

HΦ̃ν,m
(
q2) = ε(E)Φ̃ν,m

(
q2) , (15)

such that

ε(E) = 0, (16)

which provides us with the energy spectrum E.
The second step is to represent the canonical variables (i.e.

the coordinates and the momenta) in normal forms. For this
purpose, the Hamiltonian H should be written as

H =
1
2

(
P2 +ω

2q2)+
(

W (q)− 1
2

ω
2q2

)
, (17)

where ω is the unknown oscillator frequency. In terms of the
creation and annihilation operator’sa+

j and a+
j , respectively,

the q’s and p’s can be expressed by

q j =
1√
2ω

(
a j +a+

j

)
, p j =

√
ω

i
√

2

(
a j−a+

j

)
.

Therefore, the Hamiltonian given at equation (17) could be
split to

H = H0 +HI + ε0 (18)

where

H0 = ω
(
a+a

)
, (19)

HI =
Z (

dk
2π

)d

W̃d
(
k2)exp

(
− k2

4ω

)
: eikq−1+

k2q2

2d
:,

(20)
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and

ε0 =
dω

4

Z (
dk
2π

)d

W̃d
(
k2)exp

(
− k2

4ω

)
, (21)

where : * : is the symbol of normal ordering, kq = ∑
j

k jq j.

From the ORM, it follows that the frequency ω satisfies the
equation

ω
2−

Z (
dk
2π

)d

W̃d
(
k2)exp

(
− k2

4ω

)
k2

d
= 0. (22)

Thus, the condition of the oscillator representation can be
written as

∂

∂ω
ε0 (E;ω,d) = 0 (23)

This equation determines the parameter ω = ω(E,d) as a
function of E, d and other parameters included in the potential
Ṽ (r,ν) defined at equation (10).

In the next section, the rules formulated above are used for
calculating the energy spectrum of the generalized van der
Waals potential.

3. THE ENERGY SPECTRUM OF THE GENERALIZED
VAN DER WAALS POTENTIAL

The generalized van der Waals Hamiltonian given by (2)
can be rewritten in the form

H =
1
2

P2− Z
r
− (1−Z)2

4D
+

(1−Z)
4D2 r cosθ− γr2×

×
[
Z +

(
β

2 (2−Z)−1
)

cos2
θ
]

(24)

where γ = 1
/

16D3. For this kind of potentials we put ρ = 1
in the transformation (12).

Some of the physically meaningful and interesting situa-
tions of the Hamiltonian (24) (in the case Z = 1 i.e. hydrogen
atom) are as follows:
(i) For γ = 0 and β = 0 , Eq. (24) represents the standard
hydrogen atom problem (Goldstein 1980).
(ii) The case γ 6= 0 and β = 0 corresponds to quadratic Zee-
man problem (Kleppner 1991).
(iii) The case where γ 6= 0 and β = 1 represents the so-called
spherical quadratic Zeeman problem (Silva 1984) .
(iv) When γ = 1

/
16D3 and β =

√
2, the system corresponds to

the instantaneous van der Waals potential problem (Alhassid
1987).

After some simplifications, the modified Schrödinger equa-
tion takes the form{

−1
2

[
∂2

∂q2 +
d−1

q
∂

∂q

]
−4Z −4E q2−4F q2−4G q6

}
×

×Φ̃ν,m
(
q2) = 0 (25)

where d = 4 + 4ν; F = 1
4D (1−Z)2;

G = γ
[
Z +

(
β

2 (2−Z)−1
)

Am (ν)
]

and Am (ν) =
1

N2
m (ν)

Z 1

−1
dx [xPm

ν (x)]2 . (26)
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FIG. 1: The energy spectrum of the n = 20 manifold of the hydrogen
atom (see equation (30)) over atom-surface distance range from 100
nm to 300 nm at β = 0.

Then after some calculations, the three components of the
Hamiltonian presented at equation (18) take the forms

H0 = ω
(
a+a

)
,

HI =−6G(d +4)
ω

: q4 :−4G : q6 :, (27)

ε0 =
ωd
4
− 2dE

ω
− 2dF

ω
−4Z − Gd (d +2)(d +4)

2ω3 ,

Furthermore, the condition of the oscillator representation
(23) can be written as

ω
2 =−4(E +F)+

√
16(E +F)2−6G(d +2)(d +4)

(28)
The term proportional to γ could be considered as a min-

imal perturbation correction, so that G << 1. In this limit,
or the zero approximation of OR, the parameter ν takes only
integer values, i.e. ν= l. The energy spectrum in the lowest
approximation of the oscillator representation is determined
by

ε0 (E)+2nrω+ 〈nr |HI | nr〉= 0. (29)

The details of calculating the matrix elements 〈nr |HI | nr〉
were presented previously by Dineykhan (1997).

Considering equations (27-29) provides us, after some
analyses, with the energy spectrum

Enl =− Z2

2n2 −
(1−Z)2

4D
− Gn2

2
×

×
[

5n2−5(l +1)2 +(2l +3)(l +2)
(

3
Z2 −2

)]
+O

(
γ

2)
(30)

where n = 1 + l + nr is the principle quantum number.

