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Non Gravitational Black Holes
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Av. BPS 1303 Pinheirinho, 37500-903, Itajubá, MG, Brazil
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Analogue models of general relativity have recently been considered with great interest by the scientific commu-
nity. They connect branches of physics as different as gravitation, condensed matter physics, electrodynamics,
acoustics, and quantum field theory. One of the main expectations about such models lies on the possibility
of testing in laboratory some aspects of quantum field theory in curved spacetimes. For instance, it seems to
be possible to probe the existence of Hawking radiation by means of analogue models in the context of certain
condensed matter systems. We briefly report the present day status of this topic of research. Some specific
models are considered, particularly those presenting analogue event horizons as solutions. The issue of thermal
emission (analogue Hawking radiation) is also discussed.

1 Introduction

The general relativity theory predicts that a bounded region
in space from which nothing can scape appears as an ex-
ternal solution for the gravitational field associated with a
spherically symmetric configuration for matter. Such exo-
tic object is known as a black hole and it is delimited by
a one-way surface called event horizon. However, semi-
classical analysis revels that black holes are expect to emit
thermal radiation with a Planckian spectrum with tempera-
tureTH = ~c3/8πkBGM [1]. The energy radiated in this
process comes from the massM of the black hole which is
thus continuously diminished by a small amount. In other
words, black holes evaporate. For a black hole with mass
M = γM⊙ (whereM⊙ denotes the solar mass) the Haw-
king temperature will be

TH ≈ 6× 10−8

γ
K, (1)

a temperature which is rather low and unlikely to be measu-
red from astrophysical events (γ ≥ 1).

In 1981 Unruh [2] proposed a hydrodynamical model
in which the kinematic properties of a back hole could in
principle be verified under laboratory conditions. Since then
considerable efforts have been performed in the construction
of alternative models where the kinematic properties of gra-
vitation could be reproduced in laboratory. Such models are
usually known as analogue models for general relativity [3].
The first work presenting an analogue model was published
by Gordon [4] in 1923 where a dielectric medium was des-
cribed by means of an effective geometry. Before 1981 there
were also some other related works, mainly those based on
electrodynamics (see Refs. [5-7] for a revision).

Analogue models have been constructed in several bran-
ches of physics. It deals with acoustics [2,8-18], optics [19-
27], among others [28-35]. These are only representative

references.

The experimental construction of analogue black holes
represents the most interesting topic in the broad area of
analogue gravity, but the effective built-up of such struc-
tures is still an open problem. Black holes are considered
to be fundamental in the understanding of quantum gravity
phenomena, and the examination of analogue models can
throw some light on its kinematic aspects (including the is-
sue of thermal emission of radiation near the event horizon).
No fundamental dynamics (as Einstein’s equations) is ex-
pect to apply for analogue geometries, however. Thus, dy-
namical aspects of gravitation theory (like the entropy of a
black hole) are unlikely to be found in analogue models.

We work in Minkowski spacetime employing a Carte-
sian coordinate system. The background metric is denoted
by ηµν , which is defined bydiag(+1,−1,−1,−1). Units
are such thatc = 1.

2 Analogue models from electrodyna-
mics in material media

Inside material media, Maxwell’s equations must be sup-
plemented by constitutive laws that relate the electromagne-
tic excitations and the field strengths by means of quantities
characterizing each medium the waves propagate into. In
this context, effective geometries were found to describe the
modes both for the linear [7, 36, 37] as well as non-linear
[19, 20] constitutive relations. The results presented in these
references lead us to conclude that electromagnetic waves
usually propagate inside material media as if immersed in a
curved spacetime. This fact allows one to make an analogy
between wave propagation in material media and gravitatio-
nal phenomena.
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2.1 Field equations

The electromagnetic properties of a moving medium are
determined by the tensorsεα

β and µα
β which relate the

electromagnetic excitation (Dµ, Bµ) and the field strength
(Eµ, Hµ) by means of the generalized constitutive laws [38]

Dα = ηαβµνVβuµHν + εα
β(Eβ − ηβλµνVλuµBν) (2)

Bα = −ηαβµνVβuµEν + µα
β(Hβ + ηβλµνVλuµDν),

(3)

whereV µ represents the velocity 4-vector of an arbitrary
observer anduµ the velocity 4-vector of the medium. The
Levi-Civita tensorηβλµν is defined such thatη0123 = +1.

