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Explaining codon evolution in the standard genetic code is a remarkable subject in Molecular Biology. There
are many works which try to develop a model to represent this evolution, sometimes using a certain amount
of mathematical tools. The present work has as its main objective to explain one possible dynamical evolution
model, which is based in the algebraic approach proposed in1993 by Hornos and Hornos. This model made
an analogy between the evolution of elementary particles and evolution of codons. As a result, the symmetry
group that better adjusts degeneracy of the genetic code is the simplectic groupSp(6). The dynamical model
present here is based in the3 dimensional weight space ofSp(6), calledCodon Space. This space is invariant
under the action of theOctahedral Group. A map,<3 → <3, was constructed using an equivariance principle
and its action in the Codon Space was observed. The results were based in the analysis of the attractors and
their preserved symmetries. The dynamical system action reproduces the main aspects of the labeling proposed
in the algebraic approach. Moreover, the map separates the codons in distinguished sets, coupling codons from
the same aminoacid in the same attractor. These dynamical results indicate that the algebraic model proposed in
1993 may be an important contribution to explain codon evolution, both in the algebraic and in the dynamical
aspects.

1 Introduction

An evolving code is a widely accepted idea after the dis-
covery of non-standard mithocondrial codes[1, 2]. The de-
viations from the universal code which characterize mitho-
condrial and some nuclear species are testimonies of the
large scale time evolution from a simpler ancestor code to
the present form. Examples of such ideas are the primor-
dial code proposed by Osawa and Jukes[1, 2], the theory of
Landweber[3], and Gray et. al.[4].

A code containing only a reduced number of aminoacids
ruling the protein synthesis in the beginning of life forma-
tion is also a very common assumption. Recently Trifonov
[5] listed and compared a family of models designed to se-
lect the amino-acid ancestors [6-9].

The algebraic approach to the genetic code [10-13] con-
siders the experimental degeneracy of the standard code as
a starting point, and searches for a symmetry group able to
generate this degeneracy by a process of symmetry-breaking
called the Higgs-Crick mechanism. The best, or unique un-
der some restrictions, symmetry found among Lie groups
was the symplectic groupSp(6). From an evolutionary
point of view, we can say that the symplectic symmetry have

been selected by evolution in the same sense that icosahedral
symmetry was advantageous in the formation of virus cap-
sule. However, the analogy is vague: in the case of viruses
one deals with the symmetry of an object while in the case
of the genetic code it is a dynamical symmetry, manifested
in the process of protein translation. This approach is simi-
lar to symmetry-based models used in physics, mathematics
and recently in biology [14-19]. However, in those theories
some kind of dynamical system is naturally associated with
the model. The most popular example is Maxwell’s the-
ory for electromagnetism or the similar theories for strong
and weak interactions. Space-time symmetries and gauge
invariance appear as properties of partial differential equa-
tions, leading immediately to the possibility of quantitative
predictions.

In the case of the algebraic model only the degeneracy is
used as an input, and the symmetry-breaking pattern is the
main result coming from the theory. A number of predic-
tions about the primordial amino acids, the existence of a
freezing process, and some hints about the timing of incor-
poration of amino acids can be obtained from this approach.
However, the absence of a dynamical model limits the quan-
titative power of that approach.
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The definition of a class of dynamical systems appro-
priate to a given symmetry is a well-defined mathematical
problem. One can, for example, look for general first-order
differential equations equivariant under the given symme-
try, and use that to model the codon evolution and the re-
lation with the amino acids. Indeed, the idea to investigate
the properties of codons in some 64th-dimensional structure
is older than the algebraic model. It has been used to in-
vestigate physical-chemist correlations between codons and
amino acids by Giulio [8].

The main point in the algebraic approach is the action of
a Lie group on the space of codons. The main goal of this
article is to propose a dynamical system for the evolution of
codons. The high dimensionality of the codon space and the
complexity of the symplectic group turn this problem into a
formidable task. Dynamical systems for finite groups have
been extensively studied [20, 21, 22], but few examples are
available in the literature for continuous groups as complex
asSp(6).

