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Explaining codon evolution in the standard genetic code is a remarkable subject in Molecular Biology. There
are many works which try to develop a model to represent this evolution, sometimes using a certain amount
of mathematical tools. The present work has as its main objective to explain one possible dynamical evolution
model, which is based in the algebraic approach propos&€98 by Hornos and Hornos. This model made

an analogy between the evolution of elementary particles and evolution of codons. As a result, the symmetry
group that better adjusts degeneracy of the genetic code is the simplecticgF@ip The dynamical model

present here is based in tAelimensional weight space 6fp(6), calledCodon SpaceThis space is invariant

under the action of th®ctahedral Group A map,®> — %3, was constructed using an equivariance principle

and its action in the Codon Space was observed. The results were based in the analysis of the attractors and
their preserved symmetries. The dynamical system action reproduces the main aspects of the labeling proposed
in the algebraic approach. Moreover, the map separates the codons in distinguished sets, coupling codons from
the same aminoacid in the same attractor. These dynamical results indicate that the algebraic model proposed in
1993 may be an important contribution to explain codon evolution, both in the algebraic and in the dynamical
aspects.

1 Introduction been selected by evolution in the same sense thaticosahedral
symmetry was advantageous in the formation of virus cap-
An evolving code is a widely accepted idea after the dis- sule. However, the analogy is vague: in the case of viruses
covery of non-standard mithocondrial codes[1, 2]. The de- one deals with the symmetry of an object while in the case
viations from the universal code which characterize mitho- of the genetic code it is a dynamical symmetry, manifested
condrial and some nuclear species are testimonies of thén the process of protein translation. This approach is simi-
large scale time evolution from a simpler ancestor code tolar to symmetry-based models used in physics, mathematics
the present form. Examples of such ideas are the primor-and recently in biology [14-19]. However, in those theories
dial code proposed by Osawa and Jukes[1, 2], the theory ofsome kind of dynamical system is naturally associated with
Landweber[3], and Gray et. al.[4]. the model. The most popular example is Maxwell’'s the-

A code containing only a reduced number of aminoacids ory for electromagnetism or the similar theories for strong
ruling the protein synthesis in the beginning of life forma- and weak interactions. Space-time symmetries and gauge
tion is also a very common assumption. Recently Trifonov invariance appear as properties of partial differential equa-
[5] listed and compared a family of models designed to se- tions, leading immediately to the possibility of quantitative
lect the amino-acid ancestors [6-9]. predictions.

The algebraic approach to the genetic code [10-13] con-  In the case of the algebraic model only the degeneracy is
siders the experimental degeneracy of the standard code agsed as an input, and the symmetry-breaking pattern is the
a starting point, and searches for a symmetry group able tomain result coming from the theory. A number of predic-
generate this degeneracy by a process of symmetry-breakingions about the primordial amino acids, the existence of a
called the Higgs-Crick mechanism. The best, or unique un- freezing process, and some hints about the timing of incor-
der some restrictions, symmetry found among Lie groups poration of amino acids can be obtained from this approach.
was the symplectic groupp(6). From an evolutionary  However, the absence of a dynamical model limits the quan-
point of view, we can say that the symplectic symmetry have titative power of that approach.
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The definition of a class of dynamical systems appro- sarily loose information. But what is important is that the
priate to a given symmetry is a well-defined mathematical fundamental features of the dynamical system will appear
problem. One can, for example, look for general first-order in this simple model.
differential equations equivariant under the given symme-
try, and use that to model the codon evolution and the re- . .
lation with the amino acids. Indeed, the idea to investigate 2 The algebralc model codon assign-
the properties of codons in some 64th-dimensional structure ment
is older than the algebraic model. It has been used to in-

vestigate physical-chemist correlations between codons and2ne important step to understand the present approach i
amino acids by Giulio [8]. the codon assignment proposed by the algebraic model. The

decomposition of the codon space [13] occurs in this way:
in the first step six independent groups of codons are gen-

a I_.|(? g.roup on the spzce of F:O(?ons. Th? m;lln gO"?II gf th'? erated, corresponding to primitive amino acids. The codon
article s to propose a dynamical system for the evolution o space in this stage has six different codons labeled, and a:

codor;s Thefh'k?h dlme||15|onal|ty of the Cﬁdon SE?Ce and thea result the octahedral symmetry decrease to a symmetry
fompdeﬁllty ° tke symp e'ctlcl: group turfn t f!s.pro em m;o a Z5 x Dy . In the next steps, degeneracy decreases until the
ormidable tgs ‘ Dyna}mlca systems for finite groups Nave g, n4ary code is reached, where the symmetry preserved i
been extensively studied [20, 21, 22], but few examples are

iiable in the I : i | the Klein symmetry. In the final step we have all codons
avzl az@e In the literature for continuous groups as complex represented by vectors in th'éeight SpaceThe assignment
asSp(6).

