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We discuss the one-loop quantum corrections to the mésnd central charg& of supersymmetric (susy)
solitons: the kink, the vortex and the monopole. Contrary to previous expectations and published results, in
each of these cases there are nonvanishing quantum corrections to the mass. ¥FotHekink and the

N = 2 monopole a new anomaly ifi rescues BPS saturation/( = Z); for the N = 2 vortex, BPS saturation

is rescued for two reasons: (i) the quantum fluctuations of the Higgs field acquire a nontrivial phase due to
the winding of the classical solution, and (ii) a fermionic zero mode used in the literature is shown not to be

normalizable.
1 An introduction to new develop- A soliton is closely related to an instanton. The later is
ments in quantum field theory for ~ definedasfollows:
susy solitons Definition 2: an instanton is a nonsingular so-
lution of the classical field equations Eucli-
Solitons [1] have recently come back in the center of at- deanspace with finiteaction.

tention of quantum field theory (QFT) because in a certain
class of supersymmetric (susy) field theories (the ones withBecause instantons have finite action, they contribute alre-
N = 2 susy) dualities between field theories with point- ady at the classical level to the path integral. This is the
particles and field theories with solitons allowed calculation reason for the requirement of finite action. It is clear that
of some nonperturbative effects [2]. Let us begin by defining @ soliton inn + 1 dimensions is an instanton indimensi-
what we mean by a soliton: ons: since the time coordinate plays no role in the soliton
solutions, the space integral in Minkowski space can also be
viewed as an integral over Euclidean space, and the energy
E = [d*zH(z) = [d"z(p¢— L) is equal to the action
S=—[d" L.

We shall discuss three solitons:

Definition 1: a soliton is a nonsingular time-
independent solution of the classical field
equations inMinkowski spacetime with finite
energy.

Solitons can be viewed as extended particles (“lumps”)

which should clearly have finite mass (= finite energy at 1) thekink in 1+1 dimensions withV = 1 susy

rest). We shall only consider relativistic field theories. There

exist also time-dependent solutions with finite energy (the  2) thevortex in 2+1 dimensions withV = 2 susy
“breather” solution in the sine-Gordon model, for example),

but we consider only time-independent solitons. One can, of  3) themonopolein 3+1 dimensions witlV = 2 susy
course, boost solitons in a relativistic theory, and obtain then

moving solitons, but since one can always choose a LorentzThere exist also susy extensions of these solitons with more
frame in which they are at rest, we restrict our attention to susy (V = 2 for the kink, N = 4 for the monopole) or less
only time-independent solutions. susy (V = 1 for the vortex). In addition, discussions have
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been given about the quantum corrections to these solitonswaumber of components of spinors grows much faster in
without fermions and without susy. higher dimensions than that of bosons. However, in the low
All three models have recently led to surprising new in- dimensions we consider there are possibilities. For example,
sights in the quantization of solitons. In particular, a new the N = 1 (more preciselyV = (1, 1)) susy kink in 1+1 di-
anomaly was discovered in the quantum corrections to themensions remaind’ = 1 susy in 2+1 dimensions because
central charge of the susy algebras for these models. Thespinors have 2 components both in 2 and in 3 dimensions.
solitons have not only a mad4g but also a central chargée For the vortex we preserv& = 1 susy in 3+1 dimensi-
[3]. The quantum mass of a soliton is obtained by evaluating ons by starting with arlV. = 2 model in 2+1 dimensions
the vacuum expectation value of the Hamiltonian. The latter (2 x 2 = 1 x 4). Finally, for the monopole we get a minimal
depends on the soliton background because one decompasusy model in 5+1 dimensions (with complex unconstrained
ses quantum fields into a background field and a quantum 4-component chiral spinors) by starting with &h= 2 mo-
field. The quantum fluctuations appear quadratically (and of del in 3+1 dimensions with two real 4-component spinors
course also at higher orders) in the action, and thus the quanfor, equivalently, two complex 2-component spinors).
tum correction to the mass is to first orderithe sum over If n < no, the models remain automatically susy be-

the zero point energies of all the fluctuations. The quan- cayse one does not change the number of bosonic and fer
tum central charge arises as follows. The susy generatorsyjonic field components (one only reinterprets some com-
are the Noether charges for rigid susy, and as any Noetheponents of vector fields asscalars as we have discussed).
charge they are the space integrals over the time componentgg much for how we deal with susy in the two versions of
of the Noether currents. They are expressed in terms of thegimensional regularization. We wish to preserve (ordinary,
Heisenberg fieldg. Using equal-time canonical (anti) com- - see pelow) susy, and the best way to preserve it is to preserve
mutation relations, one finds then for example for the kink j; manifestly, by using models which remain susy even after

at the full quantum level before regularization regularization.
{QF, 7% ()} = H(z) £ C(2) How can one understand that an anomalyirs pre-
L s sent? Anomalies form multiplets in susy, and these anomaly
JT = vs + (00 £ V)Y multiplets contain the trace anomaly and the conformal susy
Qs = [ ju(x)d anomaly~ - j. Here a small explanation is needed. Su-
£ [xlwar persymmetry is the same as translational symmetry into the
((z) = 8,0(2)U () = 0, W () (1) fermionic directions in superspace, and like ordinary trans-
lational symmetry, there is no anomaly in ordinary susy:
where U is a potential quadratic inp and W(¢) = 0"j,(susy)=0 at the quantum level. However, in massless
JU(p)do. theories one also has conformal susy (the fermionic counter-

Classically,M = Z, the well-known BPS bound, but partofscale invariance and conformal boost invariance), and
quantum mechanically both/ and Z get quantum correc-  the conformal susy current jg,(conf) = (z7,)j.(susy).
tions. At first sight (or thought) it is surprising thatgets  Clearly,9"j,(conf) = +*j,(susy) if ordinary susy is free
any quantum corrections at all, because classicaliy the from anomalies. In massless (conformal) theories the ordi-
space integral of a total space-derivative. So it gets its con-nary susy current satisfies at the classical level the relation
tributions from far away from the soliton, and if one can ne- 7" j.(susy) = 0. For example, in the WZ model in 1+1 di-
glect the presence of the soliton, how can one still get non-mensions;, (susy) = (J¢)v,1, and sincey*~,7y, = 0in
vanishing corrections? The answer (one answer) is that thel+1 dimensions, one has;j(susy) = 0. In 3+1 dimensions
central charge is a composite operator, and applying pointthe WZ model yieldsj,, (susy) = F,ov7v,¢, and since
splitting as a regularization scheme, the total derivative cea-7"v”?v, = 0 in 3+1 dimensions, also hese j(susy) = 0.
ses to be a total derivative, and one gets then quantum corAt the quantum level, there can be anomalieg)ifsusy)
rections also from the region where the soliton is. (the currentj,(conf) is no longer conserved, equivalently

We shall not use point splitting as regularization scheme, 7" j,.(susy) is no longer vanishing).
but dimensional regularization. There are actually two ver-  What is the technical reason that there is an anomaly,
sions of dimensional regularization how does it appear when one calculates? Let us recall that
an anomaly usually appears as 0/0: 0 because classically
there is no violation, and 1/0 because a quantum field has
infinitely many degrees of freedom (there are no anomalies
in quantum mechanics, see however [70]). Consider now

(1) ordinary ('t Hooft-Veltman-Bollini-Giambiagi) di-
mensional regularization [4, 5] wherebecomes lar-
ger thamng = 2, 3 or 4 for our models

(2) dimensional reduction [6], where one letget smal- first ordinary dimensional regularization. It is known that
ler thann,. Vector fieldsA, decompose then into translations in higher dimensions become central charges in
n-dimensional vector fie|dsl\LNith < 4 < nand sca- lower dimensions. For example, the susy kink model has 3

lar fields (callede-scalars) wheres < u < ng (and translations in 3 dimens.ions, which become 2 Franslations
and one central charge if one performs dimensional reduc-
tion (setting the coordinate® to zero). This seems to doom