In the absence of free sources, Maxwell’s theory can be
summarized by the equations

(
V µDν − V νDµ − ηµν

αβV αHβ
)
,ν

= 0 (4)
(
V µBν − V νBµ + ηµν

αβV αEβ
)
,ν

= 0, (5)

together with the constitutive laws (2) and (3).

2.2 Geometrical optics

In order to determine the propagation of waves associated
to the electromagnetic field, we consider the eikonal appro-
ximation of electrodynamics, making use of the Hadamard
method of field discontinuities [39]. We denote the surface
where the dynamical equations may present discontinuities
by Z(t, ~x) = 0. This surface, except from its border (if
any) is denoted byΣ. An arbitrary pointP ∈ Σ thus has
a neighborhoodU which is cut byΣ in three disjoint regi-
onsU = U+ ∪ U− ∪ Uo, with Uo = U ∩ Σ, whereU±

respectively contains pointsP± such thatZ(P+) > 0 and
Z(P−) < 0. We supposeΣ to be an orientable surface,
from which the regionsU± are defined in a globally consis-
tent way. The discontinuity of an arbitrary functionf(t, ~x)
atP ∈ Σ is given by

[f(t, ~x)]Σ := lim
{P±}→P

[
f(P+)− f(P−)

]
. (6)

The electric and magnetic fields derivative are continuous
acrossΣ. Since Maxwell’s equations (4)-(5) are of first or-
der, however, the derivatives behave as

[Eµ
,ν ]Σ = eµKν ; [Hµ

,ν ]Σ = hµKν (7)

whereeµ andhµ represent the discontinuities of the fields
acrossΣ andKλ = ∂Σ/∂xλ denotes the wave vector. Ap-
plying these conditions to the field equations, one obtains
the eigen-vector equation

Zα
βeβ = 0, (8)

whereZα
β lies in the rest space of the observerV µ (i.e.,

its ‘time’ components are zero) and each of its components
is quadratic inKλ. The generalized Fresnel equation repre-
sents non-trivial solutions of this equation and is given by
det |Zα

β | = 0, whose solutions can be written in the form

gµν
± KµKν = 0, (9)

which is known as the dispersion relation. Thegµν
± represent

the effective geometries associated with the wave propaga-
tion, and the symbol± indicates that, in general, there will
be two possible distinct metrics, one for each polarization
mode. For the particular case of electromagnetic waves in
vacuum bothgµν

± reduce toηµν , as expected.

2.3 Optical horizon

Let us consider the flow of a dielectric material in a spheri-
cally symmetric configuration, with 4-velocityuµ given in
spherical coordinates as

uµ = γ(1, b, 0, 0), (10)

whereγ := (1− b2)−1/2 andF 01 = Er, with Er = Er(r)
andb = b(r). It can be shown [40] that the radial coordinate
of the photon changes with the time coordinate as

dr

dt
=

nb± 1
n± b

, (11)

wheren = (εµ)−1/2, which coincides with the refraction in-
dex of the medium in the linear limit. By considering matter
flowing in-wards (b < 0), out-going light apparently freezes
(dr/dt = 0) at the radiusrH such that

nb|rH = −1. (12)

ThusrH is identified with the radius of an analogue event
horizon (the optical horizon), and the solution will represent
an optical black hole [23, 40].

From the above analysis, which agrees with previous
calculations [23], we find that either an ultra-relativistic mo-
tion of the matter or a highly refringent medium [41, 42],
as it is found in Bose-Einstein condensates (see, however, a
relevant discussion in Refs. [31, 22]), is needed in order to
display such a horizon structure. Highly refringent media
are usually quite dispersive, and thus the effective horizon
would occur in this case only for a narrow range of frequen-
cies. A practical realization of the analogue black hole con-
figuration requiresb = b(r) and possiblyn = n(r) also.

Recently, it has been proposed that Hawking tempera-
ture is a purely kinematic effect that is generic to Lorentzian
geometries containing event horizons [43], and thus being
dependent only on the effective metric structure (see howe-
ver Ref. [22]). For the spherically symmetric solution the
Hawking temperatureTH of the analogue black hole would
be given by [40]

TH =
∣∣∣∣
~γ2bn

2πkB

(
∂b

∂r
+

bε′

2εE

∂E

∂r

)∣∣∣∣
rh

, (13)

whereε′ = Eα∂ε/∂Eα. Equation (13) shows that the non-
linearity may significantly contribute to this temperature. It
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Figure 1. The in-coming light path for both polarization modes are shown for the cylindrical configuration. We assume in the plot a rigid
rotation withw = 10−4, and the refraction index isn = 103. The figure corresponds to a dielectric fluid flowing out-wards, with radial
velocity b(ρ) = 10−2/ρ, andµε′ = 1010. The unpolarized light ray enters the rotating condenser region (dashed lines) at the pointP .
The solid line depicts the extraordinary ray, whereas the dotted line represents the ordinary ray. The thicker line corresponds to the optical
horizon, andv denotes the light velocity with respect to the medium.