A less ambitious program can be implemented focusing
our attention in the weight space of the group [23, 24]. This
space, to be defined below, is a tridimensional space instead
of a 64th dimensional space as the codon space. They are
not equivalent: going down to the weigh space we neces-

sarily loose information. But what is important is that the
fundamental features of the dynamical system will appear
in this simple model.

2 The algebraic model codon assign-
ment

One important step to understand the present approach is
the codon assignment proposed by the algebraic model. The
decomposition of the codon space [13] occurs in this way:
in the first step six independent groups of codons are gen-
erated, corresponding to primitive amino acids. The codon
space in this stage has six different codons labeled, and as
a result the octahedral symmetry decrease to a symmetry
Z2 ×D4 . In the next steps, degeneracy decreases until the
standard code is reached, where the symmetry preserved is
the Klein symmetry. In the final step we have all codons
represented by vectors in theWeight Space. The assignment
of the codons in the Weight Space is showed, separated by
their degeneracies, in tab.(1), tab.(2), tab.(3), tab.(4), tab.(5).

In the algebraic model for the genetic code aminoacids
with degeneracy six can be found in the weight space of the
symplectic group in the plans calledbosonic plans, which
arez = 0,±2.

Table 1. The codons and their positions in the Weyl space, degeneracy =6.

Codons - Aminoacid Positions
CGU,CGC,CGA,CGG,AGA,AGG - Arg (−2, 1, 0),(2, 1, 0),(−2,−1, 0),(2,−1, 0),(0, 1, 0),(0,−1, 0)
UUA,UUG,CUU,CUC,CUA,CUG - Leu (0, 1, 0),(0,−1, 0),(0, 1, 2),(0,−1, 2),(0, 1,−2),(0,−1,−2)
AGU,AGC,UCU,UCC,UCA,UCG - Ser (−1, 0, 0),(1, 0, 0),(−1, 0, 2),(1, 0, 2),(−1, 0,−2),(1, 0,−2)

Table 2. The codons and their positions in the Weyl space, degeneracy =4.

Codons Aminoacid Positions
GCU,GCC,GCA,GCG Ala (−1, 2, 0),(1, 2, 0),(−1,−2, 0),(1,−2, 0)
CCU,CCC,CCG,CCA Pro (−1, 1, 1),(1, 1, 1),(1,−1, 1),(−1,−1, 1)
GGU,GGC,GGA,GGG Gly (−1, 1,−1),(1, 1,−1),(−1,−1,−1),(1,−1,−1)
ACU,ACC,ACG,ACA Thr (−1, 1, 1),(1, 1, 1),(1,−1, 1),(−1,−1, 1)
GUU,GUC,GUG,GUA Val (−1, 1,−1),(1, 1,−1),(1,−1,−1),(−1,−1,−1)

Table 3. The codons and their positions in the Weyl space, degeneracy =3.

Codons Aminoacid Positions
AUU,AUA,AUC Ile (−2, 0, 1),(0, 0, 1),(2, 0, 1)
UAA,UGA,UAG Term (−2, 0,−1),(0, 0,−1),(2, 0, 1)
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Table 4. The codons and their positions in the Weyl space, degeneracy =2.
Codons Aminoacid Positions

UUU,UUC Phe (−1, 0, 0),(1, 0, 0)
GAU,GAC Asp (−1, 0, 0),(1, 0, 0)
GAA,GAG Glu (0, 1, 0),(0,−1, 0)
AAU,AAC Asn (0, 1, 0),(0,−1, 0)
AAA,AAG Lys (0, 1, 0),(0,−1, 0)
CAA,CAG Gln (0, 0, 1),(0, 0,−1)
CAU,CAC His (0, 0, 1),(0, 0,−1)
UGU,UGC Cys (0, 2,−1),(0,−2,−1)
UAU,UAC Tyr (0, 2, 1),(0,−2, 1)

Table 5. The codons and their positions in the Weyl space,
degeneracy = 1.