If n > ng one needs a model which remains susy in the prospects of anomalies ifi because we already menti-
higher dimensions if we want to preserve susy at the regu-oned that there are no anomalies in the translational symme-
larized level. This is in general not possible because thetry. However, the presence of the soliton in the background

ng —n = e).
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polarizesthe fermionic excitations in the extra dimensions One would like to know whether there is an explanation
[7, 8]. This phenomenon has the same origin as the quan-or this equality. This involves fermionic zero modes, let us
tum Hall effect, and as a result the left-moving and the right- first define them.

moving modes of the fermions have different normalizations

on the domain wall created by the soliton. One word about Definition 3: A zero mode is a time-
domain walls [5, 9, 10, 11, 12]: if one moves from 1+1 to independent solution of the linearized field
2+1 dimensions, with coordinatés, ,t) andy is the new equation for the quantum fluctuations which is
coordinate, then the solitop(z) remains a solution with normalizable and nonsingular.

finite energy per unit of length in the extra dimension. In ) i i

1+1 dimensions the energy density of the soliton solution BoSonic zero modes can be obtained by making a symmetry
() is located around: = 0, so in 2+1 dimensions it is transformatlop on the _sollton, for example shﬁtmg or rota-
located around the “wall” (line in this case)= 0 but any ting the classical sol_utlon. Many,_but not aII,_ fermionic zero
y. One must then solve the Dirac equation in 2+1 dimen- Modes can be obtained by making an ordinary susy trans-
sions, and in this way one discovers the polarization. (In formathn of the soliton. (For sm.gle—lnstantons there exist
string theory, Horava and Witten [13], and others have usedfermionic zero modes fafU(n) with » > 3 which do not

this effect for other purpos&s A detailed calculation re- ~ €ome from susy). o _

veals that for the kink and the monopole there is indeed an ~ Arguments have been given in the literature that the
anomaly coming from the polarization of domain wall fer- €quality of M andZ for the susy vortex at the one-loop le-
mions. Two remarks should quickly be made: (1) in odd Velis amystery because one can count how many fermionic
dimensions there are no anomalies, so liowets a contri- ~ Z€ro modes there are in this model and it has been claimed
bution for the vortex should at this point not yet be clear to that there are two, rather than (as expected) one. With two
the uninformed reader, and furthermore, (2) there are alsoférmionic zero modes the equality = Z could indeed not
massless fermions on the domain wall; they are chiral (theyPe explained; it could be due to some as yet not known sym-
only move in one direction) but these fermions do not con- Metry, or it might just be an accident. However, we have
tribute to the anomaly because in dimensional regularizationShown that the second fermionic zero mode is not normali-
massless tadpole integrals vanish. Only the polarization ofzable at the origin. Hence there is only one fermionic zero
the massive domain wall fermions yields an anomaly. mode, and this means that the equality = Z which we

. . obtained by detailed calculations using quantum field the-
In the calculation of quantum corrections 3¢ and Z ) A >
ory for extended objects, is, in fact, a direct consequence of
one should let: tend tong, soe = ng — n tends to zero.

However the sum of all polarizations is divergent. As the re- ordinary super;ymmetry at Fhe quz.antumilevel. N
ader may be now anticipate one indeed finds a total correc- . So far we discussed 0rd|r_1ary dlmensmna_l regul_arlzatlon
tion of the forme/e which is finite. Many other regulariza- with n > no. We already discussed that dimensional re-

tion schemes have been analyzed, and also in these schemé\ejﬁjcggrr:]V\gtr:];1 tséoﬁzar?rr]?osr?sw;r? dst:félbnggr:;?sbﬁ;eﬁ (fgn d
one finds an anomaly i#@ and the value of this anomaly is P

the same in all cases. one should treat some vector bosong a_salars_as we dis-
. . ) . cussed). The identity*v,v,, = 0 remains valid because
~The picture becomes now clear in even dimensions the index; keeps running frond to 2, instead of from 0
(kink, monopole). There are nonvanishing quantum correc-tq 1, (If this index would have been due to a derivative
tlon_s to the mass, p_artly du_e to nonanomaloug correctionsgych asj, = O, theny should only run up tas, but
(vyh|ch however vanlsh fo_r kink and monopole in the most j, = @y, and squ must run up toy,). This raised a pro-
widely used renormalization scheme) and partly due to the yjem many decades ago: it seemed that there was no confor-
trace anomaly. There are also nonvanishing corrections' tOma] susy anomaly in dimensional reduction. Some people
the central charge, due to the central charge anomaly (whichyroposed wild solutions: breakdown of cyclicity of the trace
sits in the same multiplet as the conformal susy anomaly andgperation or other drastic measures. Actually, the solution is
the trace anomaly). Both corrections are equal: the C|ass'cahonventional, although subtle: there aranescent counter
BPS bound also holds at the quantum level. terms [14] for the currents. These are counter terms such as
In odd dimensions, in particular for the vortex, there is Aj,, = %(ﬂ(p’ym/} where the index: only runs over values
another reason why there is a nonvanishing correctignto  (namely fromn to n). One cannot writey;, itself ase times
There cannot be an anomaly, as we already mentioned, but finite quantity, but inside loop graphs the effectygfis
now the soliton deforms the quantum fluctuations of the sca-to supply a factoe. ThusAj, yields finite contributions.
lar (Higgs) field such that the latter acquires an extra phase.If one requires that ordinary susy is preserved, one must sa-
This phase has a nontrivial space dependence (a dependentisfy 0/j,,(susy) = 0 in dimensional reduction, and then
on the angles which can not be removed continuously by one must renormalize the susy current by adding an evanes-
a gauge transformation which is everywhere regular). This cent counter ternmiThis counter term, and not the original
twist remains far away from the vortex and does give a non- loop graph, yields the anomaly In ordinary dimensional
vanishing contribution to the integral of the total derivative. regularization the situation is just the reverse: there the loop
The resultisM = Z also at the one loop level. graph yields the anomaly (as discussed in text books) and

