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We discuss the one-loop quantum corrections to the massM and central chargeZ of supersymmetric (susy)
solitons: the kink, the vortex and the monopole. Contrary to previous expectations and published results, in
each of these cases there are nonvanishing quantum corrections to the mass. For theN = 1 kink and the
N = 2 monopole a new anomaly inZ rescues BPS saturation (M = Z); for theN = 2 vortex, BPS saturation
is rescued for two reasons: (i) the quantum fluctuations of the Higgs field acquire a nontrivial phase due to
the winding of the classical solution, and (ii) a fermionic zero mode used in the literature is shown not to be
normalizable.

1 An introduction to new develop-
ments in quantum field theory for
susy solitons

Solitons [1] have recently come back in the center of at-
tention of quantum field theory (QFT) because in a certain
class of supersymmetric (susy) field theories (the ones with
N = 2 susy) dualities between field theories with point-
particles and field theories with solitons allowed calculation
of some nonperturbative effects [2]. Let us begin by defining
what we mean by a soliton:

Definition 1: a soliton is a nonsingular time-
independent solution of the classical field
equations inMinkowski spacetime with finite
energy.

Solitons can be viewed as extended particles (“lumps”)
which should clearly have finite mass (= finite energy at
rest). We shall only consider relativistic field theories. There
exist also time-dependent solutions with finite energy (the
“breather” solution in the sine-Gordon model, for example),
but we consider only time-independent solitons. One can, of
course, boost solitons in a relativistic theory, and obtain then
moving solitons, but since one can always choose a Lorentz
frame in which they are at rest, we restrict our attention to
only time-independent solutions.

A soliton is closely related to an instanton. The later is
defined as follows:

Definition 2: an instanton is a nonsingular so-
lution of the classical field equations inEucli-
deanspace with finiteaction.

Because instantons have finite action, they contribute alre-
ady at the classical level to the path integral. This is the
reason for the requirement of finite action. It is clear that
a soliton inn + 1 dimensions is an instanton inn dimensi-
ons: since the time coordinate plays no role in the soliton
solutions, the space integral in Minkowski space can also be
viewed as an integral over Euclidean space, and the energy
E =

∫
dnxH(x) =

∫
dnx(pq̇ − L) is equal to the action

S = − ∫
dnxL.

We shall discuss three solitons:

1) thekink in 1+1 dimensions withN = 1 susy

2) thevortex in 2+1 dimensions withN = 2 susy

3) themonopolein 3+1 dimensions withN = 2 susy

There exist also susy extensions of these solitons with more
susy (N = 2 for the kink,N = 4 for the monopole) or less
susy (N = 1 for the vortex). In addition, discussions have
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been given about the quantum corrections to these solitons
without fermions and without susy.

All three models have recently led to surprising new in-
sights in the quantization of solitons. In particular, a new
anomaly was discovered in the quantum corrections to the
central charge of the susy algebras for these models. The
solitons have not only a massM but also a central chargeZ
[3]. The quantum mass of a soliton is obtained by evaluating
the vacuum expectation value of the Hamiltonian. The latter
depends on the soliton background because one decompo-
ses quantum fieldsφ into a background field and a quantum
field. The quantum fluctuations appear quadratically (and of
course also at higher orders) in the action, and thus the quan-
tum correction to the mass is to first order in~ the sum over
the zero point energies of all the fluctuations. The quan-
tum central charge arises as follows. The susy generators
are the Noether charges for rigid susy, and as any Noether
charge they are the space integrals over the time components
of the Noether currents. They are expressed in terms of the
Heisenberg fieldsφ. Using equal-time canonical (anti) com-
mutation relations, one finds then for example for the kink
at the full quantum level before regularization

{Q±, j±(x)} = H(x)± ζ(x)

j± = φ̇ψ± + (∂xφ± U)ψ±

Q± =
∫

j±(x)dx

ζ(x) = ∂xφ(x)U(x) = ∂σW (φ) (1)

where U is a potential quadratic inφ and W (φ) =∫
U(φ)dφ.

Classically,M = Z, the well-known BPS bound, but
quantum mechanically bothM andZ get quantum correc-
tions. At first sight (or thought) it is surprising thatZ gets
any quantum corrections at all, because classicallyZ is the
space integral of a total space-derivative. So it gets its con-
tributions from far away from the soliton, and if one can ne-
glect the presence of the soliton, how can one still get non-
vanishing corrections? The answer (one answer) is that the
central charge is a composite operator, and applying point
splitting as a regularization scheme, the total derivative cea-
ses to be a total derivative, and one gets then quantum cor-
rections also from the region where the soliton is.

We shall not use point splitting as regularization scheme,
but dimensional regularization. There are actually two ver-
sions of dimensional regularization

(1) ordinary (’t Hooft-Veltman-Bollini-Giambiagi) di-
mensional regularization [4, 5] wheren becomes lar-
ger thann0 = 2, 3 or 4 for our models

(2) dimensional reduction [6], where one letsn get smal-
ler thann0. Vector fieldsAµ decompose then into
n-dimensional vector fields with0 ≤ µ ≤ n and sca-
lar fields (calledε-scalars) wheren ≤ µ ≤ n0 (and
n0 − n = ε).

If n > n0 one needs a model which remains susy in
higher dimensions if we want to preserve susy at the regu-
larized level. This is in general not possible because the

number of components of spinors grows much faster in
higher dimensions than that of bosons. However, in the low
dimensions we consider there are possibilities. For example,
theN = 1 (more preciselyN = (1, 1)) susy kink in 1+1 di-
mensions remainsN = 1 susy in 2+1 dimensions because
spinors have 2 components both in 2 and in 3 dimensions.
For the vortex we preserveN = 1 susy in 3+1 dimensi-
ons by starting with anN = 2 model in 2+1 dimensions
(2×2 = 1×4). Finally, for the monopole we get a minimal
susy model in 5+1 dimensions (with complex unconstrained
4-component chiral spinors) by starting with anN = 2 mo-
del in 3+1 dimensions with two real 4-component spinors
(or, equivalently, two complex 2-component spinors).

If n < n0, the models remain automatically susy be-
cause one does not change the number of bosonic and fer-
mionic field components (one only reinterprets some com-
ponents of vector fields asε-scalars as we have discussed).
So much for how we deal with susy in the two versions of
dimensional regularization. We wish to preserve (ordinary,
see below) susy, and the best way to preserve it is to preserve
it manifestly, by using models which remain susy even after
regularization.

How can one understand that an anomaly inZ is pre-
sent? Anomalies form multiplets in susy, and these anomaly
multiplets contain the trace anomaly and the conformal susy
anomalyγ · j. Here a small explanation is needed. Su-
persymmetry is the same as translational symmetry into the
fermionic directions in superspace, and like ordinary trans-
lational symmetry, there is no anomaly in ordinary susy:
∂µjµ(susy)=0 at the quantum level. However, in massless
theories one also has conformal susy (the fermionic counter-
part of scale invariance and conformal boost invariance), and
the conformal susy current isjµ(conf) = (xργρ)jµ(susy).
Clearly,∂µjµ(conf) = γµjµ(susy) if ordinary susy is free
from anomalies. In massless (conformal) theories the ordi-
nary susy current satisfies at the classical level the relation
γµjµ(susy) = 0. For example, in the WZ model in 1+1 di-
mensions,jµ(susy) = (∂/ϕ)γµψ, and sinceγµγργµ = 0 in
1+1 dimensions, one hasγ ·j(susy) = 0. In 3+1 dimensions
the WZ model yieldsjµ(susy) = Fρσγρσγµψ, and since
γµγρσγµ = 0 in 3+1 dimensions, also hereγ · j(susy) = 0.
At the quantum level, there can be anomalies injµ(susy)
(the currentjµ(conf) is no longer conserved, equivalently
γµjµ(susy) is no longer vanishing).

