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I review different approaches to the construction of vortex and instanton solutions in noncommutative field
theories.

1 Introduction

The development of Noncommutative Quantum Field Theo-
ries has a long story that starts with Heisenberg observation
(in a letter he wrote to Peierls in the late 1930 [1]) on the pos-
sibility of introducinguncertainty relations for coordinates,
as a way to avoid singularities of the electron self-energy.
Peierls eventually made use of these ideas in work related
to the Landau level problem. Heisenberg also commented
on this posibility to Pauli who, in turn, involved Oppenhei-
mer in the discussion [2]. It was finally Hartland Snyder,
an student of Openheimer, who published the first paper on
Quantized Space Time[3]. Almost immediately C.N. Yang
reacted to this paper publishing a letter to the Editor of the
Physical Review [4] where he extended Snyder treatment to
the case of curved space (in particular de Sitter space). In
1948 Moyal addressed to the problem using Wigner phase-
space distribution functions and he introduced what is now
known as the Moyal star product, a noncommutative associ-
ative product, in order to discuss the mathematical structure
of quantum mechanics [5].

The contemporary success of the renormalization pro-
gram shadowed these ideas for a while. But mathematici-
ans, Connes and collaborators in particular, made important
advances in the 1980, in a field today known as noncommu-
tative geometry [6]. The physical applications of these ideas
were mainly centered in problems related to the standard
model until Connes, Douglas and Schwartz observed that
noncommutative geometry arises as a possible scenario for
certain low energy limits of string theory and M-theory [7].
Afterwards, Seiberg and Witten [8] identified limits in which
the entire string dynamics can be described in terms of non-
commutative (Moyal deformed) Yang-Mills theory. Since
then, 1300 papers (not including the present one) appeared
in thearXiv dealing with different applications of noncom-
mutative theories in physical problems.

Many of these recent developments, including Seiberg-
Witten work, were triggered in part by the construction of
noncommutative instantons [9] and solitons [10], solutions
to the classical equations of motion or BPS equations of
noncommutative theories. The present talk deals, precisely,

with the construction of vortex solutions for the noncommu-
tative version of the Abelian Higgs model and of instanton
solutions for noncommutative Yang-Mills theory. It covers
work done in collaboration with D.H. Correa, G.S. Lozano,
E.F. Moreno and M.J. Rodrı́guez.

The plan of the talk is the following. In the next section
I describe the construction of noncommutative field theories
using the Moyal star product and how this can be connec-
ted, in the case of even dimensional spaces, with a Fock
space formulation. The approach will allow to turn the more
involved non-linear equations of motion (or BPS equations)
in noncommutative space into algebraic equations which are
simpler to analyze. The application of this technique to
the construction of vortex solutions in the noncommutative
Abelian Higgs model is presented and finally, in the last sec-
tion, instanton solutions to the self-dual equation for aU(2)
noncommutative gauge theory are discussed.

2 The connection between Moyal pro-
duct of fields and operator product
in Fock space

Let us call xµ, µ = 1, 2, ...d the coordinates ofd-
dimensional space-time. Givenφ(x) andχ(x), two ordinary
functions inRd, their Moyal product is defined as [5]

φ(x) ∗ χ(x) = exp
(

i

2
θµν∂µ

x∂ν
y

)
φ(x)χ(y)

∣∣∣∣
y=x

= φ(x)χ(x) +
i

2
θµν∂µφ(x)∂νχ(x)

−1
8
θµαθνβ∂µ∂αφ(x)∂ν∂βχ(x) + . . .(1)

with θµν a constant antisymmetric matrix of rank2r ≤ d
and dimensions of(length)2. One can easily see that (1)
defines a noncommutative but associative product,

φ(x) ∗ (
χ(x) ∗ η(x)

)
=

(
φ(x) ∗ χ(x)

) ∗ η(x) (2)
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Under certain conditions, integration overRd of Moyal pro-
ducts has all the properties of the the trace (Tr) in matrix
calculus,

∫
dxφ(x) ∗ χ(x) =

∫
dxχ(x) ∗ φ(x) =

∫
dxφ(x)χ(x)

(3)
Indeed, identity (3) holds when derivatives of fields vanish
sufficiently rapidly at infinity, since

φ(x) ∗ χ(x) = φ(x)χ(x) +
i

2
θµν∂µφ(x)∂νχ(x)−

1
8
θµαθνβ∂µ∂αφ(x)∂ν∂βχ(x) + . . .