IThey considered 2 branes éh= 11 supergravity with a chiral spinor on one brane and an antichiral spinor on the other (this combination cannot be
avoided because there are no chiral spinors in odd dimensions). Then they sent one brane to infinity, applied dimensional reduction, and found in this w:
chiral spinors in 4 dimensions.
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the counter terms do not contribute to the anomaly. One can‘derivative regularizatior® indeed led to a different result,
construct the whole anomaly multiplet, and one finds then namely that originally obtained by Schonfeld [18], which
that the evanescent counter tefyy,, in the conformal susy  however appeared to be in conflict with the BPS inequality
current yields a finite nonsingular contribution to the central for a central charge without quantum corrections.
charge anomaly. This finite term is the anomalyZinand Since this appeared to be a pure one-loop effect,
the value of this anomaly is the same as that obtained fromRef. [24] proposed the conjecture that it may be formu-
ordinary dimensional regularization. To avoid misunders- |ated in terms of a topological quantum anomaly. It was
tanding: we also directly computed this anomaly using di- then shown by Shifman et al. [27], using a susy-preserving
mensional reduction, but as the preceding discussion showshigher-derivative regularization method, that there is indeed
one can also obtain it by making susy transformations of thean anomalous contribution to the central charge balancing
anomalyy - j(susy). the quantum corrections to the mass so that BPS saturatior
We have written several papers on these subjects, andemains intact. In fact, it was later understood that multiplet
also published some reviews [15, 16]. For a gentle intro- shortening does in fact occur even in minimally susy 1+1
duction we recommend [15]. In the remaining sections we dimensional theories, giving rise to single-state supermulti-
focus on the kink, vortex, and monopole, respectively, using plets [28].
susy-preserving dimensional regularization methods. Both results, the nonvanishing mass correction and thus
the necessity of a nonvanishing correction to the central
charge, have been confirmed by a number of different
2 The (susy) kink. methods [29, 30, 25, 31, 32, 33, 26] validating also the fi-
nite mass formula in terms of only the discrete modes deri-
The calculation of quantum corrections to the mass of a su-ved in Refs. [34, 35] based on the method of [36]. However,
persymmetric (susy) kink and to its central charge has pro-Some authors claimed a nontrivial quantum correction to the
ved to be a surprisingly subtle problem, and it took protrac- central charge [29, 37] apparently without the need of the
ted struggles to fully understand it in the various methods @homalous term proposed in Ref. [27].
that had been employed. In [38], we have shown that a particularly simple and
Initially it was thought that supersymmetry would lead €legant regularization scheme that yields the correct quan-
to a complete cancellation of quantum corrections [17] and tum mass of the susy kink is dimensional regularization, if
thereby guarantee Bogomolnyi-Prasad-Sommerfield (BPS)the kink is embedded in higher dimensions as a domain wall
saturation at the quantum level. Then, by considering a kink- [5]- Such a scheme was not considered before for the susy
antikink system in a finite box and regularizing the ultravi- kink because both susy and the existence of finite-energy
olet divergences by a cutoff in the number of the discreti- solutions seemed to tie one to one spatial dimension.
zed modes, Schonfeld [18] found that there is a nonzero, In [39] we then showed the 2+1 dimensional domain
negative quantum correction at one-loop leval)/() = wall is BPS saturated through a nontrivial quantum correc-
—m/(27). Most of the subsequent literature [19] conside- tion to the momentum in the extra dimension. This non-
red instead a single kink directly, using (usually implicitly) trivial correction is made possible by the fact that the 2+1
an energy-momentum cutoff which gave again a null result. dimensional theory spontaneously breaks parity, which also
A direct calculation of the central charge [20] also gave a allows the appearance of domain wall fermions of only one
null result, apparently confirming a conjecture of Witten and chirality. By dimensionally reducing to 1+1 dimensions,
Olive [3] that BPS saturation in the minimally susy 1+1 di- this parity-violating contribution to the extra momentum
mensional case would hold although arguments on multipletturns out to provide an anomalous contribution to the cen-
shortening naively do not seem to apply. tral charge as postulated in Ref. [27], thereby giving a novel
In Ref. [21] two of the present authors noticed a sur- physical explanation of the latter. This is in line with the
prising dependence on the regularization method, even afwell-known fact that central charges of susy theories can be
ter the renormalization conditions have been fully fixed. In reinterpreted as momenta in higher dimensions.
particular it was found that the naive energy-momentum cu-  Hence, in the case of the susy kink, dimensional regula-
toff as used in the susy case spoils the integrability of the rization is seen to be compatible with susy invariance only
bosonic sine-Gordon model [22]. Using a mode regulari- at the expense of a spontaneous parity violation, which in
zation scheme and periodic boundary conditions in a finite turn allows nonvanishing quantum corrections to the extra
box instead led to a susy kink mass correctibi/ (1) = momentum in one higher spatial dimension. On the other
+m(1/4—1/2x) > 0 (obtained previously also in Ref. [23]) hand, the surface term that usually exclusively provides the
which together with the null result for the central charge ap- central charge does not receive quantum corrections in di-
peared to be consistent with the BPS bound, but implying mensional regularization, by the same reason that led to null
nonsaturation. Subsequently it was found by two of us to- results previously in other schemes [20, 21, 24]. The non-
gether with Nastase and Stephanov [24] that the traditionallytrivial anomalous quantum correction to the central charge
used periodic boundary conditions are questionable. Usingoperator is thus seen to be entirely the remnant of the spon-
instead topological boundary conditions which are invisible taneous parity violation in the higher-dimensional theory in
in the topological and in the trivial sector together with a which a susy kink can be embedded by preserving minimal

2In mode regularization it turns out that one has to average over sets of boundary conditions to cancel both localized boundary energy and deloc
momentum [25, 26].
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susy.

2.1 The model

The realp* model in 1+1 dimensions with spontaneously
brokenZ; symmetry @ — —¢) has topologically nontri-
vial finite-energy solutions called “kinks” which interpolate
between the two degenerate vacuum states+wv. It has a
minimally supersymmetric extension [40]

[ _% [(8,)2 + U(9)* + 970t + U (9)00] (2)

= ¢TC with CHy»

where ¢ is a Majorana spinory)

—(y")T'C. We shall use a Majorana representation of the

Dirac matrices with® = —ir?, v = 73, andC = 7% in
terms of the standard Pauli matrice’ so thaty = (l’f)
with realy ™ (z,t) andy ™ (z, t).

The¢* model is defined as the special case

U(p) \/5 (¢* =), ®)

where theZ; symmetry of the susy action also involves the
fermions according tgp — —¢, 1) — Y5 with v° = 4041,

A classical kink at rest at = 0 which interpolates between
the two vacuap = +vq is given by [1]

pxr = votanh (,uox/\/§> . 4)

At the quantum level we have to renormalize, and we
shall employ the simplest possible schémnich consists
of putting all renormalization constants to unity except for a

vo = ng/A
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profile given by (4) which have finite surface (string) tension
M/L = m?3/\. With a compact extra dimension one can of
course use these configurations to form “domain strings” of
finite total energy proportional to the lengthof the string
when wrapped around the extra dimension.

The 2+1 dimensional case is different also with res-
pect to the discrete symmetries of (2). In 2+1 dimensions,
~v% = 499142 = +1 corresponding to the two inequivalent
choices available foy? = +7! (in odd space-time dimen-
sions the Clifford algebra has two inequivalent irreducible
representations). Therefore, the sign of the fermion mass
(Yukawa) term can no longer be reversediy- >+ and
there is no longer th&, symmetryy — —p, 1 — 2.

What the 2+1 dimensional model does break spontane-
ously is insteadgparity, which corresponds to changing the
sign of one of the spatial coordinates. The Lagrangian is in-
variant under™ — —z™ for a given spatial index: = 1, 2
together withp — —¢ (which thus is a pseudoscalar) and
1 — ~™). Each of the trivial vacua breaks these invarian-
ces spontaneously, whereas a kink background incthe
direction with o (—2') = —px(x!) is symmetric with
respect tar!-reflections, but breaks? = y reflection in-
variance.

2.2 Susy algebra

The susy algebra for the 1+1 and the 2+1 dimensional ca-
ses can both be covered by starting from 2+1 dimensions,
the 1+1 dimensional case following from reduction by one
spatial dimension.

In 2+1 dimensions one obtains classically [41]

mass counterterm chosen such that tadpole diagrams cancel

completely in the trivial vacuum. At the one-loop level and
using dimensional regularization this gives

dkod®k —1
St = Aov? :A/
a v (2m)d+1 k2 + m? — e

/ dk 1
A = ,
(27r)d 2[k2+m2]1/2

wherem = U’(v) = v/2u is the mass of elementary bosons
and fermions and? = k2 — k2.

The susy invariance of the model under = € and
51 = (Pp — U)e (with p2 replaced byu? + 6u2) leads to
the on-shell conserved Noether current

i = —(Pe +U(p)V"

and two conserved charges® = [ dz j°F
The model (2) is equally supersymmetric in 2+1 dimen-
sions, where we us¢? = 7!. The same renormalization

®)

(6)

scheme can be used, only the renormalization constant (5)

has to be evaluated faf = 2 — ¢ in place ofd = 1 — ¢
spatial dimensions.