should also be noted, however, that the complete unders-
tanding of the physical meaning of the Hawking tempera-
ture associated with an analogue black hole is still an open
question [31, 22], and it can be settled only after a detailed
analysis of the radiation processes at the horizon. It should
be stressed that the approximation of geometrical optics be-
comes unreliable for the modes whose wavelengths are com-
parable with the size of the horizon, as occurs in Hawking
radiation processes. Furthermore, Hawking radiation from
analogue black holes should also face the problem of the
possible difference between signal velocity and phase velo-
city.

Experimentally though, it appears to be a rather diffi-
cult task to maintain a stationary spherically symmetric and
inhomogeneous flow. In order to exhibit a more realistic
configuration, we will now focus on the cylindric symmetry.
A particular case of such a configuration is the vortex matter
flow which was discussed recently [24, 44, 45]. Let us consi-
der a more general situation of a rotating dielectric body sub-
jected to an electric fieldEz(ρ) directed along the axisz of
rotation (this configuration corresponds to the experimental
situation of a rotating condenser). The background metric is
then of the formds2

η = dt2−dρ2−ρ2dϕ2−dz2. The electro-

magnetic field has the only non-zero componentF 03 = Ez

and we denoteε′ := E(dε/dE), whereE = |Ez|. For
the matter 4-velocity we haveuµ = γ(1, b, w, 0), with
γ = (1 − b2 − ρ2w2)−1/2, while w andb being arbitrary
functions of the radial coordinateρ.

In this case, the analogue (cylindric) event horizon is lo-
cated atρ = ρh defined from

(
nb±

√
1− ρ2w2

)
ρh

= 0. (14)

Note that purely vortical motion of the fluid (withb = 0)
does not produce an analogue event horizon [32], sinceρh

from Eq. (14) would lie beyond the limit of applicability of
a rigid body model in special relativity.

We note thatdϕ/dρ diverges at the surface defined by
Eq. (14). As a result, the incoming geodesic light rays spiral
towards a horizon radiusρh, as can be explicitly demons-
trated by the numerical integration ofdϕ/dρ, see Fig. 1.
Therefore, we conclude that, for a given stationary flow con-
figuration, the analogue horizon structure is of geometrical
nature, as soon as it depends neither on the initial conditions
nor on the polarization of the propagating light rays [40].

Summarizing, Eq. (14) demonstrates how an experimen-
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tal realization of a dielectric analogue horizon might be un-
derstood in terms of the parametersn, b, w which describe
the dielectric and kinematic properties of the medium. We
expect that such horizons can be observed for stationary
inhomogeneous kinematic configurations of the dielectric
matter flow. The cylindrical configuration is favored due to
the combined effect of both the refraction indexn and also
of the vorticityw of the medium which yield a smaller th-
reshold for the radial velocityb. The horizon structures in
both spherical and cylindrical cases are shown to be inde-
pendent of the presence of nonlinearities in the permittivity
tensor.

The present scheme may provide room also for the for-
mation of sonic horizons [2] for the cases in which ultra-
sonic velocities are achieved.

3 Analogue models from hydrodyna-
mics

The mathematical description of a moving fluid is perfor-
med by means of the velocity field~v(t, x, y, z) and two ther-
modynamic state function, which are assumed to be the mat-
ter densityρ(t, x, y, z) and pressurep(t, x, y, z). The beha-
vior of a perfect fluid is determined by the continuity equa-
tion

~∇ · (ρ~v) +
∂ρ

∂t
= 0, (15)

and the Euler equation (in the absence of external fields)

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p. (16)

By considering an irrotational fluid~v = ~∇Φ, the Euler equa-
tion leads to the Bernoulli equation

∂Φ
∂t

+
1
2
v2 + h(ρ) = 0, (17)

whereh(ρ) represents the enthalpy density (h =
∫

dp/ρ).
Let us now introduce small perturbations ofΦ andρ about
the background flow by defining

Φ → Φo + δΦ := Φo + φ (18)

ρ → ρo + δρ := ρo + ρoψ. (19)

Thus, from Eqs. (15) and (17) the field perturbations lead to

2BLφ = 0, (20)

where 2BL is the effective Beltrami-Laplace operator,
which can be written as

2BL =
1√−g

∂

∂xµ

(√−ggµν ∂

∂xν

)
, (21)

with the effective geometrygµν given by

gµν = ρo

(
1− v2/c2

S vi/cS

vi/cS −δij

)
, (22)

wherecS := ∂p/∂ρ is the sound velocity in the fluid.
Thus, linearized perturbations of an irrotational flowing

fluid can be described by means of massless scalar fields
propagating in an effectively curved spacetime whose me-
tric gµν is determined by the background fluid fields [2].