= φ(x)χ(x) + ∂µΛµ

One has also in this case cyclic property of the star product,
∫

dxφ(x) ∗ χ(x) ∗ ψ(x) =
∫

dxψ(x) ∗ χ(x) ∗ φ(x) (4)

Finally, Leibnitz rule holds

∂µ (φ(x) ∗ χ(x)) = ∂µφ(x) ∗ χ(x) + φ(x) ∗ ∂µχ(x) (5)

The∗-commutator, denoted with[ , ],

[φ, χ] = φ(x) ∗ χ(x)− χ(x) ∗ φ(x) (6)

is usually called a Moyal bracket. If one considers the case
in which φ andχ correspond to space-time coordinatesxµ

andxν , one has, from eq.(1),

[xµ, xν ] = iθµν (7)

This justifies the terminology “noncommutative space-time”
although in the Moyal product approach to noncommutative
field theories one takes space as the ordinary one and it is th-
rough the star multiplication of fields that noncommutativity
enters into play. For example, the action for a massive self-
interacting scalar field takes, in the noncommutative case,
the form

S =
∫

d4x

(
∂µφ ∗ ∂µφ− m2

2
φ ∗ φ− λ

4!
φ ∗ φ ∗ φ ∗ φ

)

(8)
Note that due to eq.(3), the quadratic part of the action coin-
cides with the ordinary one (and hence Feynman propaga-
tors are the same for commutative and noncommutative the-
ories). It is through interactions that differences arise.

We are interested in coupling scalars to gauge fields.
Given a gauge connectionAµ and a gauge group element
g ∈ G, the gauge connection should transform, under a
gauge rotation as

Ag
µ(x) = g(x) ∗Aµ(x) ∗ g−1(x) +

i

e
g−1(x) ∗ ∂µg(x) (9)

Note that even in theU(1) case, due to noncommutative
multiplication, the second term in the r.h.s. has to be pre-
sent in order to have a consistent definition of the curvature.

Also, the expression forg(x) as an exponential should be
understood as

g(x) = exp∗(iε(x)) ≡ 1+ iε(x)− 1
2
ε(x)∗ ε(x)+ . . . (10)

Accordingly, even in theU(1) case the curvatureFµν neces-
sarily implies a gauge field commutator,

Fµν = ∂µAν − ∂νAµ − ie (Aµ ∗Aν −Aν ∗Aµ) (11)

and then, as it happens for non Abelian gauge theories in
ordinary space, the field strengthFµν is not gauge invariant
but gauge covariant,

Fµν → g−1 ∗ Fµν ∗ g (12)

However, due to the trace property of the integral, the
Maxwell action is gauge invariant,

S =
1
4

∫
d4xFµν ∗ Fµν (13)

As for matter fields, one can write

Df
µφ = ∂µ + iAµ ∗ φ “fundamental”

but also

Df̄
µφ = ∂µ− iφ ∗Aµ “anti− fundamental”

Dad
µ φ = ∂µφ− ie(Aµ ∗ φ− φ ∗Aµ) “adjoint”

(14)

Extending non-Abelian gauge theories with generators
ta to the noncommutative case is problematic. Consider for
example the case ofG = SU(N). In the commutative case
one has

[Aµ, Aν ] = Aa
µAb

νtatb −Ab
νAa

µtbta

= Aa
µAb

ν

(
tatb − tbta

)
︸ ︷︷ ︸

fabctc

(15)

so that the commutator, anda fortiori the field strength, take
values, as the gauge field itself, in the Lie algebra of the
gauge group. In contrast, in the noncommutative case the
presence of the star product prevents to arrange the commu-
tator as above,