While classical kinks in 1+1 dimensions have finite
energy (rest mass)yl = m3/), in (noncompact) 2+1 di-
mensions there exist no longer solitons of finite-energy. Ins-

tead one can have (one-dimensional) domain walls with awall Z, /L~

{Q%,Qp} = 2i(»"
=2i(y"H + 7" (Pu + Z,) ++°

)25 Py, (M =0,1,2)
(Py = Z2))s, (7)

where we separated off two surface terfs in defining

P = /ddxﬁm, = $ O3 (07°00), (8)

Z :/dda:ém, 2,0 = U)o = OmW(2) (9)

with W () = [de U(p).

Havmg a kink profile in thec-direction, which satisfies
the Bogomolnyi equatiofl, o = —U(¢x ), one finds that
with our choice of Dirac matrices

Q= /61217[(¢ = 0,00 Hdwp £ U ()], (10)

{Q*,Q%} =2(H + (Z, - B)), (11)
and the charg&®™ leaves the topological (domain-wall) va-
cuumy = ¢k, ¢ = 0 invariant. This corresponds to classi-
cal BPS saturation, since with, = 0 and P, = 0 one has
{QT,Q7} =2(H + Z,) and, indeed, with a kink domain
=W(+v) — W(-v) = =M /L1

3See [38] for a detailed discussion of more general renormalization schemes in this context.
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At the quantum level, hermiticity af* implies

(s|Hls) = | (s|Pyls) | = (s|(Py = Zu)ls)].  (12) W= o +
This inequality is saturated when AN Gf dk —i(wt—ty) [ Vor Pr(T)
3 i€ .
(2m) = Varw L™ Vo=t isg(x)
Q" [s)=0 (13)
+b;£ (c.c.)}, (18)
so that BPS states correspond to massless geatés" = 0
with P, = M for a kink domain wall in thez-direction, ith
however with infinite momentum and energy unlessghe wi
direction is compact with finite length. gy,
Classically,.the susy algeb.rain 1+1 dimensions is obtai- 4, = / ———bos e~ H(t—y) (d’o), bg(g) = by(—0).
ned from (7) simply by droppind’, as well asZ, so that (2m) = 0
P, = P,. The termm?2Z, remains, however, with? being o _ (19)
the nontriviaky® of 1+1 dimensions. The susy algebra sim- Thus, the fermionic zero modef the susy kink turns into
plifies to massless modes located on the domain wall, which have

only one chirality, forming a Majorana-Weyl domain wall
Q% Q") =2(+2), {Q".Q }=2P (14  fermion[38, 7]
For the massive modes the Dirac equation relates the ei-

and one has the inequality genfunctions appearing in the upper and the lower compo-
nents of the spinors as follows:
(s|H|s) = | (s|Z]s) | (15)
1 1
for any quantum state BPS saturated states haye |s) = =—(9, Nop = — (0, ! 20
yq ave |s) Sk wk(a +U")ox m(a +U")ér, (20)

0or@~ |s) = 0, corresponding to kink and antikink, respec-

tively, and preserve half of the supersymmetry. ) ] .
so that the functiors;, is the SUSY-quantum mechanical

[42] partner state of;, and thus coincides with the eigen

2.3 Fluctuations modes of the sine-Gordon model (hence the notation) [43].
In a kink (or kink domain wall) background one spatial di- With (20), the|r'normallzat|pn IS the' same as that ofme.
rection is singled out and we choose this to be alen@he The canonical equal-time anti-commutation relations

direction orthogonal to the kink direction (parallel to the do- {* (&), ¥ (Z)} = §*°6(Z — &) are satisfied if
main wall) will be denoted by.

The quantum fields can then be expanded in the analy- {bo(0), bg(ﬂ’)}
tically known kink eigenfunctions [1] times plane waves in f
the extra dimensions. For the bosonic fluctuations we have {bk,6; by 0}
[0+ (U"? + UU")]n = 0 which is solved by

{bo(£),bo(—£)} = (£ = 1),
= Op ol — ), (22)

and again théy, ,» becomes a Dirac delta for the continuum
di-1y dk —i(wi—ty) states. The algebra (21) and the solution for the massless
n= / a1 (ak’f ¢ V() mode (18) show that the operatg(¢) creates right-moving
(27‘() 2 VAarw . . s
massless states on the wall whéis negative and annihi-
+af, ei(“t_éy)qﬁ(x)) .(16) lates them for positive momentuf Thus only massless
states with momentum in the positiyedirection can be cre-
The kink eigenfunctionsp,, are normalized according to ated. Changing the representation of the gamma matrices by
[ dz|¢|* = 1 for the discrete states and to Dirac distribu- 7> — —7?, which is inequivalent to the original one, rever-

tions for the continuum states according falx ¢} ¢ = ses the situation. Now only massless states with momenta i
275(k — k'). The mode energies ate= /w? + (2 where the positivey-direction exist. Thus depending on the repre-
wy, is the energy in the 1+1-dimensional case. sentation of the Clifford algebra one chirality of the domain
The canonical equal-time commutation relations wall fermions is singled out. This is a reflection of the spon-
(n(Z), n(&)] = i6(& — &) are fulfilled with taneous violation of parity when embedding the susy kink
as a domain wall in 2+1 dimensions.
lak.e, QL/W] = Sprr0(0— 1), (17) Notice that in (18) can be only 2 or 1, for whicli has

1 or 0 components, so for strictty= 1 £ = 0. In order to
where for the continuum statés - becomes a Dirac delta. have a susy-preserving dimensional regularization scheme
For the fermionic modes which satisfy the Dirac equa- by dimensional reduction, we shall start frain= 2 spatial

tion [@ + U’]y» = 0 one finds dimensions, and then makeontinuous and smaller than 2.

4By a slight abuse of notation we shall always label this by a subsgripit this should not be confused with the threshold miode 0 (which does not
appear explicitly anywhere below).

5The mode with¢ = 0 corresponds in 1+1 dimensions to the zero mode of the susy kink. It has to be counted as half a degree of freedom in
regularization [25]. For dimensional regularization such subtleties do not play a role because the zero mode only gives scaleless integrals and these v:
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2.4 Energy corrections

Using the mode expansions in the Hamiltonian expanded to
second order in quantum fluctuations, one finds that the bo-
sonic and fermionic contributions combine into

/ dx d?= 1y (H®)

Ld—l dd—le
T2 /dx/ (

Qﬂ_)dfl

dk w
21 2

(Ionl* = Is&[*). (22)

)
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usingU’(z = £o0) = +m this leads just to the contribution

[ dstzo. 0 = U I
- fdk 1,

which matches precisely the countertexnd .2 from requi-

ring vanishing tadpoles. Straightforward application of the
rules of dimensional regularization thus leads to a null result
for the net one-loop correction &) in the same way as
found in Refs. [20, 21, 24] in other schemes.

In these expressions, the massless modes (which correspond  On the other hand, by considering the less singular com-

to the zero mode of the 1+1 dimensional kink) can be drop-
ped in dimensional regularization as scaleless and thus va

bination (H + Z,) and showing that it vanishes exactly, it
was concluded in Ref. [29] tha¥,.) has to compensate any

nishing contributions, and the massive discrete modes cannontrivial result for(H), which in Ref. [29] was obtained

cel between bosons and fermidhsCarrying out thez-
integration over the continuous mode functions gives a dif-
ference of spectral densities, namely

2m
k2 +m?2’

= —0/(k) = (23)

/dm(\¢k(m)|2—|8k($)|2)

wheref(k) is the additional phase shift of the mode functi-
onss; compared tay.

Combining (22) and (23), and adding in the counterterm
contribution from (5) leads to a simple integral

_1/dkdd—1e£2

4 (2m)d
2 I(354)

d (4m)

2

AM®
Ld—1

1

1 [dk di=1y
4

@2n) w8 (k) + mév?

—0'()

m?.

(24)

This reproduces the correct known result for the susy kink
mass correctiom\M () = —m/(2x) (for d = 1) and the
surface (string) tension of the 2+1 dimensional susy kink
domain wallAM ™ /I = —m?/(8) (for d = 2) [38].