Codons Aminoacid Positions
AUG Met (0, 0,−1)
UGG Trp (0, 0, 1)

The plan names were defined by the last coordinate in
the weight vector. For example a codon with assignment
vector type(a, b,±1) has to be in afermionic planother-
wise it will be in abosonic plan.

All aminoacids with degeneracy three are in the
fermionic plan1. In tab. (4) is showed the aminoacids with
degeneracy two.

There are nine aminoacids with degeneracy two. Some
of them can be found in a fermionic plan and some in the
bosonic plan. There are two aminoacids with degeneracy
one. The representation of the codons in a three dimensional
space leads to a problem: the64 codons, that were repre-
sented in theSp(6) model by independent vectors, have to
fit in a 3d space, and thus some information is lost. The
arrangement of the codons in the weight space by plans is
showed in Fig. 1. The codons position is a fundamen-
tal characteristic for a dynamical discrete system behavior,
since from these positions was defined the dynamical system
action; in other words, they are initial conditions to iterate
the discrete map.

Figure 1. Amino acid and codon assignments for the standard genetic code,according to [13]. From left to right: planez = 0; planez = 1;
planez = −1; planez = 2; planez = −2.

3 The octahedral equivariant map

The octahedral equivariant map can be constructed using the
generators of the groupOh with dimension three[25]. These
generators are matrices3× 3, in total of three. All different
combinations of the generators produce the rest of the45 el-
ements of theOh group. Each symmetry operation has the
corresponding matrix representation. For example: a rota-
tion of 900 around thez axis is represented by the matrix

M1 =




0 1 0
−1 0 0
0 0 1


 . (1)

This matrix correspond to the permutation element
(1234) or a rotation by900 degrees around thez - axis. The
other two3-dimensional generators ofOh are

M2 =




0 0 1
0 −1 0
1 0 0


 , (2)

1Fermions are particles with spin1
2

or half-integer, here the fermionic plan was normalized multiply by two. The same procedure was done with bosonic
plans.
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and

M3 =



−1 0 0
0 −1 0
0 0 −1


 , (3)

corresponding to the permutation elements(16)(35)(24)
and (13)(24)(56), respectively. The last one is the com-
plete reflection. Multiplying these matrices among them-
selves we generate more45 matrices, including the identity,
which represents the octahedral group.

The dynamical system which has this symmetry as
equivariant symmetry can be represented by a set of func-
tions. The equivariance principle is given by:The function
f(r; λ) : M → N is said to be equivariant under the ac-
tion of the elementγ ∈ Γ, whereΓ is a symmetry group if,
f(γr; λ) = γf(r; λ), where the constantλ is thebifurcation
parameter[20]. Through the map iteration it is possible to
see the isotropic subgroups when the bifurcation parameter
has increased or decreased, depending on the system con-
structed [25]. The isotropic subgroups are represented by
the attractors generated by the iteration process [22]. In our
case the map is an applicationf(x) : <3 → <3, and the
attractors are in the same space, but drawing in a plane by
perspective.

The first step in the construction of the dynamical sys-
tem is to apply the equivariance in a generic function
f(x, y, z; λ) = Σ ∆τ,θ,ρx

τyθzρ, whereτ, θ, ρ are vari-
ant parameters. Through the equivariance properties by the
matrices action it is possible to construct the map. The
equivariant map can be reduced in the final step of its con-
struction using the invariant function. The invariance prin-
ciple is given byThe functionf(r; λ) : M → N is said
to invariant under the action of the symmetry groupΓ if;
f(γr;λ) = γf(r; λ) = f(r; λ) whereγ ∈ Γ. Using the
invariance principle was construct the three invariant func-
tions for the octahedral symmetry, as follow.

u = x2y2z2

v = x2 + y2 + z2 (4)

s = x2y2 + z2y2 + x2z2.