4. DISCUSSION

In this paper the effect of the generalized van der Waals
potential on the Rydberg states of hydrogen-like atoms is in-
vestigated. The ORM technique is employed to solve the
Schrödinger equation of the axially symmetric potentials an-
alytically. The energy spectrum of the hydrogen-like atoms
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FIG. 2: The same as in Fig. 1, at β = 1.
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Fig. (3): The same as in Fig. (1), at β = 2  

 

 

Fig. (4): The energy spectrum of the hydrogen atom for the levels l = 1 and l = 12, at 

0 3β≤ ≤ . 
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FIG. 3: The same as in Fig. 1, at β =
√

2.

are calculated analytically (see equation (30)). The results
of the energy spectrum of the hydrogen-like atoms are repre-
sented in Figs. (1-11) for the Rydberg states n = 20 of the
hydrogen-like atoms over atom-surface distance D ranging
from 50 to 300 nm for some values of the orbital quantum
number l in the interval from 0 to 12 and arbitrary values
of the parameter β falling in the range 0 ≤ β ≤ 4. In Figs.
(1-3), the spectrum of the n = 20 mainfold of the hydrogen
atom (Z = 1) is plotted versus D for various values of the
parameter β for the states l = 0 to l=12. It is clear that the
states are crossing at some values of β and some values of D
between 100 and 300 nm. Out of these distances, we notice
that there is a wide shift between the states. To clarify the
crossing effect, which occurs between the states, we plotted
in Figs. (4,5) only the two states l = 1 and l = 12. and l = 2
and l = 10 respectively. The dynamics of these crossings can
be interpreted as follows: From the expression (30), let l0 be
the fixed value of l, then by increasing β we obtain the energy
spectrum E0(β, l0) of the state l0. When l = l0 + 1 we obtain

FIG. 4: The energy spectrum of the hydrogen atom for the levels
l = 1 and l = 12, at 0≤ β≤ 3.

FIG. 5: The energy spectrum of the hydrogen atom for the levels
l = 1 and l = 12, at 0≤ β≤ 3.
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FIG. 6: The energy spectrum versus β for d = 300 and l= 0.
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FIG. 7: The energy spectrum versus β for d = 200 and l=0.
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FIG. 8: The energy spectrum versus β for d = 100 and l= 0.
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Fig. (9): The energy spectrum versus D for β  = 1 and l = 0. 
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Fig. (10): The energy spectrum versus D for β  = 2 and l = 0. 
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FIG. 9: The energy spectrum versus D for β=1 and l = 0.
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Fig. (9): The energy spectrum versus D for β  = 1 and l = 0. 
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Fig. (10): The energy spectrum versus D for β  = 2 and l = 0. 

 
 
 
 
 
 

D (nm) 

D (nm) 

Enl  

Enl  

H 
He+ 

Li2+ 
Be3+ 

B4+ 

H He+ 
Li2+ 

Be3+ 

B4+ 

FIG. 10: The energy spectrum versus D for β= 2 and l = 0.

the energy spectrum E1(β, l0 + 1) of the state l0 + 1 and on
increasing β; E1(β, l0 + 1) increases but with rate less than
the rate of increasing E0(β, l0). Therefore the two states are
crossing at a definite value of β = β0. On increasing further
the value of l, e.g. to l = l0 + 2, we obtain a crossing be-
tween the two states E2(β, l0 + 2) and E0(β, l0) at some val-
ues of β = β1, and also between the states E2(β, l0 + 2) and
E1(β, l0 +1) there is a crossing at some values of β = β2. For
the other values of l, the crossing between every two states
occurs at other values of β. Consequently, at fixed value of

β in the ED plane, there is only one crossing between all the
states. This result agrees quite well with the results obtained
by other authors. The energy does not change significantly
with the variation of β in figures (6) and (7) until β exceeds
2.5 where we get level crossings between the atoms H, He+,
Li2+, Be3+, B4+ for l = 0. We may notice that with decreas-
ing the value of D the energies become more negative i.e. the
atoms are more bounded due to a stronger attractive poten-
tial. In Fig. (8), the energies remains constant until β exceeds
2 where we get level crossings after which we may get un-
bounded atoms where the repulsive part of the potential ex-
ceeded the attractive one (see Eq. (2)). Figs (6, 7, 8) show
that He ion does not change with β because it is one of the
noble gases, the most stable atomic systems. In Figs. (9) and
(10), for constant values of β, as D increases the energies also
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Fig. (9): The energy spectrum versus D for β  = 1 and l = 0. 
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Fig. (10): The energy spectrum versus D for β  = 2 and l = 0. 
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FIG. 11: The energy spectrum versus D for β=3 and l= 0.

increase and saturate. The atoms get less bounded due to the
less attractive potential. In Fig. (11), at small values of D we
may get unbounded atoms at β = 3 however by increasing
D all atoms get bounded due to the balance between the two
parts of the potential where the attractive one supersedes.
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