2.5 Anomalous contributions to the central
charge

In a kink (domain wall) background with only nontrivial
x dependence, the central charge densityreceives non-
trivial contributions. ExpandingZ, around the kink back-
ground gives

2

1) 1
Udrpx — Ozox + 0. (Un) + §aw(U/772)

o
V2

Z,
+0(n?). (25)

Again only the part quadratic in the fluctuations contribu-
tes to the integrated quantity at one-loop ofdgdowever,

6The zero mode contributions in fact do not cancel by themselves betw
fact crucial in energy cutoff regularization (see Ref. [38]).
7Again, this does not hold for the central charge density locally [27, 31].

by subtracting successive Born approximations for scatte-
ring phase shifts. In fact, Ref. [29] explicitly demonstrates
how to rewrite(Z,,) into —(H), apparently without the need
for the anomalous terms in the quantum central charge ope-
rator derived in Ref. [27].

The resolution of this discrepancy is that Ref. [29] did
not regularizg Z,.) and the manipulations needed to rewrite
it as—(H) (which eventually is regularized and renormali-
zed) are ill-defined. Using dimensional regularization one
in fact obtains a nonzero result f0H + Z,.), apparently in
violation of susy.

However, dimensional regularization by embedding the
kink as a domain wall in (up to) one higher dimension,
which preserves susy, instead leads to

<H 7, — Py> —0, 27)
i.e. the saturation of (12), as we shall now verify.
The bosonic contribution tQP,) involves
1, ) di-1¢ dk ¢ 9
§<77<9y77+6y7777> = —/ng §|¢k(1‘)| :
(28)

The ¢-integral factorizes and gives zero both because it is
a scale-less integral and because the integrand is odd in
Only the fermions turn out to give interesting contributions:

(P)) = sWlo,w)

1 di—1y dk ¢

= 5/ @Hi o o L@+ 010l

+(w— 5)\sk|2]

1 di=t¢

= §/W€9(—f) |¢ol? +

1 [ di1y "dk 0

+§/WZ §(§(|¢k|2+|5k|2)

2
b (ol =) (29)

een bosons and fermions, because the latter are chiral. This noncancellation is
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From the last sum-integral we have separated off the contri-
bution of the zero mode of the kink, which turns into chiral

. div
domain wall fermions forl > 1. The contribution of the (Oljplp)
latter no longer vanishes by symmetry, but thiategral is . 1 d"k K, #u(p)
still scale-less and therefore put to zero in dimensional re- =1iU"(v) ; du 2m) &2 + p2z(l —a) + m22

gularization. The first sum-integral on the right-hand side is
again zero by both symmetry and scalelessness, but the final
term is not. The/-integration no longer factorizes because Ca LA, ' .
w = VEZ + 2 + mZ. Integrating over: and using (23) one  YSINGJ; = 9, — 0}, we find that under the integral
in fact obtains exactly the same expression as in the one-loop 9. . 9
result for the energy, Eq. (24). fvk = —K3(6), — E@f)w = ﬁn%ﬂ, - 5’352%

So for alld < 2 we have BPS saturationNH) =
(Z, — B,)|, which in the limitd — 1, the susy kink, is SO that .
made possible by a nonvanishi(@y). The anomaly in the _ n

. ) TP . Yau(p). (32)

central charge is seen to arise from a parity-violating contri- 2T €
bution ind = 1 4 e dimensions which is the price to be paid Hence, the regularized one-loop contribution to the susy cur-
for preserving supersymmetry when going up in dimensions rent contains the evanescent operator
to embed the susy kink as a domain wall.

It is perhaps worth emphasizing that the above results div U (p) 5;)
do not depend on the details of the spectral densities asso- Ju o ?VW-

ciated with the mode functions;, ands;. In the integra- L . . i
ted quantitieg H) and(P,) only the difference of the spec- This is by itself a conserved quantity, because all fields de-
‘ a-Pend only on then-dimensional coordinates, but it has a

tral densities as given by (23) is responsible for the nonv Y : e . .
nishing contribution. The functiofi(k) therein is entirely ~ Nonvanishing contraction with”. The latter gives rise to

fixed by the form of the Dirac equation in the asymptotic an anomalous contribution to the renormalized conformal-
regionsr — oo far away from the kink [21]. "

(31)

SO

Oty = L)

(33)

susy currentt;; " wherej ™ = j, — 55,

-ren -div U”
8u(¢]ﬂ ')anomA = _’YH.]S = _ﬁw (34)

2.6 Dimensional reduction and evanescent (There are also nonvanishing nonanomalous contributions to
counterterms 0" (#j,,) because our model is not conformal-susy invariant
at the classical level [44].)

We now describe how the central charge anomaly can be re-  ©Ordinary susy on the other hand is unbroken; there is no

- . . . . . I I yfen. 1 1 )
covered from Siegel’s version of dimensional regularization _anomaly in the divergence gf™. A susy variation ofj,

[6] wheren is smaller than the dimension of spacetime and INVOIVes the energy-momentum tensor and the topological

where one keeps the number of field components fixed, butcentral-charge curreqy, according to

lowers the number of coordinates and momenta from 2 to
n < 2. At the one-loop level one encounters 2-dimensional
4;, coming from Dirgc matrices, anddime.nsic.)natﬁ'” from where classically,, = ¢, Ud" .
loop momenta. An important concept which is going to play At the quantum level, the counter-terjﬁ = _jﬁiV- in-
a role are the evanescent counterterms [14] involving the duces an additional contribution to the central charge current
factor 26,4, whereo!, = 67 — 6% has onlye = 2 — n .
nonvanishing components. anom 19}, ,
.. . . Cﬂ = 7*51/;)8‘)[] (36)
In the trivial vacuum, expanding the supercurrgnt=

47 €
~(#¢ + U(p))yu¥ into quantum fields yields which despite appearances ifirite quantity: using that to-

tal antisymmetrization of the three lower indices has to va-
nish in two dimensions gives

0Ju = =21, ye — 2(/17567 (35)

. / 1 " 2 1 2 2 N
In = — (@77 +U'(v)n+ §U (v)n ) ’vm+\/7j(5u Y- SZ€VF = cepp + SZGVH (37)
(30) .
Only matrix elements with one external fermion are diver- and together with the fact thé’ only depends om-
gent. The term involving/” (v)5? in (30) gives rise to a dimensional coordinates this finally yields
divergent scalar tadpole that is cancelled completely by the 1
countertermyu? (which itself is due to am and ay loop). ¢rem = Ze#papU’ (38)
The only other divergent diagram is due to the term invol- T
ving @n in (30) and has the form#@-selfenergy. Its singular  in agreement with the anomaly in the central charge as ob-
part reads tained previously.
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3 The (susy) vortex. tential,

. 2 « ' 405 eV 4
We next considered [45] the Abrikosov-Nielsen-Olesen [46, E*/d ow Wa*/d 02e (I)Jr”"/d oV. (39)

47, 48, 49] vortex solution of the abelian Higgs model in 2+1
dimensions which has a supersymmetric extension [50, 51]
(see also [52, 53]) such that classically the Bogomolnyi

In terms of 2-component spinors in 3+1 dimensions, the ac-
tion read8

bpund [54]is §atu_rated. We e_mployed ourv_arlant pf dimen- , _ _}Fiy + xdiazﬁ%xﬁ + }Dz +(k — e|¢|?)D
sional regularization to th&/ = 2 vortex by dimensionally 4

reducing theV = 1 abelian Higgs model i8 + 1 dimensi- —|Duo|? + PYict s Db’ + | FI?

ons. We confirmed the results of [50, 55, 56] that in a par- . o -

ticular gauge (background-covariant Feynman-'t Hooft) the +V2e [0 xat” + dxa?] | (40)

sums over zero-point energies of fluctuations in the vortex where D, = 9, — ieA, when acting onp and <, and
background cancel completely, but contrary to [50, 55] we F,, = 9,4, — 8, A4,. Elimination of the auxiliary field
found a nonvanishing quantum correction to the vortex massp yields the scalar potentia = %D2 = 562(|¢\2 —v?)?
coming from a finite renormalization of the expectation va- with 42 = f /e.