What is the technical reason that there is an anomaly,
how does it appear when one calculates? Let us recall that
an anomaly usually appears as 0/0: 0 because classically
there is no violation, and 1/0 because a quantum field has
infinitely many degrees of freedom (there are no anomalies
in quantum mechanics, see however [70]). Consider now
first ordinary dimensional regularization. It is known that
translations in higher dimensions become central charges in
lower dimensions. For example, the susy kink model has 3
translations in 3 dimensions, which become 2 translations
and one central charge if one performs dimensional reduc-
tion (setting the coordinatex3 to zero). This seems to doom
the prospects of anomalies inZ, because we already menti-
oned that there are no anomalies in the translational symme-
try. However, the presence of the soliton in the background



Brazilian Journal of Physics, vol. 34, no. 4A, December, 2004 1275

polarizes the fermionic excitations in the extra dimensions
[7, 8]. This phenomenon has the same origin as the quan-
tum Hall effect, and as a result the left-moving and the right-
moving modes of the fermions have different normalizations
on the domain wall created by the soliton. One word about
domain walls [5, 9, 10, 11, 12]: if one moves from 1+1 to
2+1 dimensions, with coordinates(x, y, t) andy is the new
coordinate, then the solitonϕ(x) remains a solution with
finite energy per unit of length in the extra dimension. In
1+1 dimensions the energy density of the soliton solution
ϕ(x) is located aroundx = 0, so in 2+1 dimensions it is
located around the “wall” (line in this case)x = 0 but any
y. One must then solve the Dirac equation in 2+1 dimen-
sions, and in this way one discovers the polarization. (In
string theory, Horava and Witten [13], and others have used
this effect for other purposes1). A detailed calculation re-
veals that for the kink and the monopole there is indeed an
anomaly coming from the polarization of domain wall fer-
mions. Two remarks should quickly be made: (1) in odd
dimensions there are no anomalies, so howZ gets a contri-
bution for the vortex should at this point not yet be clear to
the uninformed reader, and furthermore, (2) there are also
massless fermions on the domain wall; they are chiral (they
only move in one direction) but these fermions do not con-
tribute to the anomaly because in dimensional regularization
massless tadpole integrals vanish. Only the polarization of
the massive domain wall fermions yields an anomaly.

In the calculation of quantum corrections toM andZ
one should letn tend ton0, so ε = n0 − n tends to zero.
However the sum of all polarizations is divergent. As the re-
ader may be now anticipate one indeed finds a total correc-
tion of the formε/ε which is finite. Many other regulariza-
tion schemes have been analyzed, and also in these schemes
one finds an anomaly inZ and the value of this anomaly is
the same in all cases.

The picture becomes now clear in even dimensions
(kink, monopole). There are nonvanishing quantum correc-
tions to the mass, partly due to nonanomalous corrections
(which however vanish for kink and monopole in the most
widely used renormalization scheme) and partly due to the
trace anomaly. There are also nonvanishing corrections to
the central charge, due to the central charge anomaly (which
sits in the same multiplet as the conformal susy anomaly and
the trace anomaly). Both corrections are equal: the classical
BPS bound also holds at the quantum level.

In odd dimensions, in particular for the vortex, there is
another reason why there is a nonvanishing correction toZ.
There cannot be an anomaly, as we already mentioned, but
now the soliton deforms the quantum fluctuations of the sca-
lar (Higgs) field such that the latter acquires an extra phase.
This phase has a nontrivial space dependence (a dependence
on the angles which can not be removed continuously by
a gauge transformation which is everywhere regular). This
twist remains far away from the vortex and does give a non-
vanishing contribution to the integral of the total derivative.
The result isM = Z also at the one loop level.

One would like to know whether there is an explanation
for this equality. This involves fermionic zero modes, let us
first define them.

Definition 3: A zero mode is a time-
independent solution of the linearized field
equation for the quantum fluctuations which is
normalizable and nonsingular.

Bosonic zero modes can be obtained by making a symmetry
transformation on the soliton, for example shifting or rota-
ting the classical solution. Many, but not all, fermionic zero
modes can be obtained by making an ordinary susy trans-
formation of the soliton. (For single-instantons there exist
fermionic zero modes forSU(n) with n ≥ 3 which do not
come from susy).

Arguments have been given in the literature that the
equality ofM andZ for the susy vortex at the one-loop le-
vel is a mystery because one can count how many fermionic
zero modes there are in this model and it has been claimed
that there are two, rather than (as expected) one. With two
fermionic zero modes the equalityM = Z could indeed not
be explained; it could be due to some as yet not known sym-
metry, or it might just be an accident. However, we have
shown that the second fermionic zero mode is not normali-
zable at the origin. Hence there is only one fermionic zero
mode, and this means that the equalityM = Z which we
obtained by detailed calculations using quantum field the-
ory for extended objects, is, in fact, a direct consequence of
ordinary supersymmetry at the quantum level.

So far we discussed ordinary dimensional regularization
with n ≥ n0. We already discussed that dimensional re-
duction with n ≤ n0 preserves susy. The number of fi-
eld components of fermions and bosons remains fixed (and
one should treat some vector bosons asε scalars as we dis-
cussed). The identityγµγργµ = 0 remains valid because
the indexµ keeps running from0 to 2, instead of from 0
to n0. (If this index would have been due to a derivative
such asjµ = ∂µϕψ thenµ should only run up ton, but
jµ = ∂/ϕγµψ and soµ must run up ton0). This raised a pro-
blem many decades ago: it seemed that there was no confor-
mal susy anomaly in dimensional reduction. Some people
proposed wild solutions: breakdown of cyclicity of the trace
operation or other drastic measures. Actually, the solution is
conventional, although subtle: there areevanescent counter
terms [14] for the currents. These are counter terms such as
∆jµ = 1

ε ∂/ϕγµ̂ψ where the index̂µ only runs overε values
(namely fromn to n0). One cannot writeγµ̂ itself asε times
a finite quantity, but inside loop graphs the effect ofγµ̂ is
to supply a factorε. Thus∆jµ yields finite contributions.
If one requires that ordinary susy is preserved, one must sa-
tisfy ∂µjµ(susy) = 0 in dimensional reduction, and then
one must renormalize the susy current by adding an evanes-
cent counter term.This counter term, and not the original
loop graph, yields the anomaly. In ordinary dimensional
regularization the situation is just the reverse: there the loop
graph yields the anomaly (as discussed in text books) and

1They considered 2 branes ind = 11 supergravity with a chiral spinor on one brane and an antichiral spinor on the other (this combination cannot be
avoided because there are no chiral spinors in odd dimensions). Then they sent one brane to infinity, applied dimensional reduction, and found in this way
chiral spinors in 4 dimensions.
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the counter terms do not contribute to the anomaly. One can
construct the whole anomaly multiplet, and one finds then
that the evanescent counter term∆jµ in the conformal susy
current yields a finite nonsingular contribution to the central
charge anomaly. This finite term is the anomaly inZ, and
the value of this anomaly is the same as that obtained from
ordinary dimensional regularization. To avoid misunders-
tanding: we also directly computed this anomaly using di-
mensional reduction, but as the preceding discussion shows,
one can also obtain it by making susy transformations of the
anomalyγ · j(susy).

We have written several papers on these subjects, and
also published some reviews [15, 16]. For a gentle intro-
duction we recommend [15]. In the remaining sections we
focus on the kink, vortex, and monopole, respectively, using
susy-preserving dimensional regularization methods.

2 The (susy) kink.

The calculation of quantum corrections to the mass of a su-
persymmetric (susy) kink and to its central charge has pro-
ved to be a surprisingly subtle problem, and it took protrac-
ted struggles to fully understand it in the various methods
that had been employed.

Initially it was thought that supersymmetry would lead
to a complete cancellation of quantum corrections [17] and
thereby guarantee Bogomolnyi-Prasad-Sommerfield (BPS)
saturation at the quantum level. Then, by considering a kink-
antikink system in a finite box and regularizing the ultravi-
olet divergences by a cutoff in the number of the discreti-
zed modes, Schonfeld [18] found that there is a nonzero,
negative quantum correction at one-loop level,∆M (1) =
−m/(2π). Most of the subsequent literature [19] conside-
red instead a single kink directly, using (usually implicitly)
an energy-momentum cutoff which gave again a null result.
A direct calculation of the central charge [20] also gave a
null result, apparently confirming a conjecture of Witten and
Olive [3] that BPS saturation in the minimally susy 1+1 di-
mensional case would hold although arguments on multiplet
shortening naively do not seem to apply.

In Ref. [21] two of the present authors noticed a sur-
prising dependence on the regularization method, even af-
ter the renormalization conditions have been fully fixed. In
particular it was found that the naive energy-momentum cu-
toff as used in the susy case spoils the integrability of the
bosonic sine-Gordon model [22]. Using a mode regulari-
zation scheme and periodic boundary conditions in a finite
box instead led to a susy kink mass correction∆M (1) =
+m(1/4−1/2π) > 0 (obtained previously also in Ref. [23])
which together with the null result for the central charge ap-
peared to be consistent with the BPS bound, but implying
nonsaturation. Subsequently it was found by two of us to-
gether with Nastase and Stephanov [24] that the traditionally
used periodic boundary conditions are questionable. Using
instead topological boundary conditions which are invisible
in the topological and in the trivial sector together with a

“derivative regularization”2 indeed led to a different result,
namely that originally obtained by Schonfeld [18], which
however appeared to be in conflict with the BPS inequality
for a central charge without quantum corrections.

Since this appeared to be a pure one-loop effect,
Ref. [24] proposed the conjecture that it may be formu-
lated in terms of a topological quantum anomaly. It was
then shown by Shifman et al. [27], using a susy-preserving
higher-derivative regularization method, that there is indeed
an anomalous contribution to the central charge balancing
the quantum corrections to the mass so that BPS saturation
remains intact. In fact, it was later understood that multiplet
shortening does in fact occur even in minimally susy 1+1
dimensional theories, giving rise to single-state supermulti-
plets [28].