[Aµ, Aν ] = Aa
µ ∗Ab

νtatb −Ab
ν ∗Aa

µtbta

Using

tatb = 2ifabct
c +

2
N

δabI + 2dabct
c (17)

we see that
Fµν =(1)F a

µνta +(2)FµνI (18)

and henceFµν 6∈ SU(N ). One should instead chooseU(N)
as gauge group since, in that case, no problem of this kind
arises.
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3 Noncommutative solitons

In order to understand the difficulties and richness one en-
counters when searching for noncommutative solitons, let
us disregard the kinetic energy term in action (8) and just
consider the scalar potential,

V [φ ∗ φ] =
1
2
m2φ ∗ φ− λ

4
φ ∗ φ ∗ φ ∗ φ (19)

The equation for its extrema is

m2φ− λφ ∗ φ ∗ φ = 0 (20)

or, with the shiftφ → (m/
√

λ)φ,

φ(x) ∗ φ(x) ∗ φ(x) = φ(x) (21)

To find a solution, consider a functionφ0(x) such that

φ0(x) ∗ φ0(x) = φ0(x) (22)

which evidently satisfies (21). Although simpler than (21),
(22) implies, through Moyal star products, derivatives of all
orders as it was the case for the original equation. Only some
solutions can be found straightforwardly or with some little
work. For example, ind = 2 dimensions one finds

φ0 = 0
φ0 = 1

φ0 =
2√
θ
exp

(−~x2/θ
)

−−→
θ→0

δ(2)(x) (23)

Already a solution like (23) shows that nontrivial regular so-
lutions, which were excluded in the commutative space due
to Derrick theorem, can be found in noncommutative space.
The the reason for this is clear: the presence of the parame-
ter θ carrying dimensions oflength2, prevents the Derrick
scaling analysis leading to the negative results in ordinary
space.

Finding more general solutions needs new angles of at-
tack. A very fruitful approach was developed in [10] by
exploiting an isomorphism between the algebra of functions
with the noncommutative Moyal product and the algebra of
operators on some Hilbert space. We shall describe this pro-
cedure below in a simple two-dimensional example (but any
even dimensional space can be treated identically).

We then start with two-dimensional space with complex
coordinates

z =
1√
2
(x1 + ix2) , z̄ =

1√
2
(x1 − ix2) (24)

Changing the coordinate normalization,

â =
1√
2θ

(x1 + ix2) , â† =
1√
2θ

(x1 − ix2) (25)

one ends with noncommutative coordinates satisfying

[x1, x2] = iθ −→ [â, â†] = 1 (26)

Then â and â† satisfy the algebra of annihilation and crea-
tion operators. One then considers a Fock space with a basis

|n〉 provided by the eigenfunctions of the number operator
N ,

N̂ = â†â N̂ |n〉 = n|n〉 (27)

Note that one can establish a connection betweenn and the
radial variable,

N̂ = â†â ≈ 1
2θ

(x2 + y2) =
r2

2θ
, θ → 0 (28)

Configuration space at infinity then corresponds ton → ∞
in Fock space. Now, it is very easy to write projectorsPn in
Fock space,

Pn = |n〉〈n| , P 2
n = 1 (29)

so that
P 3

n = Pn (30)

which is nothing but the configuration space equation (21)
for the minimum of the potential, but written in Fock space.
So, we can say that we know a solution to (21) in operator
form,

Oφ = |n〉〈n| (31)

Now, how does one pass from this solution in Fock space
to the corresponding solution in configuration space? The
answer is to use the Weyl connection which can be summa-
rized as follows: given a fieldφ(z, z̄) in configuration space,
take its Fourier transform

φ̃(k, k̄) =
∫

d2zφ(z, z̄) exp
(

i

θ
(k̄z + kz̄)