lue of the Higgs field in this gauge [57, 56]. In contrastto  |n 3+1 dimensions, this model has a chiral anomaly, and
[50], where a null result for the quantum corrections to the i, order to cancel the chiral U(1) anomaly, additional scalar
central charge was stated, we show that the central charge remytiplets would be needed such that the sum over charges
ceives also a net nonvanishing quantum correction, name'WanishesE. e; = 0.

from a nontrivial phase in the fluctuations of the Higgs field In 2+1 dimensions, dimensional reduction gives\an-

in the vortex background, which contributes to the central 9 model involving, in the notation of [55], a real scalar
charge even though the latter is a surface term that can bey — 4, and two complex (Dirac) spinorg = (¥*)

evaluated far away from the vortex. The correction to the , — (ya),
central charge exactly matches the correction to the mass of  completing squares in the bosonic part of the classical
the vortex. Hamiltonian density one finds the Bogomolnyi equations

In Ref. [55], it was claimed that the usual multiplet shor- and the central charge
tening arguments in favor of BPS saturation would not be

applicable to theV = 2 vortex since in the vortex back- H = iF,fl + |Dro|* + %62(|¢|2 —v?)?

ground there would be two rather than one fermionic zero 1 1 )
modes [58], leading to two short multiplets which have the = Z|Dp¢ +ieuDid|® + = (Fiz + e(|o]* — v?))
same number of states as one long multiplét/e showed 2 e 2

however that the extra zero mode postulated in [55] has to +—v2 e Fy — 10k (ep10* D1 ) (42)

be discarded because its gaugino component is singular, and 2 o _ _ )

that only after doing so there is agreement with the resultsWherek, [ are the spatial indices in 2+1 dimensions. The
from index theorems [59, 58, 60]. For this reason, stan- classical central charge reads

dard multiplet shortening arguments do apply, explaining

the BPS saturation at the quantum level that we observe in Z = /d2x ey, (ev? Ay — i¢" Dyg) , (42)
our explicit one-loop calculations.

The N = 2 susy vortex in 2+1 dimensions is the so-
litonic (finite-energy) solution of the abelian Higgs model
which can be obtained by dimensional reduction from a
3+1-dimensionalNV = 1 model. We shall use the latter
for the purpose of dimensional regularization of the 2+1-
dimensional model by susy-preserving dimensional reduc-
tion from 3+1 dimensions (where the vortex has infinite
mass but finite energy-density).

where asymptoticallyD;¢ tends to zero exponentially fast.
Classically, BPS saturatiok = |Z| = 27wv?n holds
when the BPS equation®; + iDs)¢ = Di¢ = 0 and

Fis £ e(|¢|? — v?) = 0 are satisfied, where the upper and
lower sign corresponds to vortex and antivortex, respecti-
vely. The vortex solution with winding number is given

by (AY = AY +iAY)

oy =), Ay = —ie? M1 (g

where f'(r) = 2 f(r) andd/(r) = re?(f(r)* — v?) with
3.1 The model boundary conditions [49]

The superspace action for the vortex in terms of 3+1- a(r — 00) = 0, f(r — 00) = v,
dimensional superfields contains Ah = 1 abelian vector B 9 n nto

multiplet and an\' — 1 scalar multiplet, coupled as usual, ~ @(" = 0) =n+0@%), f(r—0) ocr” +O"™).
together with a Fayet-lliopoulos term but without superpo- (44)

8Incidentally, Refs. [55, 58] considered supersymmetric Maxwell-Chern-Simons theory, which contains the supersymmetric abelian Higgs model as
special case.

9O_ur conventions a_n_a“" = (=1,+1,+1,+1), x* = e*Fyg andx® = sdﬁxﬁ- with € = e, = B = —e45 ande'? = +1. In particular we
haveys = (o )* buty® = —(1p*)*. Furthermoreg# = (—1, &) with the usual representation for the Pauli matriges
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3.2 Fluctuation equations

For the calculation of quantum corrections to a vortex solu-

tion we decompose into a classical background paft,
and a quantum pany. Similarly, A, is decomposed as
AY + ay, where onlyAY with 1 = 1,2 is nonvanishing.
We use a backgroun®,; [61] gauge fixing term which is
guadratic in the quantum gauge fields,

(3 a* —ief(ovn" — ¢ym))®.  (45)

Eg.ﬁx =

2%
The corresponding Faddeev-Popov Lagrangian reads

Lghost =b (83 - 62§ {2 |¢V|2 + ¢)V77* + ¢tﬂl}) c. (46)

The fluctuation equations in 2+1 dimensions have been

given in [50, 55] for the choicé = 1 (Feynman-‘t Hooft
gauge) which leads to important simplifications. We shall

mostly use this gauge choice when considering fluctuations

in the solitonic background, but will carry out renormaliza-
tion in the trivial vacuum for generdl to exhibit some of
the intermediate gauge dependences.

Because we are going to consider dimensional regulari-

zation by dimensional reduction from the 3+1 dimensional

model, we shall need the form of the fluctuation equations

with derivatives in the:? direction included. (This one tri-
vial extra dimension will eventually be turned into— 0
dimensions.)

In the ‘t Hooft-Feynman gauge, the part of the bosonic
action quadratic in the quantum fields reads

50 )? — v

—|Dyn* = €*(3lov[* — o) [nl®
—2iea” [n* D)ﬂ’v - U(D;Y¢V)*} :

£?

bos

(47)

In the trivial vacuum, which corresponds ¢8s — v and
AY — 0, the last term vanishes, but in the solitonic vacuum

Anton Rebharet al.

with
I— iDY V2epy
fegi)v 10_ ’
+_ ZD_ *\/§€¢>v
b= ( Vaedy,  i0s ) G0

Iteration shows that/ satisfies the same second order
equations as the bosonic fluctuatiadis

LYLU = (02 - 9*)U, L'LB= 0} B (52)
LL'V = (92 — 9?)V, (53)

with L L given by (48), wherea¥ is governed by a diago-
nal equation with

LLT:<_(DX)2+62|¢V|2+€2U2 0
0
(54)

—0; +2¢%|v|?
(In deriving these fluctuation equations we used the BPS
equations throughout.)

(05 —

3.3 Renormalized mass

At the classical level, the energy and central charge of vorti-
ces are multiples dirv? with v? = x/e. Renormalization
of tadpoles, even when only by finite amounts, will therefore
contribute directly to the quantum mass and central charge
of the N = 2 vortex, a fact that has been overlooked in
the original literature [50, 55] on quantum corrections to the
N = 2 vortex!?