Both results, the nonvanishing mass correction and thus
the necessity of a nonvanishing correction to the central
charge, have been confirmed by a number of different
methods [29, 30, 25, 31, 32, 33, 26] validating also the fi-
nite mass formula in terms of only the discrete modes deri-
ved in Refs. [34, 35] based on the method of [36]. However,
some authors claimed a nontrivial quantum correction to the
central charge [29, 37] apparently without the need of the
anomalous term proposed in Ref. [27].

In [38], we have shown that a particularly simple and
elegant regularization scheme that yields the correct quan-
tum mass of the susy kink is dimensional regularization, if
the kink is embedded in higher dimensions as a domain wall
[5]. Such a scheme was not considered before for the susy
kink because both susy and the existence of finite-energy
solutions seemed to tie one to one spatial dimension.

In [39] we then showed the 2+1 dimensional domain
wall is BPS saturated through a nontrivial quantum correc-
tion to the momentum in the extra dimension. This non-
trivial correction is made possible by the fact that the 2+1
dimensional theory spontaneously breaks parity, which also
allows the appearance of domain wall fermions of only one
chirality. By dimensionally reducing to 1+1 dimensions,
this parity-violating contribution to the extra momentum
turns out to provide an anomalous contribution to the cen-
tral charge as postulated in Ref. [27], thereby giving a novel
physical explanation of the latter. This is in line with the
well-known fact that central charges of susy theories can be
reinterpreted as momenta in higher dimensions.

Hence, in the case of the susy kink, dimensional regula-
rization is seen to be compatible with susy invariance only
at the expense of a spontaneous parity violation, which in
turn allows nonvanishing quantum corrections to the extra
momentum in one higher spatial dimension. On the other
hand, the surface term that usually exclusively provides the
central charge does not receive quantum corrections in di-
mensional regularization, by the same reason that led to null
results previously in other schemes [20, 21, 24]. The non-
trivial anomalous quantum correction to the central charge
operator is thus seen to be entirely the remnant of the spon-
taneous parity violation in the higher-dimensional theory in
which a susy kink can be embedded by preserving minimal

2In mode regularization it turns out that one has to average over sets of boundary conditions to cancel both localized boundary energy and delocalized
momentum [25, 26].
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susy.

2.1 The model

The realϕ4 model in 1+1 dimensions with spontaneously
brokenZ2 symmetry (ϕ → −ϕ) has topologically nontri-
vial finite-energy solutions called “kinks” which interpolate
between the two degenerate vacuum statesϕ = ±v. It has a
minimally supersymmetric extension [40]

L = −1
2

[
(∂µϕ)2 + U(ϕ)2 + ψ̄γµ∂µψ + U ′(ϕ)ψ̄ψ

]
(2)

whereψ is a Majorana spinor,̄ψ = ψTC with Cγµ =
−(γµ)T C. We shall use a Majorana representation of the
Dirac matrices withγ0 = −iτ2, γ1 = τ3, andC = τ2 in
terms of the standard Pauli matricesτk so thatψ =

(
ψ+

ψ−
)

with realψ+(x, t) andψ−(x, t).
Theϕ4 model is defined as the special case

U(ϕ) =

√
λ

2
(
ϕ2 − v2

0

)
, v2

0 ≡ µ2
0/λ (3)

where theZ2 symmetry of the susy action also involves the
fermions according toϕ → −ϕ, ψ → γ5ψ with γ5 = γ0γ1.
A classical kink at rest atx = 0 which interpolates between
the two vacuaϕ = ±v0 is given by [1]

ϕK = v0 tanh
(
µ0x/

√
2
)

. (4)

At the quantum level we have to renormalize, and we
shall employ the simplest possible scheme3 which consists
of putting all renormalization constants to unity except for a
mass counterterm chosen such that tadpole diagrams cancel
completely in the trivial vacuum. At the one-loop level and
using dimensional regularization this gives

δµ2 = λ δv2 = λ

∫
dk0d

dk

(2π)d+1

−i

k2 + m2 − iε

= λ

∫
ddk

(2π)d

1

2[~k2 + m2]1/2
, (5)

wherem = U ′(v) =
√

2µ is the mass of elementary bosons
and fermions andk2 = ~k2 − k2

0.
The susy invariance of the model underδϕ = ε̄ψ and

δψ = ( 6 ∂ϕ − U)ε (with µ2
0 replaced byµ2 + δµ2) leads to

the on-shell conserved Noether current

jµ = −( 6∂ϕ + U(ϕ))γµψ (6)

and two conserved chargesQ± =
∫

dx j0±.
The model (2) is equally supersymmetric in 2+1 dimen-

sions, where we useγ2 = τ1. The same renormalization
scheme can be used, only the renormalization constant (5)
has to be evaluated ford = 2 − ε in place ofd = 1 − ε
spatial dimensions.

While classical kinks in 1+1 dimensions have finite
energy (rest mass)M = m3/λ, in (noncompact) 2+1 di-
mensions there exist no longer solitons of finite-energy. Ins-
tead one can have (one-dimensional) domain walls with a

profile given by (4) which have finite surface (string) tension
M/L = m3/λ. With a compact extra dimension one can of
course use these configurations to form “domain strings” of
finite total energy proportional to the lengthL of the string
when wrapped around the extra dimension.

The 2+1 dimensional case is different also with res-
pect to the discrete symmetries of (2). In 2+1 dimensions,
γ5 = γ0γ1γ2 = ±1 corresponding to the two inequivalent
choices available forγ2 = ±τ1 (in odd space-time dimen-
sions the Clifford algebra has two inequivalent irreducible
representations). Therefore, the sign of the fermion mass
(Yukawa) term can no longer be reversed byψ → γ5ψ and
there is no longer theZ2 symmetryϕ → −ϕ,ψ → γ5ψ.

What the 2+1 dimensional model does break spontane-
ously is insteadparity, which corresponds to changing the
sign of one of the spatial coordinates. The Lagrangian is in-
variant underxm → −xm for a given spatial indexm = 1, 2
together withϕ → −ϕ (which thus is a pseudoscalar) and
ψ → γmψ. Each of the trivial vacua breaks these invarian-
ces spontaneously, whereas a kink background in thex1-
direction with ϕK(−x1) = −ϕK(x1) is symmetric with
respect tox1-reflections, but breaksx2 = y reflection in-
variance.

2.2 Susy algebra

The susy algebra for the 1+1 and the 2+1 dimensional ca-
ses can both be covered by starting from 2+1 dimensions,
the 1+1 dimensional case following from reduction by one
spatial dimension.

In 2+1 dimensions one obtains classically [41]

{Qα, Q̄β} = 2i(γM )α
βPM , (M = 0, 1, 2)

= 2i(γ0H + γ1(P̃x + Z̃y) + γ2(P̃y − Z̃x))α
β , (7)

where we separated off two surface termsZ̃m in defining

P̃m =
∫

ddxP̃m, P̃m = ϕ̇ ∂mϕ−1
2
(ψ̄γ0∂mψ), (8)

Z̃m =
∫

ddxZ̃m, Z̃m = U(ϕ)∂mϕ = ∂mW (ϕ) (9)

with W (ϕ) ≡ ∫
dϕU(ϕ).

Having a kink profile in thex-direction, which satisfies
the Bogomolnyi equation∂xϕK = −U(ϕK), one finds that
with our choice of Dirac matrices

Q±=
∫

d2x[(ϕ̇∓ ∂yϕ)ψ±+(∂xϕ± U(ϕ))ψ∓], (10)

{Q±, Q±} = 2(H ± (Z̃x − P̃y)), (11)

and the chargeQ+ leaves the topological (domain-wall) va-
cuumϕ = ϕK , ψ = 0 invariant. This corresponds to classi-
cal BPS saturation, since withPx = 0 andP̃y = 0 one has
{Q+, Q+} = 2(H + Z̃x) and, indeed, with a kink domain
wall Z̃x/Ld−1 = W (+v)−W (−v) = −M/Ld−1.

3See [38] for a detailed discussion of more general renormalization schemes in this context.
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At the quantum level, hermiticity ofQ± implies

〈s|H|s〉 ≥ | 〈s|Py|s〉 | ≡ |〈s|(P̃y − Z̃x)|s〉|. (12)

This inequality is saturated when

Q+ |s〉 = 0 (13)

so that BPS states correspond to massless statesPMPM = 0
with Py = M for a kink domain wall in thex-direction,
however with infinite momentum and energy unless they-
direction is compact with finite lengthL.