of the codons in the Weight Space is showed, separated by
A less ambitious program can be implemented focusing their degeneracies, in tab.(1), tab.(2), tab.(3), tab.(4), tab.(5).

our attention in the weight space of the group [23, 24]. This In the algebraic model for the genetic code aminoacids

space, to be defined below, is a tridimensional space insteadavith degeneracy six can be found in the weight space of the

of a 64th dimensional space as the codon space. They argymplectic group in the plans calldmsonic planswhich

not equivalent: going down to the weigh space we neces-arez = 0, +2.

The main point in the algebraic approach is the action of .

Table 1. The codons and their positions in the Weyl space, degenefacy =

Codons - Aminoacid Positions
CGU,CGC,CGA,CGG,AGAAGG - Arg| (—2,1,0),(2,1,0),(—2,—-1,0),(2, -1, ),(0,1,0) (0,—-1,0)
UUA,UUG,CUU,CUC,CUA,CUG - Leu| (0, 1,0),(0,—-1,0),(0,1,2),(0,-1,2),(0,1,-2),(0,—1, —2)
AGU,AGC,UCU,UCC,UCA,UCG - Ser| (—1,0,0),(1,0,0),(—1,0,2),(1,0,2),(—1,0,—2),(1,0,—2)

Table 2. The codons and their positions in the Weyl space, degeneracy =

Codons Aminoacid Positions
GCU,GCC,GCA,GCG Ala (—1,2,0),(1,2,0),(—1,-2,0),(1,—-2,0)
CCU,CCC,CCG,CCA Pro (-1,1,1),(1,1,1),(1,-1,1),(-1,-1,1)
GGU,GGC,GGA,GGG Gly (-1,1,-1),(1,1,-1),(—-1,—-1,-1),(1,—-1,-1)
ACU,ACC,ACG,ACA Thr (-1,1,1),(1,1,1),(1,-1,1),(—-1,-1,1)
GUU,GUC,GUG,GUA Val (-1,1,-1),(1,1,-1),(1,-1,-1),(—1,—-1,-1)

Table 3. The codons and their positions in the Weyl space, degeneBacy =

Codons Aminoacid Positions
AUU,AUA,AUC lle (—2,0,1),(0, 0 1) (2,0,1)
UAA,UGA,UAG Term (-2,0,-1),(0,0,-1),(2,0,1)
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Table 4. The codons and their positions in the Weyl space, degenetacy =

Codons | Aminoacid Positions
uuu,uuC Phe (-1,0,0),(1,0,0)
GAU,GAC Asp (—1,0,0),(1,0,0)
GAAGAG Glu (0,1,0),(0,—1,0)
AAU,AAC Asn (0,1,0),(0,—1,0)
AAAAAG Lys (0,1,0),(0,—1,0)
CAA,CAG GIn (0,0,1),(0,0,—1)
CAU,CAC His (0,0,1),(0,0,-1)
UGU,UGC Cys (0,2,-1),(0,-2,-1)
UAU,UAC Tyr (0,2,1),(0,—2,1)

Table 5. The codons and their positions in the Weyl space, There are nine aminoacids with degeneracy two. Some

degeneracy = 1. of them can be found in a fermionic plan and some in the
Codons| Aminoacid | Positions bosonic plan. There are two aminoacids with degeneracy
AUG Met (0,0,—-1) one. The representation of the codons in a three dimensional
UGG Trp (0,0,1) space leads to a problem: tfi¢ codons, that were repre-

sented in theSp(6) model by independent vectors, have to
The plan names were defined by the last coordinate in'it In @ 3d space, and thus some information is lost. The
the weight vector. For example a codon with assignment &'fangement of the codons in the weight space by plans is

vector type(a, b, +1) has to be in dermionic planother- showed in F.ig.' 1. The cod.ons position is a fundamep-
wise it will be in abosonic plan tal characteristic for a dynamical discrete system behavior,

All aminoacids with degeneracy three are in the since from these positions was defined the dynamical system

fermionic plart. In tab. (4) is showed the aminoacids wit
degeneracy two.

h action; in other words, they are initial conditions to iterate
the discrete map.