Adopting a “minimal” renormalization scheme where
the scalar wave function renormalization constépt= 1,
the renormalization o6 is fixed by the requirement of va-
nishing tadpoles in the trivial sector of the 2+1 dimensio-
nal model. The calculation can be conveniently performed
by using dimensional regularization of the 3+1 dimensional
N = 1 model. For the calculation of the tadpoles we decom-
posep = v +n = v+ (0 +ip)/V/2, whereo is the Higgs
field and p the would-be Goldstone boson. The gauge fi-
xing term (45) avoids mixed,,-p propagators, but there are

it couples the linearized field equations for the fluctuations mixedy-1 propagators, which can be diagonalized by intro-

B = (1, a4 /v/2) with a,. = a; + iay to each other accor-
dingto ¢ =1,2)

0?)B
—~DYV)? + e2(3lpv|* —v?) iv2e(D_oy) )
—iv2e(D_¢v)* —0p + 2€%| v |?
(48)

(05 —

i

The quarte{as, ap, b, ¢) with b, ¢ the Faddeev-Popov ghost
fields has diagonal field equations at the linearized level

Q=

For the fermionic fluctuations, which we group ds=
2
), Vv (;fz ) the linearized field equations read

LU =i(9; +05)V, L'V =i(0; —

(8;21, - 262|¢V|2)Q = 07 (a37 ap, b7 C). (49)

wl
(ii

03)U, (50)

ducing new spinors = (¢ +ix)/v2 andd = (1 —ix)/V2
with mass termsn (s, s* —dod®) +h.c., wherem = \/2ew.
The part of the interaction Lagrangian which is relevant
for o tadpoles to one-loop order is given by
+p')o
(55)

. o em
‘Cglitadpoles = e(Xa?®" +Xa¥) 0 — 7(02
IQL +&be—o6v?)o

whereb andc are the Faddeev-Popov fields.
The one—loop contributions to thetadpole thus read

—em(a

0123

? ) &2
o g TE

—em { 2trlaI(m

+[3I(m) + E1(£7m)] —

10The nontrivial renormalization of /e has however been included in [57, 56].
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where
B>k —i 5
I(m) = / @) K2+ m? = 27;3
mite T(-3-%)  m — i [ dO{($Y +nT) (DY —ieag)(dpv + 1)) lr—oo
(4m)lte/2 1“(2_%)2 =~y 1000 (56) 0

= 277'”{7)8 - <77T77>‘Tﬂoo}

Requiring that the sum of tadpole diagrams (56) va- 2m
nishes fixegv?, _i/ do{(n'dem)
0
! 1 14 5% —iedy; (agn) — iedy <a917T>}\r_>oo
0" = 2 (I(m) +1(¢ m)) ‘D=3 o 7 m. (57) = Z,+ 27 (63)

Because in dimensional regularization there are no poles in
odd dimensions at the one-loop level, the resultdot is where we have usef))(r — oc)) — 0 (which determines
finite, but it is nonvanishing. Sv?), fo%d9<a9> =0, and(n'nag) = O(h?).

As it turns out, this is the only contribution to the one- The first contribution,Z,, can be easily evaluated for
loop mass correction of the vortex. In the= 1 gauge the  arbitrary gauge parametgryielding
zero-point energies of the quartets, ao, b, ¢) cancels, and

one is left with , 1
) . Za = 2y — 5((00) +(pp))lr—oc}
o Whbos — & Wferm = wu — wv, (58) 1 1
22 g2 202 = 2mn{v] — SlI(m) + I(¢¥m)]}
Using dimensional regularization these sums can be — 2mn(of — 60?) = 2mne’ (64)

made well defined by replacing all eig/]en frequencigsan
2+1 dimensions b = (w2 + £%)1/2 where/ are the _ .
extra momenta. Uyglknlg ind(exkt;_eor)ems, it has been shown” this was all, the guantum corrgchonsﬂ)wo.uld cancel,
that the spectral densities for andV are equal up to zero lustasinthe naive calculation &fin the susy kink [20, 21].
modes [50, 55], and zero modes (massless modes upon em- The second contribution in (63), however, does not va-
bedding) do not contribute in dimensional regularization. Nish when taking the limit — oo. This contribution is
Hence,S wy — SSwy = 0, as we have also verified more simplest in th& = 1 gauge, vv_here the qndag fluctuat|0ns_ _
directly [16], and the only nonvanishing quantum correction aré governed by the fluctuation equations (48). In t.he limit
of the vortex mass is from renormalization. In our “mini- © — ©© One has¢y| — v andD_¢yv — 0 exponentially.
mal” renormalization scheme we thus have This eliminates the contributions frotyn). However,DZ,
m which governs the) fluctuations, contains long-range con-
E =27|n|(v? + 6v2|¢=1) = 27|n|(v? — ). (59) tributions from the vector potential. Making a separation of
Am variables inr andd one finds that asymptotically

3.4 Central charge v oo , 1 ,
. . : : [Dgnl” = 0" + —1(06 — in)n] (65)
By starting from the susy algebra in 3+1 dimensions one can T

derive the central charge in 2+1 dimensions as the compo- _ _
nentTys of so that then fluctuations have an extra phase factét’

) compared to those in the trivial vacuum. We thus have, in
THY — ,iTr oHAE D, TVY 60)  the&=1gauge,

27
— do T
i [ ao{(aton)
—iedy; (agn) — iedy <a9nT>}|rﬁoo

2
= fi/o dé <77T8977>£:1 = 2mn <7]T77>£:177._)OO

(66)

whereJY is the susy Noether current. 7

The antisymmetric part of ¥ gives the standard ex- b
pression for the central charge density, while the symmetric
part is a genuine momentum in the extra dimension:

(Z) = /d2x<T03> - <Z+153>. (61)

27 dv>

(A similar decomposition is valid for the kink [39].) £=1

Z corresponds to the classical expression for the central__ =~ | )
charge. Being a surface term, its quantum corrections can! NiS i exactly the result for the one-loop correction to the
be evaluated at infinity: mass of the vortex in eq. (59), implying saturation of the

BPS bound provided that there are now no anomalous con-
- ) - 2 tributions to the central charge operator as there are in the
(Z) = /d z0rer () :/0 d0{Co)lr—oo  (62) case in theV = 1 susy kink [39].
In dimensional regularization by dimensional reduction

with ¢ = evd A; — i¢t D¢ andv? = v2 + 602 from a higher-dimensional model such anomalous contribu-
Expanding in quantum fields = ¢v + 7, A = AV +a tions to the central charge operator come from a finite re-
and using that the classical fields — ve™™?, AY — nfe, mainder of the extra momentum operator [39]. The latter is

Dy ¢y — 0 asr — oo, we obtain to one-loop order given by [55]
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7, = <153> - /d% (FoiFs; + (Dod) Dagp + (Ds¢)T Do — ixG0dsx — ithGo Daib) . (67)

Inserting mode expansions for the quantum fields one immediately finds that the bosonic contributions vanish becau
symmetry in the extra trivial dimension. However, this is not the case for the fermionic fields, which have a mode expan:
of the form

Vw—LCuq

U de 1 N =
= R " i(wt—Lz) 2 t
<V> B / (27T)E/2?‘[;C 2w {bk’ze Vol + dk,e X (C'C')}a (68)
x/wT-sz

where we have not written out explicitly the zero-modes (for dimensionalV = 1 theory [66]
which w? = ¢2). The fermionic contribution tdZ, reads,

. 1 <
schematically, L= _ZFE‘B — ATAD A, (70)
7~ (B where the indices4, B take the value9$),1,2,3,5,6 and
¢ < 3> - which is invariant under

&0 [ e i 1
f (27.‘-)52/ %/d%r [|u1|2 + ‘UQ‘Q - ‘rUl|2 - ‘U2|2] (514% = )\GFBT] — T_]FBAQ, O\ = §FgCFBFC77, (71)
k

(69) The complex spinor) is in the adjoint representation
of the gauge group which we assume to be SU(2) in

wherew = v/wy, + £2, so that the/ integral does give anon-  the following and (Da\)* = (04X + gAa X A)*
vanishing result. However, theintegration over the mode = 9aA® + ge?*© A% \¢. Furthermore\ andn satisfy the

functionsu, »(k; z) and vy o(k; z) produces their spectral ~ Weyl condition:

densities, which cancel up to zero-mode contributions as we . : .

have seen aboVk and zero-mode contributions only pro- (I=T7)A=0 with T7=To[hITs50.  (72)
duce scaleless integrals which vanish in dimensional regula- ~ To carry out the dimensional reduction we wrile; =
rization. HenceZ, = 0 and|Z| = |Z, + Zy| = E,sothat ~ (A,,P,S) and choose the following representation of
the BPS bound is saturated at the (one-loop) quantum level.gamma matrices