Classically, the susy algebra in 1+1 dimensions is obtai-
ned from (7) simply by dropping̃Py as well asZ̃y so that
Px ≡ P̃x. The termγ2Z̃x remains, however, withγ2 being
the nontrivialγ5 of 1+1 dimensions. The susy algebra sim-
plifies to

{Q±, Q±} = 2(H ± Z), {Q+, Q−} = 2Px (14)

and one has the inequality

〈s|H|s〉 ≥ | 〈s|Z|s〉 | (15)

for any quantum states. BPS saturated states haveQ+ |s〉 =
0 orQ− |s〉 = 0, corresponding to kink and antikink, respec-
tively, and preserve half of the supersymmetry.

2.3 Fluctuations

In a kink (or kink domain wall) background one spatial di-
rection is singled out and we choose this to be alongx. The
direction orthogonal to the kink direction (parallel to the do-
main wall) will be denoted byy.

The quantum fields can then be expanded in the analy-
tically known kink eigenfunctions [1] times plane waves in
the extra dimensions. For the bosonic fluctuations we have
[−¤ + (U ′2 + UU ′′)]η = 0 which is solved by

η =
∫

dd−1`

(2π)
d−1
2

∑∫ dk√
4πω

(
ak,` e−i(ωt−`y)φk(x)

+ a†k,` ei(ωt−`y)φ∗k(x)
)

. (16)

The kink eigenfunctionsφk are normalized according to∫
dx|φ|2 = 1 for the discrete states and to Dirac distribu-

tions for the continuum states according to
∫

dxφ∗kφk′ =
2πδ(k − k′). The mode energies areω =

√
ω2

k + `2 where
ωk is the energy in the 1+1-dimensional case.

The canonical equal-time commutation relations
[η(~x), η̇(~x′)] = iδ(~x− ~x′) are fulfilled with

[ak,`, a
†
k′,`′ ] = δkk′δ(`− `′), (17)

where for the continuum statesδk,k′ becomes a Dirac delta.
For the fermionic modes which satisfy the Dirac equa-

tion [6∂ + U ′]ψ = 0 one finds

ψ = ψ0 +∫
dd−1`

(2π)
d−1
2

∑∫ ′ dk√
4πω

[
bk,` e−i(ωt−`y)

(√
ω+` φk(x)

√
ω−` isk(x)

)

+b†k,` (c.c.)
]
, (18)

with

ψ0 =
∫

dd−1`

(2π)
d−1
2

b0,` e−i`(t−y)

(
φ0

0

)
, b†0(`) = b0(−`).

(19)
Thus, the fermionic zero mode4 of the susy kink turns into
massless modes located on the domain wall, which have
only one chirality, forming a Majorana-Weyl domain wall
fermion [38, 7].5

For the massive modes the Dirac equation relates the ei-
genfunctions appearing in the upper and the lower compo-
nents of the spinors as follows:

sk =
1
ωk

(∂x + U ′)φk =
1√

ω2 − `2
(∂x + U ′)φk, (20)

so that the functionsk is the SUSY-quantum mechanical
[42] partner state ofφk and thus coincides with the eigen
modes of the sine-Gordon model (hence the notation) [43].
With (20), their normalization is the same as that of theφk.

The canonical equal-time anti-commutation relations
{ψα(~x), ψβ(~x′)} = δαβδ(~x− ~x′) are satisfied if

{b0(`), b
†
0(`

′)} = {b0(`), b0(−`′)} = δ(`− `′),

{bk,`, b
†
k′,`′} = δk,k′δ(`− `′), (21)

and again theδk,k′ becomes a Dirac delta for the continuum
states. The algebra (21) and the solution for the massless
mode (18) show that the operatorb0(`) creates right-moving
massless states on the wall when` is negative and annihi-
lates them for positive momentum̀. Thus only massless
states with momentum in the positivey-direction can be cre-
ated. Changing the representation of the gamma matrices by
γ2 → −γ2, which is inequivalent to the original one, rever-
ses the situation. Now only massless states with momenta in
the positivey-direction exist. Thus depending on the repre-
sentation of the Clifford algebra one chirality of the domain
wall fermions is singled out. This is a reflection of the spon-
taneous violation of parity when embedding the susy kink
as a domain wall in 2+1 dimensions.

Notice that in (18)d can be only 2 or 1, for which̀ has
1 or 0 components, so for strictlyd = 1 ` ≡ 0. In order to
have a susy-preserving dimensional regularization scheme
by dimensional reduction, we shall start fromd = 2 spatial
dimensions, and then maked continuous and smaller than 2.

4By a slight abuse of notation we shall always label this by a subscript0, but this should not be confused with the threshold modek = 0 (which does not
appear explicitly anywhere below).

5The mode with̀ = 0 corresponds in 1+1 dimensions to the zero mode of the susy kink. It has to be counted as half a degree of freedom in mode
regularization [25]. For dimensional regularization such subtleties do not play a role because the zero mode only gives scaleless integrals and these vanish.
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2.4 Energy corrections

Using the mode expansions in the Hamiltonian expanded to
second order in quantum fluctuations, one finds that the bo-
sonic and fermionic contributions combine into

∫
dx dd−1y 〈H(2)〉

=
Ld−1

2

∫
dx

∫
dd−1`

(2π)d−1

∑∫ dk

2π

ω

2
(|φk|2 − |sk|2). (22)

In these expressions, the massless modes (which correspond
to the zero mode of the 1+1 dimensional kink) can be drop-
ped in dimensional regularization as scaleless and thus va-
nishing contributions, and the massive discrete modes can-
cel between bosons and fermions.6 Carrying out thex-
integration over the continuous mode functions gives a dif-
ference of spectral densities, namely

∫
dx(|φk(x)|2−|sk(x)|2) = −θ′(k) = − 2m

k2 + m2
, (23)

whereθ(k) is the additional phase shift of the mode functi-
onssk compared toφk.

Combining (22) and (23), and adding in the counterterm
contribution from (5) leads to a simple integral

∆M (1)

Ld−1
= −1

4

∫
dk dd−1`

(2π)d
ω θ′(k) + mδv2

= −1
4

∫
dk dd−1`

(2π)d

`2

ω
θ′(k)

= −2
d

Γ( 3−d
2 )

(4π)
d+1
2

md. (24)

This reproduces the correct known result for the susy kink
mass correction∆M (1) = −m/(2π) (for d = 1) and the
surface (string) tension of the 2+1 dimensional susy kink
domain wall∆M (1)/L = −m2/(8π) (for d = 2) [38].

2.5 Anomalous contributions to the central
charge

In a kink (domain wall) background with only nontrivial
x dependence, the central charge densityZ̃x receives non-
trivial contributions. Expanding̃Zx around the kink back-
ground gives

Z̃x = U∂xϕK − δµ2

√
2λ

∂xϕK + ∂x(Uη) +
1
2
∂x(U ′η2)

+O(η3). (25)

Again only the part quadratic in the fluctuations contribu-
tes to the integrated quantity at one-loop order7. However,

usingU ′(x = ±∞) = ±m this leads just to the contribution
∫

dx〈1
2
∂x(U ′η2)〉 =

1
2
U ′〈η2〉|∞−∞

= m

∫
dd−1`

(2π)d−1

∫
dk

2π

1
2ω

≡ mδv2, (26)

which matches precisely the counterterm∝ δµ2 from requi-
ring vanishing tadpoles. Straightforward application of the
rules of dimensional regularization thus leads to a null result
for the net one-loop correction to〈Z̃x〉 in the same way as
found in Refs. [20, 21, 24] in other schemes.

On the other hand, by considering the less singular com-
bination〈H + Z̃x〉 and showing that it vanishes exactly, it
was concluded in Ref. [29] that〈Z̃x〉 has to compensate any
nontrivial result for〈H〉, which in Ref. [29] was obtained
by subtracting successive Born approximations for scatte-
ring phase shifts. In fact, Ref. [29] explicitly demonstrates
how to rewrite〈Z̃x〉 into−〈H〉, apparently without the need
for the anomalous terms in the quantum central charge ope-
rator derived in Ref. [27].

The resolution of this discrepancy is that Ref. [29] did
not regularize〈Z̃x〉 and the manipulations needed to rewrite
it as−〈H〉 (which eventually is regularized and renormali-
zed) are ill-defined. Using dimensional regularization one
in fact obtains a nonzero result for〈H + Z̃x〉, apparently in
violation of susy.

However, dimensional regularization by embedding the
kink as a domain wall in (up to) one higher dimension,
which preserves susy, instead leads to

〈
H + Z̃x − P̃y

〉
= 0, (27)

i.e. the saturation of (12), as we shall now verify.
The bosonic contribution to〈P̃y〉 involves

1
2
〈η̇∂yη + ∂yηη̇〉 = −

∫
dd−1`

(2π)d−1

∑∫ dk

2π

`

2
|φk(x)|2.