There are an infinite number of possibilities to produce
a dynamical system which preserves the octahedral symme-
try. One of these possibilities of dynamics, based in stability
concepts and analyzing the fixed points for each value of the
bifurcation parameter, is given as follow.

c

F =




fx = x[δs + σv + λ + ϕ{(x2 − y2 − z2) + (y2z2 − x2y2 − z2x2)}]
fy = y[δs + σv + λ + ϕ{(y2 − x2 − z2) + (x2z2 − x2y2 − z2y2)}]
fz = z[δs + σv + λ + ϕ{(z2 − x2 − y2) + (x2y2 − z2y2 − z2x2)}]


 . (5)

d

The parametersδ, σ, ϕ were determined from parity
relations between the matrices and the old general param-
etersτ, θ, ρ. Their values are determined observing the
fixed points possibilities. The role of the parameters is de-
termine the shape of the attractors. Different attractors with
Oh can be produced by different values of the fixed param-
etersδ, σ, ϕ. This characteristic can be observed in some
works were the bidimensional maps withDm symmetry are
analyzed [21]. A fixed point is defined by:

f(x0, y0, z0; λ) = (x0, y0, z0). (6)

The map is an application<3 → <3 so the fixed points
(x0, y0, z0) can be obtained by mathematical relations that
preserves the real space. In other words, the fixed points
are responsible to define the dynamics behavior in the real
space and they have a directly relation(x0, y0, z0) =√

f(δ, σ, ϕ; λ). Imposed that this square root is a real
number for a range ofλ values it was achieve the fixed pa-
rameters values.

Starting our dynamics withδ = 1, σ = −0.7, ϕ =
−0.8 and the bifurcation parameter inλ = −1.440 produces

an attractor withOh symmetry. This result is well known in
many aspects. However, the interest here is in how this map
can change the evolution aspects(labeling) proposed by the
algebraic approach. Besides, the map can produce a totally
different evolution path when acting in the codon space.

Using the labeling proposed by the algebraic approach
described in Fig. 1 it is possible to define what initial condi-
tions are in our perspectives. Theλ variation promotes a set
of different attractors, where the preserved symmetries are
related by the invariant subgroups. Forλ = −1.400 a D4

symmetry is generated. Through the computational behav-
ior the symmetry relations can be easily determined. Appli-
cation of the generator matrices in the points resulted by the
map iteration leave all points invariant. This fact leads to the
D4 symmetry as invariance group for this value ofλ.

4 Results and conclusions

We will now consider the codons positions in the Weight
Space as initial conditions to start our dynamics. The sym-
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metries that are preserved by different values ofλ are: oc-
tahedral symmetry in−1, 440, D4 symmetry in−1, 400,
Klein symmetry in−1, 354 andZ2 or Chiral symmetry in
−1, 332, which are the isotropic subgroups ofOh. To pro-
duce the dynamics attractors the initial condition was fixed
in just one value. As an example it is possible to see the
octahedral subgroups represented by their attractors in Fig.
2, Fig. 3 acting in the codon space when the values ofλ

are−1, 440 and−1, 400. In this specific case the dynamics
does not produce the octahedral symmetry, theD4 symme-
try is preserved. This happens because the aminoacids are
in plans which reduce the space in one dimension. In other
words, there is no dynamics in a three dimensional space
when one is considering the map action in codon space even
if λ = −1, 440.

Figure 2. Attractor withD4 symmetry preserved.

Different initial conditions could produce completely differ-
ent aspects of our dynamics. For our surprise, the points
fixed as codons in the algebraic model weight space gave us
one important information: codons that represent the same
aminoacid remains in the same attractor until the final step of
symmetry breaking in the dynamical model, when the sym-
metryZ2 appear as main symmetry, pairing the codons two
by two.

The symmetry breaking or codon evolution represented
by a dynamical system is unique. As an example of the
present approach it will be considered some aminoacids —
a complete study is unnecessary because the symmetry is
valid for all aminoacid — so the dynamical system acts in
the same way when the same position is used as initial con-
dition. Let us present a brief discussion about the action of
the discrete map in the aminoacids position labeled repre-
sented in the codons space.