Acoustic
horizon

v<c

v>c

v=c

v

s

s

s

Figure 2. A toy model exhibiting an acoustic horizon. The arrows
indicate the fluid flow velocity, with longer arrows for faster flow.
The analogue event horizon (acoustic event horizon) occurs when
the fluid velocity becomes equal to the sound velocity.

A simple example of this proposal can be understood in
the following simplified toy model. Let us consider a fluid
flowing through a funnel (Fig. 2) in such way that the fluid
velocity increases as the funnel throat gets smaller. Thus,
there will be a surface where the fluid velocity becomes
equal to the sound velocity, and after it the waves travel with
velocity smaller than the fluid velocity. Consequently, this
surface will be an one-way surface with respect to the field
perturbations (sound) and should be thought as an acoustic
event horizon. The acoustic black holes introduced by Un-
ruh [2] are usually called dumb holes.

3.1 Acoustic black-hole

Let us assume the case of a radial flow, with~v = v(r)r̂.
By adopting spherical coordinates and applying a coordinate
transformation in the time variable as

τ = t +
∫

dr
v

c2
S − v2

(23)

we obtain from (23) a line element of the form

ds2 = ρo

[(
1− v2

c2
S

)
dτ2 −

(
1− v2

c2
S

)−1

dr2 − r2dΩ2

]
,

(24)
wheredΩ2 represents the 2-sphere line element. In the par-
ticular case wherev = cS(rH/r)1/2, the metric in Eq. (24)
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assumes the form of the Schwarzschild metric (up to the
conformal factorρo) with rH identified with the radius of
the acoustic horizon, which makes the role of2GM in the
general relativity black-hole.

The quantization of the sound fieldφ can be performed,
as usual, by means of the field equation (20), and the same
arguments leading to the prediction of radiation emission of
a black hole also predict that a thermal spectrum of sound
waves should be given out from the acoustic horizon in su-
personic fluid flow. Thus, an acoustic event horizon will
emit analogue Hawking radiation in the form of a thermal
bath of phonons at temperature [2]

TH =
~

2πkB

∂v

∂r

∣∣∣∣
rH

. (25)

It should be stressed that the smooth background flow bre-
akdown at scales of∼ 10−8cm, just as for gravity at Planck
scale∼ 10−33cm. (See however Ref. [8] where the effects
of high frequencies on acoustic black hole evaporation were
taken into account). Related subjects can be found in Refs.
[46, 47, 48]

By assuming a toy model where

∂v

∂r

∣∣∣∣
rH

=
cS

rH

, (26)

with cS ≈ 102m/s andrH ≈ 1mm, the temperature associ-
ated with the phonon radiation resultsTH ≈ 10−7K. Due to
the small value of the temperature, and the very poor detec-
tion technology for sound waves (among several other dif-
ficulties associated with classical fluids), the experimental
verification of this result seems to be unrealistic. However,
as it will be presented in the next section, there exist special
kinds of fluids (quantum fluids) where the above results are
expected to be verified in laboratory.

4 Analogue models from Bose-
Einstein Condensates

A Bose-Einstein Condensate (BEC) corresponds to a confi-
guration in which most of the bosons lie in the same single-
particle quantum state. In a dilute gas, the hydrodynamic
theory of superfluids in the collisionless regime at zero tem-
perature can be derived from the Gross-Pitaevskii equation
[49]

i~
∂ψ(t, x)

∂t
=

[
− ~

2

2m
∇2 + Vext(x) + λ|ψ(t, x)|2

]
ψ(t, x),

(27)
whereψ(t, x) represents the wave function of the conden-
sate,Vext is an external confining potential, andλ is a para-
meter related with the scattering lengtha asλ = 4π~2a/m.
By means of the Madelung representation for the condensate
wave functionψ = ρ1/2 exp (imΘ/~), the Gross-Pitaevskii
equation can be separated in terms of a continuity equation

~∇ · (ρ~∇Θ) +
∂ρ

∂t
= 0, (28)

and a quantum analogue of the Bernoulli equation

∂Θ
∂t

+
1
2

~∇Θ· ~∇Θ+
λρ

m
+

Vext

m
− ~2

2m2√ρ
∇2√ρ = 0. (29)

It should be noted that the above set of equations descri-
bes an irrotational fluid with velocity~v = ~∇Θ. The quan-
tum potentialVQ = −~2∇2ρ1/2/2m2ρ1/2 can be neglected
when the density profiles become smooth.