(28)
The `-integral factorizes and gives zero both because it is
a scale-less integral and because the integrand is odd in`.
Only the fermions turn out to give interesting contributions:

〈P̃y〉 =
i

2
〈ψ†∂yψ〉

=
1
2

∫
dd−1`

(2π)d−1

∑∫ dk

2π

`

2ω

[
(ω + `)|φk|2

+(ω − `)|sk|2
]

=
1
2

∫
dd−1`

(2π)d−1
` θ(−`) |φ0|2 +

+
1
2

∫
dd−1`

(2π)d−1

∑∫ ′ dk

2π

( `

2
(|φk|2 + |sk|2)

+
`2

2ω
(|φk|2 − |sk|2)

)
. (29)

6The zero mode contributions in fact do not cancel by themselves between bosons and fermions, because the latter are chiral. This noncancellation is in
fact crucial in energy cutoff regularization (see Ref. [38]).

7Again, this does not hold for the central charge density locally [27, 31].
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From the last sum-integral we have separated off the contri-
bution of the zero mode of the kink, which turns into chiral
domain wall fermions ford > 1. The contribution of the
latter no longer vanishes by symmetry, but the`-integral is
still scale-less and therefore put to zero in dimensional re-
gularization. The first sum-integral on the right-hand side is
again zero by both symmetry and scalelessness, but the final
term is not. Thè -integration no longer factorizes because
ω =

√
k2 + `2 + m2. Integrating overx and using (23) one

in fact obtains exactly the same expression as in the one-loop
result for the energy, Eq. (24).

So for all d ≤ 2 we have BPS saturation,〈H〉 =
|〈Z̃x − P̃y〉|, which in the limit d → 1, the susy kink, is
made possible by a nonvanishing〈P̃y〉. The anomaly in the
central charge is seen to arise from a parity-violating contri-
bution ind = 1 + ε dimensions which is the price to be paid
for preserving supersymmetry when going up in dimensions
to embed the susy kink as a domain wall.

It is perhaps worth emphasizing that the above results
do not depend on the details of the spectral densities asso-
ciated with the mode functionsφk andsk. In the integra-
ted quantities〈H〉 and〈P̃y〉 only the difference of the spec-
tral densities as given by (23) is responsible for the nonva-
nishing contribution. The functionθ(k) therein is entirely
fixed by the form of the Dirac equation in the asymptotic
regionsx → ±∞ far away from the kink [21].

2.6 Dimensional reduction and evanescent
counterterms

We now describe how the central charge anomaly can be re-
covered from Siegel’s version of dimensional regularization
[6] wheren is smaller than the dimension of spacetime and
where one keeps the number of field components fixed, but
lowers the number of coordinates and momenta from 2 to
n < 2. At the one-loop level one encounters 2-dimensional
δν
µ coming from Dirac matrices, andn-dimensional̂δν

µ from
loop momenta. An important concept which is going to play
a role are the evanescent counterterms [14] involving the

factor 1
ε
ˆ̂
δν

µγνψ, whereˆ̂
δν

µ ≡ δν
µ − δ̂ν

µ has onlyε = 2 − n
nonvanishing components.

In the trivial vacuum, expanding the supercurrentjµ =
−(6∂ϕ + U(ϕ))γµψ into quantum fields yields

jµ = −
(
6∂η + U ′(v) η +

1
2
U ′′(v) η2

)
γµψ+

1√
2λ

δµ2γµψ.

(30)
Only matrix elements with one external fermion are diver-
gent. The term involvingU ′′(v)η2 in (30) gives rise to a
divergent scalar tadpole that is cancelled completely by the
countertermδµ2 (which itself is due to anη and aψ loop).
The only other divergent diagram is due to the term invol-
ving 6∂η in (30) and has the form aψ-selfenergy. Its singular
part reads

〈0|jµ|p〉div

= iU ′′(v)
∫ 1

0

dx

∫
dnκ

(2π)n

6κγµ 6κu(p)
[κ2 + p2x(1− x) + m2]2

.

(31)

Using δ̂ν
µ ≡ δν

µ − ˆ̂
δν

µ we find that under the integral

6κγµ6κ = −κ2(δλ
µ −

2
n

δ̂λ
µ)γλ =

ε

n
κ2γµ − 2

n
κ2 ˆ̂

δλ
µγλ

so that

〈0|jµ|p〉div =
U ′′(v)

2π

ˆ̂
δλ

µ

ε
γλu(p). (32)

Hence, the regularized one-loop contribution to the susy cur-
rent contains the evanescent operator

jdiv
µ =

U ′′(ϕ)
2π

ˆ̂
δλ

µ

ε
γλψ. (33)

This is by itself a conserved quantity, because all fields de-
pend only on then-dimensional coordinates, but it has a
nonvanishing contraction withγµ. The latter gives rise to
an anomalous contribution to the renormalized conformal-
susy current6xjren.

µ wherejren.
µ = jµ − jdiv

µ ,

∂µ(6xjren.
µ )anom. = −γµjdiv

µ = −U ′′

2π
ψ. (34)

(There are also nonvanishing nonanomalous contributions to
∂µ(6xjµ) because our model is not conformal-susy invariant
at the classical level [44].)

Ordinary susy on the other hand is unbroken; there is no
anomaly in the divergence ofjren.

µ . A susy variation ofjµ

involves the energy-momentum tensor and the topological
central-charge currentζµ according to

δjµ = −2Tµ
νγνε− 2ζµγ5ε, (35)

where classicallyζµ = εµνU∂νϕ.
At the quantum level, the counter-termjct

µ = −jdiv.
µ in-

duces an additional contribution to the central charge current

ζanom
µ =

1
4π

ˆ̂
δν

µ

ε
ενρ∂

ρU ′ (36)

which despite appearances is afinitequantity: using that to-
tal antisymmetrization of the three lower indices has to va-
nish in two dimensions gives

ˆ̂
δν

µενρ = εεµρ + ˆ̂
δν

ρενµ (37)

and together with the fact theU ′ only depends onn-
dimensional coordinates this finally yields

ζanom
µ =

1
4π

εµρ∂
ρU ′ (38)

in agreement with the anomaly in the central charge as ob-
tained previously.
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3 The (susy) vortex.

We next considered [45] the Abrikosov-Nielsen-Olesen [46,
47, 48, 49] vortex solution of the abelian Higgs model in 2+1
dimensions which has a supersymmetric extension [50, 51]
(see also [52, 53]) such that classically the Bogomolnyi
bound [54] is saturated. We employed our variant of dimen-
sional regularization to theN = 2 vortex by dimensionally
reducing theN = 1 abelian Higgs model in3 + 1 dimensi-
ons. We confirmed the results of [50, 55, 56] that in a par-
ticular gauge (background-covariant Feynman-’t Hooft) the
sums over zero-point energies of fluctuations in the vortex
background cancel completely, but contrary to [50, 55] we
found a nonvanishing quantum correction to the vortex mass
coming from a finite renormalization of the expectation va-
lue of the Higgs field in this gauge [57, 56]. In contrast to
[50], where a null result for the quantum corrections to the
central charge was stated, we show that the central charge re-
ceives also a net nonvanishing quantum correction, namely
from a nontrivial phase in the fluctuations of the Higgs field
in the vortex background, which contributes to the central
charge even though the latter is a surface term that can be
evaluated far away from the vortex. The correction to the
central charge exactly matches the correction to the mass of
the vortex.

In Ref. [55], it was claimed that the usual multiplet shor-
tening arguments in favor of BPS saturation would not be
applicable to theN = 2 vortex since in the vortex back-
ground there would be two rather than one fermionic zero
modes [58], leading to two short multiplets which have the
same number of states as one long multiplet.8 We showed
however that the extra zero mode postulated in [55] has to
be discarded because its gaugino component is singular, and
that only after doing so there is agreement with the results
from index theorems [59, 58, 60]. For this reason, stan-
dard multiplet shortening arguments do apply, explaining
the BPS saturation at the quantum level that we observe in
our explicit one-loop calculations.

The N = 2 susy vortex in 2+1 dimensions is the so-
litonic (finite-energy) solution of the abelian Higgs model
which can be obtained by dimensional reduction from a
3+1-dimensionalN = 1 model. We shall use the latter
for the purpose of dimensional regularization of the 2+1-
dimensional model by susy-preserving dimensional reduc-
tion from 3+1 dimensions (where the vortex has infinite
mass but finite energy-density).

3.1 The model

The superspace action for the vortex in terms of 3+1-
dimensional superfields contains anN = 1 abelian vector
multiplet and anN = 1 scalar multiplet, coupled as usual,
together with a Fayet-Iliopoulos term but without superpo-

tential,

L =
∫

d2θ WαWα +
∫

d4θ Φ̄ eeV Φ + κ

∫
d4θ V. (39)

In terms of 2-component spinors in 3+1 dimensions, the ac-
tion reads9

L = −1
4
F 2

µν + χ̄α̇iσ̄µ
α̇β∂µχβ +

1
2
D2 + (κ− e|φ|2)D

−|Dµφ|2 + ψ̄α̇iσ̄µ
α̇βDµψβ + |F |2

+
√

2e
[
φ∗χαψα + φχ̄α̇ψ̄α̇

]
, (40)

whereDµ = ∂µ − ieAµ when acting onφ and ψ, and
Fµν = ∂µAν − ∂νAµ. Elimination of the auxiliary field
D yields the scalar potentialV = 1

2D2 = 1
2e2(|φ|2 − v2)2

with v2 ≡ κ/e.
In 3+1 dimensions, this model has a chiral anomaly, and

in order to cancel the chiral U(1) anomaly, additional scalar
multiplets would be needed such that the sum over charges
vanishes,

∑
i ei = 0.

