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A possible connection between the energy W of the vacuum fluctuations of quantum fields and gravity in
“empty space” is conjectured in this paper using a natural cutoff of high momenta with the help of the gravita-
tional radius of the vacuum region considered. We found that below some “critical” length L = 1mm the pressure
σ is one third of the energy density ε, but above 1 mm the equation of state is σ =−ε as for dark energy). In the
case of a massive field, W does not depend on the mass of the field for L << 1mm but for L >> 1mm it does
not depend on ~. In addition, when the Newton constant tends to zero, W becomes infinite. The energy density
is also a function of the volume V of the vacuum region taken into account.
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I. INTRODUCTION

The zero point energy was firstly introduced in physics by
Max Planck. The average energy E of a harmonic oscillator
at temperature T would be given by [1]

E =
~ω
2

+
~ω

exp( ~ω
kBT )−1

(1)

One means the oscillator has an energy ~ω/2 even at T = 0,
where T is the temperature of the black body radiation. ω is
the frequency of the oscillator and kB and ~ - the Boltzmann
and the Planck constant, respectively.
A very important effect of the zero point energy consists in
maintaining helium in the liquid state under its vapour pres-
sure at T = 0. As D. Sciama [1] pointed out,“the zero point
motion of the atoms keeps them sufficiently far apart on the
average so that the attractive forces between them are too
weak to cause solidification (even close to absolute zero he-
lium is hot enough to be liquid”).
The boundary conditions associated with a physical system
narrow the range of normal modes which contribute to the
ground state of the system and so to the zero point energy.
For instance, some of normal modes of a massless field (say,
the electromagnetic field) are excluded by boundary condi-
tions (the experimentally proven Casimir effect). The modes
whose wavelength exceeds the distance between the parallel
conductors cannot propagate inside the system.
The zero point energy associated with the quantum fluctua-
tions of a massless or massive field is infinite due to the lack
of a natural cutoff of the high frequences. The common pro-
cedure is to use an exponential cutoff [2] to render finite the
vacuum expectation values < 0|Tµν|0 > of the stress tensor of
the quantum field.
In 1973, J.D.Bekenstein conjectured that for a system of en-
ergy M localized in a region of linear dimension R, its entropy
is bounded from above

S <
2πckBMR

~
(2)

For weak gravity, the linear dimensions of the system are
much larger than its Schwarzschild radius rg = 2GM/c2.

Therefore,

S <
c3kB

4G~
A, (3)

where A = 4πR2 is the surface area of the system [3]. Eq.
(3) is in accordance with the Holographic Principle [4] which
states that the entropy in a spatial volume V with surface A as
its boundary cannot exceed A/4.
As Hong and Hsu have noticed, the energy of a system of size
R must have an upper bound not to collapse into a black hole.
In other words, the linear dimension of the physical system
has to be longer than its gravitational radius.
A. Aste [5] reached similar conclusions by imposing a cutoff
on the maximum energy of the field modes of the order of the
Planck energy. The maximum energy Wmax of a state in Fock
space should be Mbh (R)c2, the energy of a black hole with
radius R. Therefore [5]

Wmax ≈ c4

2G
R. (4)

Recently, T.Padmanabhan [6] has observed that we have to
treat the energy fluctuations as the physical quantity “de-
tected” by gravity when quantum effects are taken into ac-
count. Quantum theory taught us that the energy density (even
the vacuum state concept) depends on the scale where it is
probed.
On the same line as above, we try in this paper to render fi-
nite the zero point energy of quantum fields by removing the
modes of short wavelengths by means of a gravitational cut-
off. λmin must exceed the gravitational radius associated with
the energy of the system taken into consideration. In Sec.2 we
compute the finite energy W of a vacuum region of volume
V, linear dimension L = V 1/3 and temporal dimension L/c.
We find that W ∝ V 1/5. Note that the system has no physical
boundaries.
In Sec.3, W is calculated for the quantum fluctuations of a
massive scalar field with m its mass, taken here as the proton
mass. We found that W does not depend on m for L << 1mm.
In addition, the pressure σ is one third of the vacuum energy
density ε.
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The expression for W is similar with that corresponding to
the massless field. For L >> 1mm, W is independent of the
Planck constant in the approximationn used. In both cases,
ε is not constant but a function of the independent variable
V. We show that for the macroscopic case, when Einstein’s
equations are important, we have σ+ ε = 0, the well - known
property which leads to a Lorentz - invariant vacuum with the
appearance of a cosmological constant.
We conclude with a summary of our results and a brief dis-
cussion of open questions.
We use from now on geometrical units c = G = ~= kB = 1.