)
(32)

with variables defined as before,

z =
1√
2

(
x1 + ix2

)
k =

1√
2

(
k1 + ik2

)
(33)

¿From it, define the associated operator

Oφ(a, a†) =
1

4π2θ

∫
d2kφ̃(k, k̄) exp

(−ik̄a + ka†
)

(34)

Then, one can prove that

OφOχ︸ ︷︷ ︸
operator product

= Oφ ∗ χ︸ ︷︷ ︸
∗ product

(35)

Hence, the complicated star product of fields in configura-
tion space becomes just a simple operator product in Fock
space. As an example of how this connection can be used,
consider the expression forPn (that can be found in any
textbook on second quantization)

|n〉〈n| =:
1
m!

a†n exp(−a†a)an : (36)

(Here “: :” means normal ordering) Then, Weyl connection
implies

:
1
m!

a†n exp(−a†a)an :

=
∫

d2k

4π2
φ̃n

0 (k̄, k) : e−i(kz̄a+kza†) :
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or, anti-transforming (and using Rodrigues formula)

φ̃n
0 (k̄, k) = 2π exp(−k2/2)Ln(k2/2) (37)

whereLn is the Laguerre polynomial of ordern. Finally,
Fourier transforming this expression, one can write in confi-
guration space

φn
0 (z̄, z) = 2(−1)n exp

( z̄z

θ

)
Ln

(
2z̄z

θ

)
(38)

In this way, any operator solution in Fock space can be
connected with the corresponding solution in configuration
space where fields are multiplied using the star product. In
particular, a general solution for the minimum of the poten-
tial equation

φ(~x) = φ(~x) ∗ φ(~x) ∗ φ(~x) (39)

in d = 2 space is then,

in Fock space : Pφ =
∑

λn|n〉〈n|
in configuration space : φ =

∑
λnφn

0 (~x)

(40)

with λn = 0,±1 andφn
0 given by (38).

Now, we want more than solving equations for the ex-
trema of potentials. We then have to be able to write kinetic
energy terms in Fock space. To this end, observe that

[a†, an] = −nan−1 (41)

We then see that we can identify

∂f

∂a
= −[a†, f(a)] (42)

so that derivatives of fieldsφ become, in operator language,

∂zφ → − 1√
θ
[a†, Oφ] , ∂z̄φ → 1√

θ
[a,Oφ] (43)

and the Lagrangian associated to action (8) can be written in
the form

L =
1
2

(
[a,Oφ]2 + [a†, Oφ]2

)− m2

2
O2

φ +
λ

4
O4

φ (44)

A last useful formula for the connection relates integration
in configuration space with trace of operators in Fock space:

∫
dxdyφ(x, y) ⇒ 2πθ TrOφ (45)

¿From here on we shall abandon the notationOφ for opera-
tors and just writeφ both in configuration and Fock space.

4 Noncommutative vortices

The noncommutative version of the Abelian Higgs Lagran-
gian (in the fundamental representation) reads

L = −1
4
Fµν ∗Fµν + Dµφ ∗Dµφ− λ

4
(φ ∗ φ̄− η2)2 (46)

Let us briefly review how vortex solutions were found in
such a model in ordinary space [11]-[13]. The energy for
static, z-independent configurations is, for the commutative
version of the theory,

E =
1
2
F 2

ij + DiφDiφ +
λ

4
(|φ|2 − η2)2 (47)

Herei = 1, 2 so one can consider the model in two dimen-
sional Euclidean space with

Diφ = ∂i − iAiφ , φ = φ1 + iφ2 (48)

The Nielsen-Olesen strategy to find topologically non trivial
regular solutions to the equations of motion of this model
in ordinary space can be summarized in the following steps
going from the trivial to the vortex solution:

1. Trivial solution

|φ| = η , Ai = 0 (49)

2. Topologically non-trivialbut singularsolution (flu-
xon)

φ = η exp(inϕ) , Ai = n∂iϕ (50)

with ∫
d2xεijFij = 2πn (51)

but

εijFij = 2πnδ(2)(x) (52)