In 2+1 dimensions, dimensional reduction gives anN =
2 model involving, in the notation of [55], a real scalar
N = A3 and two complex (Dirac) spinorsψ = (ψα),
χ = (χα).

Completing squares in the bosonic part of the classical
Hamiltonian density one finds the Bogomolnyi equations
and the central charge

H =
1
4
F 2

kl + |Dkφ|2 +
1
2
e2(|φ|2 − v2)2

=
1
2
|Dkφ + iεklDlφ|2 +

1
2

(
F12 + e(|φ|2 − v2)

)2

+
e

2
v2εklFkl − i∂k(εklφ

∗Dlφ) (41)

wherek, l are the spatial indices in 2+1 dimensions. The
classical central charge reads

Z =
∫

d2x εkl∂k

(
ev2Al − iφ∗Dlφ

)
, (42)

where asymptoticallyDlφ tends to zero exponentially fast.
Classically, BPS saturationE = |Z| = 2πv2n holds
when the BPS equations(D1 ± iD2)φ ≡ D±φ = 0 and
F12 ± e(|φ|2 − v2) = 0 are satisfied, where the upper and
lower sign corresponds to vortex and antivortex, respecti-
vely. The vortex solution with winding numbern is given
by (AV

± ≡ AV
1 ± iAV

2 )

φV = einθf(r), eAV
+ = −ieiθ a(r)− n

r
, (43)

wheref ′(r) = a
r f(r) anda′(r) = re2(f(r)2 − v2) with

boundary conditions [49]

a(r →∞) = 0, f(r →∞) = v,

a(r → 0) = n + O(r2), f(r → 0) ∝ rn + O(rn+2).
(44)

8Incidentally, Refs. [55, 58] considered supersymmetric Maxwell-Chern-Simons theory, which contains the supersymmetric abelian Higgs model as a
special case.

9Our conventions areηµν = (−1, +1, +1, +1), χα = εαβχβ andχ̄α̇ = εα̇β̇ χ̄β̇ with εαβ = εαβ = −εα̇β̇ = −εα̇β̇ andε12 = +1. In particular we

haveψ̄α̇ = (ψα)∗ but ψ̄α̇ = −(ψα)∗. Furthermore,̄σµ = (−1, σ̃) with the usual representation for the Pauli matrices~σ.
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3.2 Fluctuation equations

For the calculation of quantum corrections to a vortex solu-
tion we decomposeφ into a classical background partφV

and a quantum partη. Similarly, Aµ is decomposed as
AV

µ + aµ, where onlyAV
µ with µ = 1, 2 is nonvanishing.

We use a backgroundRξ [61] gauge fixing term which is
quadratic in the quantum gauge fields,

Lg.fix = − 1
2ξ

(∂µaµ − ieξ(φVη∗ − φ∗Vη))2. (45)

The corresponding Faddeev-Popov Lagrangian reads

Lghost = b
(
∂2

µ − e2ξ
{
2 |φV|2 + φVη∗ + φ∗Vη

})
c . (46)

The fluctuation equations in 2+1 dimensions have been
given in [50, 55] for the choiceξ = 1 (Feynman-‘t Hooft
gauge) which leads to important simplifications. We shall
mostly use this gauge choice when considering fluctuations
in the solitonic background, but will carry out renormaliza-
tion in the trivial vacuum for generalξ to exhibit some of
the intermediate gauge dependences.

Because we are going to consider dimensional regulari-
zation by dimensional reduction from the 3+1 dimensional
model, we shall need the form of the fluctuation equations
with derivatives in thex3 direction included. (This one tri-
vial extra dimension will eventually be turned intoε → 0
dimensions.)

In the ‘t Hooft-Feynman gauge, the part of the bosonic
action quadratic in the quantum fields reads

L(2)
bos = −1

2
(∂µaν)2 − e2|φV|2a2

µ

−|DV
µ η|2 − e2(3|φV|2 − v2)|η|2

−2ieaµ
[
η∗DV

µ φV − η(DV
µ φV)∗

]
. (47)

In the trivial vacuum, which corresponds toφV → v and
AV

µ → 0, the last term vanishes, but in the solitonic vacuum
it couples the linearized field equations for the fluctuations
B ≡ (η, a+/

√
2) with a+ = a1 + ia2 to each other accor-

ding to (k = 1, 2)

(∂2
3 − ∂2

t )B

=
( −(DV

k )2 + e2(3|φV|2 − v2) i
√

2e(D−φV)
−i
√

2e(D−φV)∗ −∂2
k + 2e2|φV|2

)
B.

(48)

The quartet(a3, a0, b, c) with b, c the Faddeev-Popov ghost
fields has diagonal field equations at the linearized level

(∂2
µ − 2e2|φV|2)Q = 0, Q ≡ (a3, a0, b, c). (49)

For the fermionic fluctuations, which we group asU =(
ψ1

χ̄1̇

)
, V =

(
ψ2

χ̄2̇

)
, the linearized field equations read

LU = i(∂t + ∂3)V, L†V = i(∂t − ∂3)U, (50)

with

L =
(

iDV
+

√
2eφV

−√2eφ∗V i∂−

)
,

L† =
(

iDV
− −√2eφV√

2eφ∗V i∂+

)
. (51)

Iteration shows thatU satisfies the same second order
equations as the bosonic fluctuationsB,

L†LU = (∂2
3 − ∂2

t )U, L†LB = (∂2
3 − ∂2

t )B (52)

LL†V = (∂2
3 − ∂2

t )V, (53)

with L†L given by (48), whereasV is governed by a diago-
nal equation with

LL†=
(−(DV

k )2 + e2|φV|2 + e2v2 0
0 −∂2

k + 2e2|φV|2
)

.

(54)
(In deriving these fluctuation equations we used the BPS
equations throughout.)

3.3 Renormalized mass

At the classical level, the energy and central charge of vorti-
ces are multiples of2πv2 with v2 = κ/e. Renormalization
of tadpoles, even when only by finite amounts, will therefore
contribute directly to the quantum mass and central charge
of the N = 2 vortex, a fact that has been overlooked in
the original literature [50, 55] on quantum corrections to the
N = 2 vortex.10

Adopting a “minimal” renormalization scheme where
the scalar wave function renormalization constantZφ = 1,
the renormalization ofv2 is fixed by the requirement of va-
nishing tadpoles in the trivial sector of the 2+1 dimensio-
nal model. The calculation can be conveniently performed
by using dimensional regularization of the 3+1 dimensional
N = 1 model. For the calculation of the tadpoles we decom-
poseφ = v + η ≡ v + (σ + iρ)/

√
2, whereσ is the Higgs

field andρ the would-be Goldstone boson. The gauge fi-
xing term (45) avoids mixedaµ-ρ propagators, but there are
mixedχ-ψ propagators, which can be diagonalized by intro-
ducing new spinorss = (ψ+iχ)/

√
2 andd = (ψ−iχ)/

√
2

with mass termsm(sαsα−dαdα)+h.c., wherem =
√

2ev.
The part of the interaction Lagrangian which is relevant

for σ tadpoles to one-loop order is given by

Lint
σ−tadpoles = e(χαψα + χ̄α̇ψ̄α̇) σ − em

2
(σ2 + ρ2)σ

−em(a2
µ + ξb c− δv2) σ, (55)

whereb andc are the Faddeev-Popov fields.
The one-loop contributions to theσ tadpole thus read

s,d

σ

σ

σ

ρ

σ

a0,1,2,3

σ

b,c

σ

δv2

σ

= (−em)
{
−2tr12I(m) +

3
2
I(m) +

1
2
I(ξ

1
2 m)

+[3I(m) + ξI(ξ
1
2 m)]− ξI(ξ

1
2 m)− δv2

}
,

10The nontrivial renormalization ofκ/e has however been included in [57, 56].
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where

I(m) =
∫

d3+εk

(2π)3+ε

−i

k2 + m2

= − m1+ε

(4π)1+ε/2

Γ(− 1
2 − ε

2 )
Γ(− 1

2 )
= −m

4π
+ O(ε). (56)

Requiring that the sum of tadpole diagrams (56) va-
nishes fixesδv2,

δv2 =
1
2

(
I(m) + I(ξ

1
2 m)

) ∣∣∣
D=3

= −1 + ξ
1
2

8π
m. (57)

Because in dimensional regularization there are no poles in
odd dimensions at the one-loop level, the result forδv2 is
finite, but it is nonvanishing.