F'u,:p)/lu‘®0—1 B M:O,l,Q,S,

F5:’}/5®O'1 , F6:]1®02. (73)
4 The (susy) monopole. _ _ N
In this representation the Weyl condition (72) becomhes

(), with a complex four-component spingr

We now consider th&V = 2 monopole in 3+1 dimensions, The (3+1)-dimensional Lagrangian then reads

which has been used by many authors in studies of duality.
The monopole model has more unbroken susy generators ) ) ) )
than the susy kink or the vortex, so one runs the risk (or L=—{-F2 4 ~(D,S)2+=(D,P)?+=¢2(S x P)?
the blessing) of vanishing quantum corrections. This mo- _{4 e 2( _“ ) 2( “_ ) 29 ( '}
del has been studied before in Refs. [62, 63, 64] and while —{ vy Db +igp(S x ) + gy (P x )} (74)
the initial result of vanishing corrections of Ref. [62] tur- . . , B
ned out to be an oversimplification, Refs. [63, 64] neverthe- Aa V_VG gg‘?gstﬁéhtf. S.g:nsrggttg'b{ﬁzkéngSHggﬁg'e;ﬂ:f?e of
less arrived at the conclusion of vanishing quantum correcti- h?a f_orir]n B(fl)rA - 3’)' [67] : P

ons, at least in the simplest renormalization schemes. UsingI 0=

susy-preserving dimensional regularization by dimensional u I

reduction, we have instead recently shown [65] that there are AP = eai g?(l — K(mr)), (75)
nonvanishing but equal quantum corrections to both mass i

and central charge of th%& = 2 monopole. Thus BPS S = §¢ sz(mr), (76)
saturation is preserved as required by multiplet shortening r

arguments [3], but in a nontrivial manner. with H = mrcoth(mr) — 1 and K = mzr/sinh(mr),

The N = 2 super-Yang-Mills theory in 3+1 dimensions wherem = gv is the mass of the particles that are char-
can be obtained by dimensional reduction from the (5+1)- ged under the unbroken U(1). The BPS equatidh +

11 An explicit calculation which confirms these cancellations can be found in [16].
12We use the metric with signatufe-, 4, +, 4+, +, +) andX® = (A*)TiT0, hencey® = (y*)Tir0. One can rewrite this model in terms of two
symplectic Majorana spinors in order to exhibit tResymmetry group U(2).
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€k DpS® = 0 can be written as a self-duality equation (1+1) dimensions, where a nonvanishing quantum correc-
for Fpry with M, N = 1,2, 3,6, and the classical mass is tion to the kink mass (in a minimal renormalization scheme)

M., = 4mm/g>. is associated with an anomaly in the central charge (which
The susy algebra for the charg@s = [ j°“d®z with is scheme-independent; in a non-minimal renormalization
j4 = iTBr¢Fpcl4 ) reads scheme there are also non-anomalous quantum corrections
- to the central charge).
{Q%,Qp} = —(")*pPu+ (75)*p U + i3 V, (77) In Ref. [64] it has been argued that in the renormali-
. o zation scheme defined above, the one-loop contributions to
with o, f = 1,..., 4. In the trivial sector?, acts as),, and  the central charge precisely cancel the contribution from the

U multiplies the massive fields by, but in the topological  counterterm in the classical expression. In this particular
sectorP, are covariant translations, afdandV’ are sur-  cajculation it turns out that the cancelling contributions have
face integrals. The classical monopole solution saturates thgqentical form so that the regularization methods of Ref. [64]
BPS boundi/? > [(U)[> + [(V)|* by |Ua.| = Mo, and  can be used at least self-consistently, and also straight-
Ve = 0. o ) forward dimensional regularization would imply complete
For obtaining the one-loop quantum corrections, one hascancellations. The result (80) would then appear to violate
to consider quantum fluctuations about the monopole back-the Bogomolnyi bound.
ground. The bosonic fluctuation equations turn out to be However, this is just the situation encountered in the
simplest in the background-covariant Feynman-gauge  (1+1)-dimensional susy kink. As we have shown in
which is obtained by dimensional reduction of the ordinary Ref. [39] and recapitulated above, dimensional regulariza-
background-covariant Feynman gauge-fixing term in (5+1) tjon gives a zero result for the correction to the central
dimensions—3(Dp[A] a”)?, wherea” comprises the bo-  charge unless the latter is augmented by the momentum ope-
sonic fluctuations andi? the background fields. As has rator in the extra dimension used to embed the soliton. This
been found in Refs. [63, 64], in this gauge the eigenvaluesis necessary for manifest supersymmetry, and, indeed, the
of the bosonic fluctuation equations (taking into account extra momentum operator can acquire a nonvanishing ex-
Faddeev-Popov fields) and those of the fermionic fluctuation pectation value. As it turns out, the latter is entirely due to
equations combine such that one can make use of an indexnontrivial contributions from the fermions = (ﬁj) , whose
theorem by Weinberg [68] to determine the spectral density. fluctuation equations have the form
This leads to the following (unregularized!) formula for the

one-loop mass correction Ly +i(0y+ 05)yp— = 0, (81)
i(0; — Os)by + LTy = 0. (82)
MY = 47TTO + g > (wp —wr)
90 The fermionic field operator can be written as

3
= h/ <d bR pa(1),(78)

@ 2/ (2n)?

o) = [ Gl (267?)];/2 =
x{akzei<“’t“5)< Ve = Exs >

with mg andgy denoting bare quantities and

o (K2) = __—8mm (79) —Vw+ € x_
k2(k? +m?) —
-I—bT ei(wtffa:‘r’) w—{ X+ (83)
This expression is logarithmically divergent and is made fi- ki Vw+tlx_)])’

nite by combining it with the one-loop renormalizationgof

while m does not need to be renormalized [63, 64]. Com- where x_ = wikLXJr and x4 = w—lkLTX_ with w? =
bining these two expressions from the sum over zero pointz2 1 ;2 and the normalization factosgo =+ ¢ are such that
energies and the counter term, we find that there is a mis-zf7y = 4,2y, andLLTy_ = w?y_ with w? = w? + 2,
match proportional te@, bute multiplies a logarithmically  Because of these normalization factors, one obtains an ex-
divergent integral, which in dimensional regularization in- pression for the momentum densty;; in the extra dimen-
volves a pole:~*. We therefore obtain a finite correction of ~ sjon which has an even component under reflection in the

the form extra momentum variable
4dm om T(—% - %) e 3
O _ex M T3 7 _/d@/dki B 2
g T (2m2)T(—3) ©os) = | @ry | P 2w {(w Db+l
x / dk(k? + m?) =5 +w + O)x-
0
dmm  2m det / &’k 02 2 2
_ = Z (|v_I? = 4
= - 2400 (80) /(QW)E Gn) 55 (=17 = Ix+1%) (84)
which because of the fact that it arisesfag co bears the  (omitting zero-mode contributions which do not contribute
hallmark of an anomaly. in dimensional regularization [39]).
Indeed, as we shall now show, this result is comple- Integration overz then produces the spectral density

tely analogous to the case of thé = 1 susy kink in (79) and finally yields
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A Uan

/dgz (©o5)

A3k dee 2
= - 1 (k2
/(2W)3+62 Lz rme PM( )

/O@ dk / et e

—4m -

o 2m) (2m) (k2 + m2)VE? + 2 + m?
I( 1te 2m

L P o), (85)

e —8767
(4m)tts 1+e m

which is indeed equal to the nonzero mass correction obtai-of the minimally supersymmetric kink in 1+1 dimensions, it

ned above. constitutes a new anomafythat had previously been igno-
This verifies that the BPS bound remains saturated undemed in direct calculations [63, 64] of the quantum corrections

guantum corrections, but the quantum corrections to masso the N = 2 monopole.

and central charge both contain an anomalous contribution,

analogous to the central-charge anomaly in the 1+1 dimen-
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