When the dynamical system starts in the codon posi-
tion that represents the aminoacid Gly, it promotes a split

of attractors corresponding to the codons GGC and GGA in
a two-points attractor and the other two codons of Gly in
another two-points attractor, which are distinct. The same
pattern can be viewed when the aminoacid Val is used. A
notable fact is this: no codon is mixed with codons from
different aminoacids because the different assignment will
mix different codons from distinguishable aminoacids. The
unexpected pairing GGC and GGA besides GGC and GGU
depends on assignment proposed, exclusively, and can be re-
paired in the algebraic model to make the dynamical model
more precise.

Figure 3. Distinct attractors (divide by traceable lines) withKlein

symmetry preserved.

The codons of Ala are in a attractor withD4 symmetry
whenλ ≤ −1.400 Fig. 2. Together with them, forming in
the same orbit, are the Arg codons CGU, CGC, CGA and
CGG, see tab.(1). These codons are in the same irreducible
representation in the algebraic model, which is an impor-
tant result. For−1.400 < λ ≤ −1.354 the codons of Ala
are separated of the Arg codons in two distinct attractors
Fig. 3. Each one has as a setwise group of symmetry, the
Klein group. The assignment done by the algebraic model
and the dynamical system action guarantee a correct sepa-
ration of codons during their evolution. An undesired situ-
ation that not occurred, in this case, will be the mixing of
different codons from distinct aminoacids in the same orbit.
For lower values ofλ there occurs a shift of codons from
the same aminoacids forming two attractors for the same
aminoacid. Similar result occurred with the Gly.

The codons of Arg, Ser and Leu with degeneracy6 were
separated by the action of the dynamical system in two be-
haviour families: one family is a set of4 codons and the
another is a set with2 codons2 while in the algebraic model

2This result shows an strong analogy with the family boxes proposed by many biologists[1, 2].
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they are in the same representation. The Weyl Group action
in the weight space does not connect the six codons of each
aminoacid. In this way they evolved to distinct attractors, as
discussed.

6 M. Magini and J.E.M. Hornos

another is a set with 2 codons2 while in the algebraic model
they are in the same representation. The Weyl Group action
in the weight space does not connect the six codons of each
aminoacid. In this way they evolved to distinct attractors, as
discussed.

Figure 4. Distinct attractors (divide by traceable lines) with Quiral

symmetry preserved.

The dynamical system differs the termination codons
UAA and UAG, see tab.(3), from the codon UGA. This dis-
tinction can be observed in non-standard codes when UGA
starts to codify Ile. Surprisingly these two codons are in the
same orbit in Fig. 4. The same pattern occurs with Met and
Trp.

The algebraic approach [10] was proposed to explain
codon degeneracy in the standard genetic code. After some
time a series of works and tools were created to produce
stronger conclusions about evolution. Most of them were a
success in the sense that they prove that ideas suggested by
the model are correct, in biological and mathematical con-
text. Here was presented one important approach, which
only uses as a starting point the Weyl Group of Sp(6).
Note that the possibilities of distinction using the dynami-
cal model are more than 1. In other words, from the action
of the map in the Codon Space it could be expected a set
of symmetry breaking chains. Actually the possible number
of chains are bigger than 20. More than this, the points in
the map are unstable and hyperbolics so the behavior of the
map in unpredictable. However, it was observed that even

in the dynamical system the codon evolution produces prac-
tically the same path proposed by the algebraic approach,
with one difference: the aminoacids with degeneracy 6 are
not well represented by the dynamics, this is a weak point
in this approach. Nevertheless, aminoacids with degener-
acy 6 were a doubt problem when the algebraic approach
was constructed, and are considered by many researchers as
“problematic” aminoacids when the evolution context is an-
alyzed. In a general context the dynamics action in Codon
Space is responsible to shift different aminoacids leaving
codons from a same aminoacids in a same dynamic symme-
try. These results generate families of codons in a evolution
sense provided by variation of λ.
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