3. RegularNielsen-Olesen vortex solution

φ = f(r) exp(inϕ) , Ai = a(r)∂iϕ (53)

with boundary conditions:

f(0) = a(0) = 0 , f(∞) = η , a(∞) = n (54)

4. Bogomol’nyi bound

if λ = 2 , E ≥ 2πn (55)

whenever the following first order“Bogomol’nyi”
equations hold

Fzz̄ = η2 − φ̄φ −Fzz̄ = η2 − φ̄φ

Dz̄φ = 0 Dzφ = 0
Selfdual Antiselfdual (56)
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Exact solutions of these equations can be easily construc-
ted. Let us describe as an example the noncommutative self-
dual case. One just copies the commutative strategy, starting
from the “trivial” solution that we found in terms of projec-
tors

|φ| = η︸ ︷︷ ︸
trivial

⇒ φ = η
∑

fm︸︷︷︸
0,±1

|m〉〈m|

|φ| = η exp(iϕ)︸ ︷︷ ︸
singular

= η
z

|z| ⇒ φ = η
∑

fm|m〉〈m|â

|φ|=f(r) exp(iϕ)︸ ︷︷ ︸
regular

=f
z

|z| ⇒ φ =
∑

f̄m|m〉〈m|â

(57)

Note that in the second and third lines we have used the iden-
tification z → (1/

√
θ)â. The difference between these two

formulæis that in the second the coefficients arefm = ±1
while in the third one thefm̄ should be adjusted using the
eqs. of motion and boundary conditions.

Of course (57) should be accompanied by a consistent
ansatz for the gauge field,

Âz =
∑

ēnâ†|m〉〈m| (58)

Differential equations (eqs. of motion or Bogomol’nyi eqs.)
become algebraic recurrence relations which can be easily
solved. For example, in the selfdual case one has from Bo-
gomol’nyi equations

√
(n + 2)(fn+1 − fn)− enfn+1 = 0

2
√

(n + 1)en−1 − e2
n−1 − 2

√
(n + 2)en − e2

n

= −θη2(f2
n − 1)

The appropriate condition at infinity (|z| → ∞) was, in con-
figuration spacef(|z|) → 1. It translates tofn → 1 for
n →∞. Then, usingf0 as a shooting parameter, one deter-
minesf1, f2, . . . and from them one computes the magnetic
field, the flux, the energy, from the expressions

B(r) = 2η2
∞∑

n=0

(−1)n
(
1− f2

n

)
exp

(
−r2

θ

)
Ln(

2r2

θ
)

Φ = 2πθTrB̂ = 2π

E = 2πη2 (59)

For smallθ one re-obtains the Nielsen-Olesen regular vortex
solution. Exploring the whole range ofθη2, the dimension-
less parameter governing noncommutativity, one finds that
the vortex solution with+1 units of magnetic flux exists in
all the θ range. As an example, we show in Figure 1 the
magnetic field of a self-dual vortex withN = 1 units of
magnetic flux, for different values ofθ. We see that the so-
lution approaches smoothly the commutative (θ = 0) limit.

0
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0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

B
(r

)

r

θ=0

θ=0.5

θ=1

θ=2

Figure 1. Magnetic field of a self-dual vortex as a function of the
radial coordinate (in units ofη) for different values of the anticom-
muting parameterθ (in units ofη2). The curve forθ = 0 coincides
with that of the Nielsen-Olesen vortex in ordinary space.