As it turns out, this is the only contribution to the one-
loop mass correction of the vortex. In theξ = 1 gauge the
zero-point energies of the quartet(a3, a0, b, c) cancels, and
one is left with

1
2

∑
ωbos − 1

2

∑
ωferm =

∑
ωU −

∑
ωV , (58)

Using dimensional regularization these sums can be
made well defined by replacing all eigen frequenciesωk in
2+1 dimensions byωk,` = (ω2

k + `2)1/2 where` are the
extra momenta. Using index theorems, it has been shown
that the spectral densities forU andV are equal up to zero
modes [50, 55], and zero modes (massless modes upon em-
bedding) do not contribute in dimensional regularization.
Hence,

∑
ωU −

∑
ωV = 0, as we have also verified more

directly [16], and the only nonvanishing quantum correction
of the vortex mass is from renormalization. In our “mini-
mal” renormalization scheme we thus have

E = 2π|n|(v2 + δv2|ξ=1) = 2π|n|(v2 − m

4π
). (59)

3.4 Central charge

By starting from the susy algebra in 3+1 dimensions one can
derive the central charge in 2+1 dimensions as the compo-
nentT03 of

Tµν = − i

4
Trσµαα̇ {Q̄α̇, Jν

α} (60)

whereJν
α is the susy Noether current.

The antisymmetric part ofTµν gives the standard ex-
pression for the central charge density, while the symmetric
part is a genuine momentum in the extra dimension:

〈Z〉 =
∫

d2x
〈
T 03

〉
=

〈
Z̃ + P̃3

〉
. (61)

(A similar decomposition is valid for the kink [39].)
Z̃ corresponds to the classical expression for the central

charge. Being a surface term, its quantum corrections can
be evaluated at infinity:

〈Z̃〉 =
∫

d2x∂kεkl〈ζ̃l〉 =
∫ 2π

0

dθ〈ζ̃θ〉|r→∞ (62)

with ζ̃l = ev2
0Al − iφ†Dlφ andv2

0 = v2 + δv2.
Expanding in quantum fieldsφ = φV + η, A = AV + a

and using that the classical fieldsφV → veinθ, AV
θ → n/e,

DV
θ φV → 0 asr →∞, we obtain to one-loop order

〈Z̃〉 = 2πnv2
0

− i

∫ 2π

0

dθ
〈
(φ∗V + η†)(DV

θ − ieaθ)(φV + η)
〉 |r→∞

= 2πn{v2
0 − 〈η†η〉|r→∞}

−i

∫ 2π

0

dθ
{〈

η†∂θη
〉

−ieφ∗V 〈aθη〉 − ieφV

〈
aθη

†〉}|r→∞
≡ Za + Zb (63)

where we have used〈η(r →∞)〉 → 0 (which determines
δv2),

∫ 2π

0
dθ〈aθ〉 = 0, and〈η†ηaθ〉 = O(~2).

The first contribution,Za, can be easily evaluated for
arbitrary gauge parameterξ, yielding

Za = 2πn{v2
0 −

1
2
(〈σσ〉+ 〈ρρ〉)|r→∞}

= 2πn{v2
0 −

1
2
[I(m) + I(ξ

1
2 m)]}

= 2πn(v2
0 − δv2) = 2πnv2. (64)

If this was all, the quantum corrections toZ would cancel,
just as in the naive calculation ofZ in the susy kink [20, 21].

The second contribution in (63), however, does not va-
nish when taking the limitr → ∞. This contribution is
simplest in theξ = 1 gauge, where theη andaθ fluctuations
are governed by the fluctuation equations (48). In the limit
r → ∞ one has|φV| → v andD−φV → 0 exponentially.
This eliminates the contributions from〈aθη〉. However,D2

k,
which governs theη fluctuations, contains long-range con-
tributions from the vector potential. Making a separation of
variables inr andθ one finds that asymptotically

|DV
k η|2 → |∂rη|2 +

1
r2
|(∂θ − in)η|2 (65)

so that theη fluctuations have an extra phase factoreinθ

compared to those in the trivial vacuum. We thus have, in
theξ = 1 gauge,

Zb = −i

∫ 2π

0

dθ
{〈

η†∂θη
〉

−ieφ∗V 〈aθη〉 − ieφV

〈
aθη

†〉}|r→∞

= −i

∫ 2π

0

dθ
〈
η†∂θη

〉
ξ=1

= 2πn
〈
η†η

〉
ξ=1,r→∞

= 2πn δv2
∣∣∣
ξ=1

. (66)

This is exactly the result for the one-loop correction to the
mass of the vortex in eq. (59), implying saturation of the
BPS bound provided that there are now no anomalous con-
tributions to the central charge operator as there are in the
case in theN = 1 susy kink [39].

In dimensional regularization by dimensional reduction
from a higher-dimensional model such anomalous contribu-
tions to the central charge operator come from a finite re-
mainder of the extra momentum operator [39]. The latter is
given by [55]
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Zc =
〈
P̃3

〉
=

∫
d2x

〈
F0iF3i + (D0φ)†D3φ + (D3φ)†D0φ− iχ̄σ̄0∂3χ− iψ̄σ̄0D3ψ

〉
. (67)

Inserting mode expansions for the quantum fields one immediately finds that the bosonic contributions vanish because of
symmetry in the extra trivial dimension. However, this is not the case for the fermionic fields, which have a mode expansion
of the form

(
U

V

)
=

∫
dε`

(2π)ε/2
Σ
∫

k

1√
2ω

{
bk,` e−i(ωt−`z)



√

ω−` u1√
ω−` u2√
ω+` v1√
ω+` v2


 + d†k,` × (c.c.)

}
, (68)

d

where we have not written out explicitly the zero-modes (for
which ω2 = `2). The fermionic contribution toZc reads,
schematically,

Zc =
〈
P̃3

〉
=

∫ dε`

(2π)ε
Σ
∫

k

`2

2ω

∫
d2x

[|u1|2 + |u2|2 − |v1|2 − |v2|2
]

(69)

whereω =
√

ωk + `2, so that thè integral does give a non-
vanishing result. However, thex-integration over the mode
functionsu1,2(k; x) and v1,2(k;x) produces their spectral
densities, which cancel up to zero-mode contributions as we
have seen above11, and zero-mode contributions only pro-
duce scaleless integrals which vanish in dimensional regula-
rization. Hence,Zc = 0 and|Z| = |Za + Zb| = E, so that
the BPS bound is saturated at the (one-loop) quantum level.

4 The (susy) monopole.

We now consider theN = 2 monopole in 3+1 dimensions,
which has been used by many authors in studies of duality.
The monopole model has more unbroken susy generators
than the susy kink or the vortex, so one runs the risk (or
the blessing) of vanishing quantum corrections. This mo-
del has been studied before in Refs. [62, 63, 64] and while
the initial result of vanishing corrections of Ref. [62] tur-
ned out to be an oversimplification, Refs. [63, 64] neverthe-
less arrived at the conclusion of vanishing quantum correcti-
ons, at least in the simplest renormalization schemes. Using
susy-preserving dimensional regularization by dimensional
reduction, we have instead recently shown [65] that there are
nonvanishing but equal quantum corrections to both mass
and central charge of theN = 2 monopole. Thus BPS
saturation is preserved as required by multiplet shortening
arguments [3], but in a nontrivial manner.

TheN = 2 super-Yang-Mills theory in 3+1 dimensions
can be obtained by dimensional reduction from the (5+1)-

dimensionalN = 1 theory [66]

L = −1
4
F 2

AB − λ̄ΓADAλ, (70)

where the indicesA,B take the values0, 1, 2, 3, 5, 6 and
which is invariant under

δAa
B = λ̄aΓBη − η̄ΓBλa, δλa =

1
2
F a

BCΓBΓCη. (71)

The complex spinorλ is in the adjoint representation
of the gauge group which we assume to be SU(2) in
the following and (DAλ)a = (∂Aλ + gAA × λ)a

= ∂Aλa + gεabcAb
Aλc. Furthermore,λ andη satisfy the

Weyl condition:

(1− Γ7)λ = 0 with Γ7 = Γ0Γ1Γ2Γ3Γ5Γ6. (72)

To carry out the dimensional reduction we writeAB =
(Aµ, P, S) and choose the following representation of
gamma matrices

Γµ = γµ ⊗ σ1 , µ = 0, 1, 2, 3,

Γ5 = γ5 ⊗ σ1 , Γ6 = 11⊗ σ2. (73)

In this representation the Weyl condition (72) becomesλ =(
ψ
0

)
, with a complex four-component spinorψ.12

The (3+1)-dimensional Lagrangian then reads

L=−{1
4
F 2

µν +
1
2
(DµS)2+

1
2
(DµP )2+

1
2
g2(S × P )2}

−{ψ̄γµDµψ + igψ̄(S × ψ) + gψ̄γ5(P × ψ)}. (74)

We choose the symmetry-breaking Higgs field asSa ≡
Aa

6 = vδa
3 in the trivial sector. The BPS monopoles are of

the form (forA0 = 0) [67]

Aa
i = εaij

xj

gr2
(1−K(mr)), (75)

Sa = δa
i

xi

gr2
H(mr), (76)

with H = mr coth(mr) − 1 and K = mr/ sinh(mr),
wherem = gv is the mass of the particles that are char-
ged under the unbroken U(1). The BPS equationF a

ij +

11An explicit calculation which confirms these cancellations can be found in [16].
12We use the metric with signature(−, +, +, +, +, +) and λ̄a = (λa)†iΓ0, henceψ̄a = (ψa)†iγ0. One can rewrite this model in terms of two

symplectic Majorana spinors in order to exhibit theR symmetry group U(2).
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εijkDkSa = 0 can be written as a self-duality equation
for FMN with M,N = 1, 2, 3, 6, and the classical mass is
Mcl. = 4πm/g2.