OcA

Figure 1. Amino acid and codon assignments for the standard genetic code,according to [13]. From left to right=plamptanez = 1;
planez = —1; planez = 2; planez = —2.

3 The octahedral equivariant map .

10
Mi=]| -1 0 0
0 01
This matrix correspond to the permutation element
(1234) or a rotation byd0° degrees around the- axis. The
other two3-dimensional generators 6f;, are

@)

The octahedral equivariant map can be constructed using the
generators of the group;, with dimension three[25]. These
generators are matric8sx 3, in total of three. All different
combinations of the generators produce the rest ot 5hs-

ements of the);, group. Each symmetry operation has the 0o 0 1
corresponding matrix representation. For example: a rota- My=|0 -1 0 |, 2)
tion of 90° around the: axis is represented by the matrix 1 0 0

LFermions are particles with sp%} or half-integer, here the fermionic plan was normalized multiply by two. The same procedure was done with bosonic
plans.
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and The first step in the construction of the dynamical sys-
-1 0 0 tem is to apply the equivariance in a generic function
Ms = 0 -10 ’ @) flz,y,20) = 2 Arg,27y%2P, wherer, 0, p are vari-
ant parameters. Through the equivariance properties by the
corresponding to the permutation elemeft$)(35)(24) matrices action it is possible to construct the map. The
and (13)(24)(56), respectively. The last one is the com- equivariant map can be reduced in the final step of its con-
plete reflection. Multiplying these matrices among them- struction using the invariant function. The invariance prin-
selves we generate moté matrices, including the identity,  ciple is given byThe functionf(r;\) : M — N is said
which represents the octahedral group. to invariant under the action of the symmetry grobpf;

The dynamical system which has this symmetry as f(yr;\) = vf(r;A) = f(r; \) wherey € T'. Using the
equivariant symmetry can be represented by a set of func-invariance principle was construct the three invariant func-
tions. The equivariance principle is given bihe function tions for the octahedral symmetry, as follow.
fr;\) : M — N is said to be equivariant under the ac-
tion of the element € I', wherel is a symmetry group if,

. . . _ 2,22
f(yr; ) = vf(r; \), where the constaritis thebifurcation u = ry=z
parameter[20]. Through the map iteration it is possible to v = 2?4y 422 4)
see the isotropic subgroups when the bifurcation parameter s = a2y + 22y + 2222

has increased or decreased, depending on the system con-

structed [25]. The isotropic subgroups are represented by  There are an infinite number of possibilities to produce

the attractors generated by the iteration process [22]. In oura dynamical system which preserves the octahedral symme-
case the map is an applicatigiiz) : ®2 — R3, and the try. One of these possibilities of dynamics, based in stability

attractors are in the same space, but drawing in a plane byconcepts and analyzing the fixed points for each value of the

perspective. bifurcation parameter, is given as follow.
|
fo=a[0s +ov+ A+ o{(a® —y? = 2%) + (y2° — 2%y® — 2%2?)}]
F=| fy=ylds+ov+A+o{(y* —a® - 2%) + (2?2° —2%y* = 2%y?)}] |. (5)
o= 2[0s +ov+ X+ p{(2% — 2% — y?) + (2%y? — 22y? — 2%2?)}]
[

The parameters, o, ¢ were determined from parity  an attractor withO, symmetry. This result is well known in
relations between the matrices and the old general paramimany aspects. However, the interest here is in how this map
eterst, 0, p. Their values are determined observing the can change the evolution aspects(labeling) proposed by the
fixed points possibilities. The role of the parameters is de- algebraic approach. Besides, the map can produce a totally
termine the shape of the attractors. Different attractors with different evolution path when acting in the codon space.

Oy, can be produced by different values of the fixed param-  Using the labeling proposed by the algebraic approach
etersd, o, o. This characteristic can be observed in some described in Fig. 1 it is possible to define what initial condi-
works were the bidimensional maps with,, symmetry are  tions are in our perspectives. Thevariation promotes a set
analyzed [21]. A fixed point is defined by: of different attractors, where the preserved symmetries are
related by the invariant subgroups. Por= —1.400 a D,
symmetry is generated. Through the computational behav-

The map is an applicatioR? — R3 so the fixed points  ior the symmetry relations can be easily determined. Appli-
(z0, yo, o) can be obtained by mathematical relations that cation of the generator matrices in the points resulted by the
preserves the real space. In other words, the fixed pointsMap iteration leave all points invariant. This fact leads to the
are responsible to define the dynamics behavior in the real?a Symmetry as invariance group for this valueof
space and they have a directly relatiory, yo, z0) =

f(4, o, p; A). Imposed that this square root is a real
number for a range of values it was achieve the fixed pa- 4 Results and conclusions
rameters values.