In the commutative case, anti-selfdual solutions can be
trivially obtained from selfdual ones by makingB → −B,
φ → φ̄. Now, the presence of the noncommutative para-
meterθ, breaks parity and the moduli space for positive and
negative magnetic flux vortices differs drastically. One has
then to carefully study this issue in all regimes, not only
for λ = λBPS but also forλ 6= λBPS , when Bogomol’nyi
equations do not hold and the second order equations of mo-
tion should be analyzed. A summary of results which are
obtained is (see details in ([18],[19],[22]):

• Positive flux

1. There are BPS and non-BPS solutions in the
whole range ofη2θ. Their energy and magne-
tic flux are:
For BPS solutions

EBPS = 2πη2N , Φ = 2πN

N = 1, 2, . . . (60)

For non-BPS solutions,

Enon−BPS > 2πη2N , Φ = 2πN

N = 1, 2, . . . (61)

2. For η2θ → 0 solutions become, smoothly,
the known regular solutions of the commutative
case.

3. In the non-BPS case, the energy of anN = 2
vortex compared to that of twoN = 1 vortices
is a function ofθ.

As in the commutative case, if one compares the
energy of anN = 2 vortex to that of twoN = 1 vor-
tices as a function ofλ one finds that forλ > λBPS

N > 1 vortices are unstable (vortices repel) while for
λ < λBPS they attract.
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• Negative flux

1. BPS solutions only exist in a finite range:

0 ≤ η2θ ≤ 1

Their energy and magnetic flux are:

EBPS = 2πη2N , Φ = 2πN

N = 1, 2, . . . (62)

2. Whenη2θ = 1 the BPS solution becomes a flu-
xon, a configuration which is regular only in the
noncommutative case. The magnetic field of a
typical fluxon solution takes the form

B ∼ 1√
θ
exp(r2/θ) −−→

θ→0
δ(2)(x) (63)

3. There exist non-BPS solutions in the whole
range ofθ but

(a) Only forθ < 1 they are smooth deformati-
ons of the commutative ones.

(b) Forθ → 1 they tend to the fluxon BPS so-
lution.

(c) Forθ > 1 they coincide with the non-BPS
fluxon solution.

5 Noncommutative instantons

The well-honored instanton equation

Fµν = ±F̃µν (64)

was studied in the noncommutative case by Nekrasov and
Schwarz [9] who showed that even in theU(1) case one can
find nontrivial instantons. The approach followed in that
work was the extension of the ADHM construction, succes-
sfully applied to the systematic construction of instantons in
ordinary space, to the noncommutative case. This and other
approaches were discussed in [29]-[38]. Here we shall des-
cribe the methods developed in [31],[35].

We work in four dimensional space where one can
always choose

θ12 = −θ21 = θ1

θ34 = −θ43 = θ2

all other θ′s = 0

We define dual tensors as

F̃µν =
1
2
√

g εµναβFαβ (65)

with g the determinant of the metric.
In order to work in Fock space as we did in the case of

noncommutative vortices, we now need two pairs of creation
annihilation operators,

x1 ± ix2 ⇒ â1, â †1
x3 ± ix4 ⇒ â2, â †2

and the Fock vacuum will be denoted as|00〉. Concerning
projectors the connection with configuration space takes the
form

|n1n2〉〈n1n2| ⇒ exp
(−r2

1/θ1 − r2
2/θ2

)
Ln1

(
2r2

1/θ1

)×
Ln2

(
2r2

2/θ2

)
(66)

Finally, note that the gauge groupSU(2) (for which ordi-
nary instantons were originally constructed) should be re-
placed byU(2) so that

Aµ = Aa
µ

σa

2
+ A4

µ

I

2
(67)

Let us now analyze how the different ansatz leading to
ordinary instantons can be adapted to the noncommutative
case.

1- (Commutative)’t Hooft multi-instanton ansatz(1976)

Aµ(x) = Σ̃µνjν

Σ̃µν =
1
2
η̄aµνσa , η̄aµν =





εaµν , µ, ν 6= 4
δaµ , ν = 4
−δaν , µ = 4

jν = φ−1∂νφ

Hereσa are the Pauli matrices (’t Hooft ansatz corresponds
to anSU(2) gauge theory). With this ansatz, the instanton
selfdual equation becomes

Fµν = F̃µν ⇒ 1
φ
∇φ = 0 (68)

with

φ = 1 +
N∑

i=1

λ2
i

(x− ci)2
, ∇φ =

N∑

i=1

δ(4)(x− ci) (69)

The solution corresponds to a regular instanton of topologi-
cal chargeQ = N .