From the above results we concluded that the Gross-
Pitaevskii equation is equivalent to a hydrodynamic equa-
tion for superfluid flow, which (for most situations) is si-
milar to a classical hydrodynamic equation for irrotatio-
nal fluids with the particular form for the enthalpy density
h = λρ/m. In this prescription, the sound velocity is given
by cS = (~/m)(4πaρ)1/2. Thus, analogue models from
BEC’s can be performed in the same way as it is done in the
case of classical hydrodynamics. (See Ref. [35] for a more
complete treatment of analogue gravity from Bose-Einstein
condensates.)

Experimental realizations of BEC’s were firstly done in
1995 for alkali atoms [50, 51, 52] and since then several
works reporting BEC’s in the laboratory have been appea-
red in the literature.

Some interesting configurations of BEC’s were recently
proposed in the literature [10, 11, 35, 53] as a way to cons-
truct analogue models. In Ref. [11] a ring-shaped confi-
guration and a cigar-shaped configuration (both adjusted by
the external potential) were proposed as possible experimen-
tal backgrounds where acoustic black/white holes could be
constructed (see Fig. 3 for the cigar-shaped configuration).
In Ref. [35] it was proposed that the external potential could
be replaced by geometrical constraints. The Laval nozzle
device was presented as a possible mechanism to produce
black/white holes.

In fact, the use of BEC’s as the physical systems to cons-
truct analogue models for general relativity seems to be very
promising. As an example, let us analyse the case of a con-
densate based on87Rb. By using the valuea ≈ 6× 10−9m
for the scattering length [55], the sound velocity in the con-
densate results to becS ≈ 6×10−3m/s, which is one of the
smaller values for the sound velocity ever found in physical
systems. From such results (it was considered a system with
an acoustic horizon of order of1µm), a crude estimate le-
ads to an analogue Hawking temperatureTH ≈ 7nK. Des-
pite the small value for this temperature, it should be noted
that the temperature required to form the condensate is about
T ≈ 10−8 − 10−7K.

5 Conclusion

In this mini-survey we have briefly analysed some proposals
of constructing non-gravitational systems presenting analo-
gue horizons. We concentrated our attention in electromag-
netic and hydrodynamic models.
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Acoustic
horizons

Outcoupled
atom laser beam

Outcoupler beam

v v

Figure 3. The cigar-shaped configuration [11] with two acoustic
horizons. An output coupler is used to obtain an atom laser from
the condensate, which leads the condensate to flows towards the
‘singularity’. The arrows represent the magnitude of the conden-
sate flow velocity. (See Ref. [54] for outcoupler details.)

We have analysed the wave propagation in moving ma-
terial media. Two solutions presenting analogue event ho-
rizons were examined, the spherically symmetric configu-
ration (with a radial flowing dielectric fluid) and a cylin-
drically symmetric configuration (with a radial and vorti-
cal flowing dielectric fluid). The cylindric configuration is
experimentally preferred due to the vortical motion of the
fluid, which makes it possible to set smaller thresholds for
the radial velocity. Analogue black and white holes can thus
possibly be set in moving dielectric media. For optical sys-
tems the issue of thermal emission of radiation (analogue
Hawking radiation) is not yet well understood.

Analogue models from quantum fluids (in particular,
BEC’s based on alkali atoms) seem to be the most promi-
sing systems exhibiting acoustic event horizons to be built
in laboratory in order to investigate the existence of analo-
gue Hawking temperature. Bose-Einstein condensates were
experimentally constructed since 1995, and the most attrac-
tive feature in such systems lies on the very low condensa-
tion temperature. For the case of condensates based on87Rb
the estimated analogue Hawking temperature differs from
the typical condensate temperature roughly by only two or-
ders of magnitude. Therefore, it seems to be feasible in the
near future to probe in laboratory some interesting aspects
of quantum field theory in curved spacetimes by means of
analogue models.
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