Starting our dynamics with = 1, ¢ = —0.7, ¢ = We will now consider the codons positions in the Weight
—0.8 and the bifurcation parameterin= —1.440 produces  Space as initial conditions to start our dynamics. The sym-

f(x0, Y0, 20; A) = (0,0, 20)- (6)
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metries that are preserved by different values\ @fre: oc- of attractors corresponding to the codons GGC and GGA in
tahedral symmetry in-1,440, D, symmetry in—1,400, a two-points attractor and the other two codons of Gly in
Klein symmetry in—1, 354 and Z, or Chiral symmetry in another two-points attractor, which are distinct. The same
—1, 332, which are the isotropic subgroups @f,. To pro- pattern can be viewed when the aminoacid Val is used. A

duce the dynamics attractors the initial condition was fixed notable fact is this: no codon is mixed with codons from

in just one value. As an example it is possible to see thedifferent aminoacids because the different assignment will
octahedral subgroups represented by their attractors in Figmix different codons from distinguishable aminoacids. The
2, Fig. 3 acting in the codon space when the valuea of unexpected pairing GGC and GGA besides GGC and GGU
are—1,440 and—1,400. In this specific case the dynamics depends on assignment proposed, exclusively, and can be re-
does not produce the octahedral symmetry,lthesymme- paired in the algebraic model to make the dynamical model
try is preserved. This happens because the aminoacids aremore precise.

in plans which reduce the space in one dimension. In other

words, there is no dynamics in a three dimensional space

when one is considering the map action in codon space even P 4 T s
if A= —1,440. % \
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Figure 3. Distinct attractors (divide by traceable lines) vikikin

symmetry preserved.
Figure 2. Attractor withD, symmetry preserved.
The codons of Ala are in a attractor withy symmetry

Different initial conditions could produce completely differ- whenA < —1.400 Fig. 2. Together with them, forming in
ent aspects of our dynamics. For our surprise, the pointsthe same orbit, are the Arg codons CGU, CGC, CGA and
fixed as codons in the algebraic model weight space gave uGG, see tab.(1). These codons are in the same irreducible
one important information: codons that represent the samerepresentation in the algebraic model, which is an impor-
aminoacid remains in the same attractor until the final step oftant result. For—1.400 < A < —1.354 the codons of Ala
symmetry breaking in the dynamical model, when the sym- are separated of the Arg codons in two distinct attractors
metry Z, appear as main symmetry, pairing the codons two Fig. 3. Each one has as a setwise group of symmetry, the
by two. Klein group. The assignment done by the algebraic model
The symmetry breaking or codon evolution represented and the dynamical system action guarantee a correct sepa-
by a dynamical system is unique. As an example of the ration of codons during their evolution. An undesired situ-
present approach it will be considered some aminoacids —ation that not occurred, in this case, will be the mixing of
a complete study is unnecessary because the symmetry idifferent codons from distinct aminoacids in the same orbit.
valid for all aminoacid — so the dynamical system acts in For lower values of\ there occurs a shift of codons from
the same way when the same position is used as initial conthe same aminoacids forming two attractors for the same
dition. Let us present a brief discussion about the action of aminoacid. Similar result occurred with the Gly.
the discrete map in the aminoacids position labeled repre-  The codons of Arg, Ser and Leu with degeneréeyere
sented in the codons space. separated by the action of the dynamical system in two be-
When the dynamical system starts in the codon posi- haviour families: one family is a set df codons and the
tion that represents the aminoacid Gly, it promotes a split another is a set with codong while in the algebraic model

2This result shows an strong analogy with the family boxes proposed by many biologists[1, 2].
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they are in the same representation. The Weyl Group actionSpace is responsible to shift different aminoacids leaving
in the weight space does not connect the six codons of eacttodons from a same aminoacids in a same dynamic symme:
aminoacid. In this way they evolved to distinct attractors, as try. These results generate families of codons in a evolution

discussed. sense provided by variation af
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