2- Noncommutative version of ’t Hooft ansatz

The natural way of extending ’t Hooft ansatz is to pro-
ceed with the changes

jν = φ−1∂νφ ⇒ jν = φ−1 ∗ ∂νφ + ∂νφ ∗ φ−1

Aa
µ

σa

2
= Σ̄µνjν ⇒ Aa

µ

σa

2
= Σ̄µνjν (70)

A4
µ = −i

(
φ−1 ∗ ∂νφ− ∂νφ ∗ φ−1

)
(71)

With this we see that the Poisson equation (69) for ordinary
instantons changes according to

1
φ
∇φ = 0 ⇒ φ−1 ∗ ∇φ ∗ φ−1 = 0

∇φ = δ(4)(x) ⇒ ∇φ =
λ2

θ1θ2
|00〉〈00| (72)
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One then gets, for the field strengths,

F = F̃ + |00〉〈00| (73)

We see that the self-dual equation is not exactly satisfied:
the |00〉〈00| term, the analogous to the delta function in the
ordinary case, is not cancelled as it happened with the delta
function source for the Poisson equation (68) in the commu-
tative case.

3- Noncommutative BPST (Q = 1) ansatz(1975)

The pioneering Belavin, Polyakov, Schwarz and Tyup-
kin ansatz [39] leading to the firstQ = 1 instanton solution
was similar to the ’t Hooft ansatz except thatΣµν was used
instead of its dual̃Σµν . Its noncommutative extension can
be envisaged as

Aa
µ

σa

2
= Σµνjν ⇒ Aa

µ

σa

2
= Σµνjν (74)

wherejν is defined as in the previous ansatz. Concerning
A4

µ, the consistent ansatz changes due to the use ofΣµν ins-
tead of its dual as in the ’t Hooft ansatz. One needs now,
instead of (71),

A4
µ = i

(
φ−1 ∗ ∂νφ + 3∂νφ ∗ φ−1

)
(75)

With this, one finally has

Fµν = F̃µν , Q = S = 1 (76)

but, due to the necessity of the consistent ansatz for theA4
µ

component, one can see that

Fµν 6= F †µν (77)

and hence the price one is paying in order to have a selfdual
field strength is its non-hermiticity. Note however that the
action and the topological charge are real.

4- (Commutative) Witten ansatz(1977)

The clue in this ansatz [40] is to reduce the four di-
mensional problem to a two dimensional one through an
axially symmetric N-instanton ansatz. That is, one passes
from 4 dimensional Euclidan space to 2 dimensional space,
(x1, x2, x3, x4 → r, t) but this last with a nontrivial metric
gij = r2δij , i, j = 1, 2.

The axially symmetric ansatz for the gauge field compo-
nents is

~Ar = Ar(r, t)~Ω(ϑ, ϕ)
~At = At(r, t)~Ω(ϑ, ϕ)
~Aϑ = φ1(r, t)∂ϑ

~Ω(ϑ, ϕ)

+ (1 + φ2(r, t)) ~Ω(ϑ, ϕ) ∧ ∂ϑ
~Ω(ϑ, ϕ)

~Aϕ = φ1(r, t)∂ϕ
~Ω(ϑ, ϕ)

+ (1 + φ2(r, t)) ~Ω(ϑ, ϕ) ∧ ∂ϕ
~Ω(ϑ, ϕ) (78)

with

~Ω(ϑ, ϕ) =




sin ϑ cos ϕ
sinϑ sinϕ

cos ϑ


 (79)

With this ansatz, the selfduality instanton equation (64)
becomes a pair of BPS equations for vortices in curved space

Fµν = F̃µν →
{ 1√

g Fzz̄ = |φ|2 − 1
Dzφ = 0

(80)

where φ = φ1 + iφ2 and z = t + ir. Solving these
BPS vortex equations then reduces to finding the solution
of a Liouville equation. In this way an exact axially sym-
metry N-instanton solution was constructed in [40] for the
(commutative)SU(2) theory.