The susy algebra for the chargesQα =
∫

j0αd3x with
jA = 1

2ΓBΓCFBCΓAλ reads

{Qα, Q̄β} = −(γµ)α
βPµ + (γ5)α

β U + iδα
β V, (77)

with α, β = 1, . . . , 4. In the trivial sectorPµ acts as∂µ, and
U multiplies the massive fields bym, but in the topological
sectorPµ are covariant translations, andU andV are sur-
face integrals. The classical monopole solution saturates the
BPS boundM2 ≥ |〈U〉|2 + |〈V 〉|2 by |Ucl.| = Mcl., and
Vcl. = 0.

For obtaining the one-loop quantum corrections, one has
to consider quantum fluctuations about the monopole back-
ground. The bosonic fluctuation equations turn out to be
simplest in the background-covariant Feynman-Rξ gauge
which is obtained by dimensional reduction of the ordinary
background-covariant Feynman gauge-fixing term in (5+1)
dimensions− 1

2 (DB [Â] aB)2, whereaB comprises the bo-
sonic fluctuations and̂AB the background fields. As has
been found in Refs. [63, 64], in this gauge the eigenvalues
of the bosonic fluctuation equations (taking into account
Faddeev-Popov fields) and those of the fermionic fluctuation
equations combine such that one can make use of an index-
theorem by Weinberg [68] to determine the spectral density.
This leads to the following (unregularized!) formula for the
one-loop mass correction

M (1) =
4πm0

g2
0

+
~
2

∑
(ωB − ωF )

=
4πm0

g2
0

+
~
2

∫
d3k

(2π)3
√

k2 + m2 ρM (k2),(78)

with m0 andg0 denoting bare quantities and

ρM (k2) =
−8πm

k2(k2 + m2)
. (79)

This expression is logarithmically divergent and is made fi-
nite by combining it with the one-loop renormalization ofg,
while m does not need to be renormalized [63, 64]. Com-
bining these two expressions from the sum over zero point
energies and the counter term, we find that there is a mis-
match proportional toε, but ε multiplies a logarithmically
divergent integral, which in dimensional regularization in-
volves a poleε−1. We therefore obtain a finite correction of
the form

M (1) =
4πm

g2
− ε× 2m

π

Γ(− 1
2 − ε

2 )

(2π
1
2 )εΓ(− 1

2 )

×
∫ ∞

0

dk(k2 + m2)−
1
2+ ε

2

=
4πm

g2
− 2m

π
+ O(ε) (80)

which because of the fact that it arises as0 × ∞ bears the
hallmark of an anomaly.

Indeed, as we shall now show, this result is comple-
tely analogous to the case of theN = 1 susy kink in

(1+1) dimensions, where a nonvanishing quantum correc-
tion to the kink mass (in a minimal renormalization scheme)
is associated with an anomaly in the central charge (which
is scheme-independent; in a non-minimal renormalization
scheme there are also non-anomalous quantum corrections
to the central charge).

In Ref. [64] it has been argued that in the renormali-
zation scheme defined above, the one-loop contributions to
the central charge precisely cancel the contribution from the
counterterm in the classical expression. In this particular
calculation it turns out that the cancelling contributions have
identical form so that the regularization methods of Ref. [64]
can be used at least self-consistently, and also straight-
forward dimensional regularization would imply complete
cancellations. The result (80) would then appear to violate
the Bogomolnyi bound.

However, this is just the situation encountered in the
(1+1)-dimensional susy kink. As we have shown in
Ref. [39] and recapitulated above, dimensional regulariza-
tion gives a zero result for the correction to the central
charge unless the latter is augmented by the momentum ope-
rator in the extra dimension used to embed the soliton. This
is necessary for manifest supersymmetry, and, indeed, the
extra momentum operator can acquire a nonvanishing ex-
pectation value. As it turns out, the latter is entirely due to
nontrivial contributions from the fermionsψ =

(
ψ+
ψ−

)
, whose

fluctuation equations have the form

Lψ+ + i(∂t + ∂5)ψ− = 0, (81)

i(∂t − ∂5)ψ+ + L†ψ− = 0. (82)

The fermionic field operator can be written as

ψ(x) =
∫

dε`

(2π)ε/2

∑∫ d3k

(2π)3/2

1√
2ω

×
{

akle
−i(ωt−`x5)

( √
ω − ` χ+

−√ω + ` χ−

)

+b†kle
i(ωt−`x5)

(√
ω − ` χ+√
ω + ` χ−

)}
, (83)

where χ− = 1
ωk

Lχ+ and χ+ = 1
ωk

L†χ− with ω2
k =

k2+m2, and the normalization factors
√

ω ± ` are such that
L†Lχ+ = ω2χ+ andLL†χ− = ω2χ− with ω2 = ω2

k + `2.
Because of these normalization factors, one obtains an ex-
pression for the momentum densityΘ05 in the extra dimen-
sion which has an even component under reflection in the
extra momentum variablè

〈Θ05〉 =
∫

dε`

(2π)ε

∫
d3k

(2π)3
`

2ω

[
(ω − `)|χ+|2

+(ω + `)|χ−|2
]

=
∫

dε`

(2π)ε

∫
d3k

(2π)3
`2

2ω
(|χ−|2 − |χ+|2) (84)

(omitting zero-mode contributions which do not contribute
in dimensional regularization [39]).

Integration overx then produces the spectral density
(79) and finally yields
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∆Uan =
∫

d3x 〈Θ05〉

=
∫

d3k dε`

(2π)3+ε

`2

2
√

k2 + `2 + m2
ρM (k2)

= −4m

∫ ∞

0

dk

2π

∫
dε`

(2π)ε

`2

(k2 + m2)
√

k2 + `2 + m2

= −8
Γ(1− ε

2 )
(4π)1+

ε
2

m1+ε

1 + ε
= −2m

π
+ O(ε), (85)

d

which is indeed equal to the nonzero mass correction obtai-
ned above.

This verifies that the BPS bound remains saturated under
quantum corrections, but the quantum corrections to mass
and central charge both contain an anomalous contribution,
analogous to the central-charge anomaly in the 1+1 dimen-
sional minimally supersymmetric kink.

The nontrivial result (85) is in fact in complete accor-
dance with the low-energy effective action forN = 2 super-
Yang-Mills theory as obtained by Seiberg and Witten [2].13

According to the latter, the low-energy effective action is
fully determined by a prepotentialF(A), which to one-loop
order is given by

F1−loop(A) =
i

2π
A2 ln

A2

Λ2
, (86)

whereA is a chiral superfield andΛ the scale parameter of
the theory generated by dimensional transmutation. The va-
lue of its scalar componenta corresponds in our notation
to gv = m. In the absence of aθ parameter, the one-loop
renormalized coupling is given by

4πi

g2
= τ(a) =

∂2F
∂a2

=
i

π

(
ln

a2

Λ2
+ 3

)
. (87)

This definition agrees with the “minimal” renormalization
scheme that we have considered above, because the latter in-
volves only the zero-momentum limit of the two-point func-
tion of the massless fields. For a single magnetic monopole,
the central charge is given by

|U | = aD =
∂F
∂a

=
i

π
a

(
ln

a2

Λ2
+ 1

)
=

4πa

g2
− 2a

π
, (88)

and sincea = m, this exactly agrees with the result of our
direct calculation in (85).

Now, the low-energy effective action associated with
(86) has been derived from a consistency requirement with
the anomaly of the U(1)R symmetry of the microscopic the-
ory. The central-charge anomaly, which we have identified
as being responsible for the entire nonzero correction (85),
is evidently consistent with the former. Just as in the case

of the minimally supersymmetric kink in 1+1 dimensions, it
constitutes a new anomaly14 that had previously been igno-
red in direct calculations [63, 64] of the quantum corrections
to theN = 2 monopole.
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