4-Noncommutative version of Witten ansatz

To proceed, one needs a noncommutative setting for cur-
ved 2-dimensional space, whereθ can in principle depend
onx,

[xi, xj ] = θij(x) (81)

Now, handling such a commutator is not trivial since not all
functionsθij(x) will guarantee a noncommutative but asso-
ciative product.

One can see, however, that associativity can be achieved
whenever

∇iθ
ij = 0 (82)

In the present 2 dimensional case, these equations have
as solution

θij = θ0
εij√

g
(83)

with θ0 a constant. Then, given the metric in which the
instanton problem with axial symmetry reduces to a vortex
problem we see that an associative noncommutative product
should take the form

[r, t] = r2θ0 ; all other [., .] = 0 (84)

with now r andt defining the two dimensional variables in
curved space. A further simplification occurs after the ob-
servation that

r ∗ t− t ∗ r = r2θ0 ⇒ t ∗ 1
r
− 1

r
∗ t = θ0 (85)

Then, callingy1 = t and y2 = 1/r we have instead of
(84) the usual flat space Moyal product and the Bogomol’nyi
equations take the form

(
1− 1

2
(z + z̄)2

)
Dzφ =

(
1 +

1
2
(z + z̄)2

)
Dz̄φ(86)

iFzz̄ = 1− 1
2
[φ, φ̄]+ (87)

iFzz̄ = −1
2
[φ, φ̄] (88)

with z = y1+iy2. We can at this point apply the Fock space
method detailed above for constructing vortex solutions. In
the present case, consistency of eqs.(86)-(88) imply

φ̄φ = 1 (89)
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and hence the only kind of nontrivial ansatz should lead, in
Fock space, to a scalar field of the form

φ =
∑
n=0

|n + q〉〈n| (90)

whereq is some fixed positive integer. With this, it is easy
now to construct a class of solutions analogous to those pre-
viously found for vortices in flat space. It takes the form

φ =
∑
n=0

|n + q〉〈n|

Az = − i√
θ0

q−1∑
n=0

(√
n + 1

) |n + 1〉〈n|+

+
i√
θ0

∑
n=q

(√
n + 1− q −√n + 1

)
|n + 1〉〈n|

(91)

One can trivially verify that configurations (91) satisfy
eqs.(86)-(88) providedθ0 = 2. In particular, both the l.h.s.
and r.h.s of eq.(86) vanish separately. The field strength as-
sociated to our solution reads, in Fock space,

iFzz̄ = −1
2

(|0〉〈0|+ . . . + |q − 1〉〈q − 1|) ≡ B (92)

or, in the original spherical coordinates

~Ftu = B(r)~Ω
~Fϑϕ = B(r) sin ϑ ~Ω

F 4
tu = B(r)

F 4
ϑϕ = B(r) sin ϑ (93)

As before, starting from (92) forB in Fock space, we can
obtain the explicit form ofB(r) in configuration space in
terms of Laguerre polynomials, using eq.(66). Concerning
the topological charge, it is then given by

Q =
1

32π2
tr

∫
d4xεµναβFµνFαβ

=
1
π

∫ 0

−∞
du

∫ ∞

−∞
dtB2 = 2TrB2 =

q

2
(94)

We thus see thatQ can be in principle integer or semi-
integer, and this for an ansatz which is formally the same as
that proposed in [40] for ordinary space and which yielded in
that case to an integer. The origin of this difference between
the commutative and the noncommutative cases can be tra-
ced back to the fact that in the former case, boundary con-
ditions were imposed on the half-plane and forced the so-
lution to have an associated integer number. In fact, if one
plots Witten’s vortex solution in ordinary space in the whole
(r, t) plane, the magnetic flux has two peaks and the corres-
ponding vortex number is even. Then, in order to parallel
this treatment in the noncommutative case one should im-
pose the conditionq = 2N .
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