II. THE MASSLESS SCALAR FIELD

Let us take a vacuum region of volume V, with linear
dimension L, temporal dimension L and with no physical
boundaries. Let us suppose that the energy of the vacuum
state of the quantized massless field in the volume V is W, a
finite value.
Let Tµν be the stress tensor of the field inside V. It is well -
known that the naive vacuum expectation value < 0|Tµν|0 >
is divergent because each field mode of angular frequency ω
contributes a zero point energy (1/2)~ω to the vacuum [7].
It is the renormalized expectation value < 0|Tµν|0 >ren from
which the divergences could be removed in an invariant way.
Therefore, the energy density is given by

ε =
Z ωmax

0
u(ω)dω =

1
4π2

Z ωmax

0
ω3dω (5)

where u(ω) is the spectral density. The cutoff frequency ωmax
will be determined in the following manner. As the energy
inside the volume V has a finite value W, the linear dimensions
of the system should be more than the gravitational radius rg
associated with W, otherwise the system will collapse into a
black hole

L≥ 2W. (6)

Therefore

ωmax =
2π

λmin
=

π
W

, (7)

because the shortest wavelength of the field modes cannot ex-
ceed the Schwarzschild radius of the system. One obtains
from (5) [? ]

ε =
W
V

=
π2

16W 4 , (8)

whence

W (V ) =
(

π2

16

)1/5

V 1/5. (9)

(Keeping track of all fundamental constants, we have W 5 =
π2~c17V/16G4). Written in a different form, Eq. (9) appears
as

(
W
WP

)5

=
π2

16

(
L
LP

)3

, (10)

where WP and LP are Planck’s energy and length, respectively.
We see that the zero point energy of the massless scalar field
depends only on the volume considered and fundamental con-
stants. In addition, when G tends to zero, the energy becomes
infinite. In other words, gravitation acts as a natural ultravio-
let cutoff.
It is an easy task to check that we always obtain from (10) that
any L≥ rg leads to L≥ LP, as it should be. It is a confirmation
that the formula (10) works for any L ≥ LP and, in principle,
beyond it. On the contrary, we will see that the situation is
different for the massive field case.

III. THE MASSIVE SCALAR FIELD

Let us consider now the energy of the vacuum fluctuations
of a quantum scalar field of mass m to be the proton mass,
10−24 g. As is well known [2] [8], the relativistic energy den-
sity of the zero point fluctuations of a massive scalar field is
given by

ε =
1

4π2

Z ∞

0
p2

√
p2 +m2d p (11)

where p is the momentum of the particle of the field. The
corresponding pressure is

σ =
1
3

1
4π2

Z ∞

0

p4
√

p2 +m2
d p, (12)

ε and σ are, of course, the vacuum expectation values <
0|T 0

0 |0 > and < 0|T 1
1 |0 >=< 0|T 2

2 |0 >=< 0|T 3
3 |0 >, respec-

tively, the formal divergent quantities.
We try in this paper to render T ν

µ finite with the help of a UV
cutoff, using gravity. We therefore replace the expressions
(11) and (12) by

ε =
1

4π2

Z 1/rg

0
p2

√
p2 +m2d p (13)

and

σ =
1

12π2

Z 1/rg

0

p4
√

p2 +m2
d p (14)

where pmax = 1/rg = m2
P/2W and λmin, associated with the

particle of mass m, is of the order of the gravitational radius
(mp is the Planck mass, 10−5 g). Solving the integrals from
Eq. (13) and (14), one obtains

ε =
m4

32π2

[
x
√

1+ x2 +2x3
√

1+ x2− ln(x+
√

1+ x2)
]

(15)
and

σ =
m4

32π2

[
−x

√
1+ x2 +

2
3

x3
√

1+ x2 + ln(x+
√

1+ x2)
]
,

(16)
where x = m2

P/2mW . With V fixed, we could find W from eq.
(15). However, it is impossible to get an analitical expression
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because of the logarithm in the r.h.s. Therefore, we look for
some approximate solution.
1). x << 1 ; W >> m2

P/2m≈ 1016g.
As we shall see, this case corresponds to the macroscopic sit-
uation. We have

√
1+ x2 ≈ 1+

x2

2
− x4

8
(17)

and

ln(1+ x+
x2

2
)≈ x− x3

6
+

x4

4
− x5

20
. (18)

Keeping terms up to the 5-th order, eq. (15) yields now

ε =
m4

12π2 x3
(

1− 3x
32

+
111x2

320

)
. (19)

Negleting the last two terms in the paranthesis, one get

W 4 =
m6

P
96π2 mV (20)

(written in full, (20) appears as W 4 = (c14/96π2G3)mV ). It
is worth to note that the energy W does not depend on the
Planck constant but only on c and V. It is proportional to V 1/4

and, therefore, ε is not constant.It decreases with V. In other
words, the energy density is a function of the initial volume.
Another form of the expression (20) would be

(
W
WP

)4

=
1

96π2
m

mP

(
L
LP

)3

(21)

where LP is the Planck length.
Let us find now for what values of L, eq. (21) is valid. We
must have W >> m2

P/2m or V >> 6π2m2
P/m5. Taking V ≈ L3,

we obtain L >> 1 mm. It means the approximation x << 1
corresponds to linear dimensions of the chosen vacuum region
much larger than 1 mm.
Summing up the Eqs. (15) and (16), one obtains

ε+σ =
m4

12π2 x3
√

1+ x2, (22)

which could be written as

ε+σ
εm

=
1

12π2 x3
√

1+ x2, (23)

With x << 1 or ε + σ << εm, where εm = m4 is the energy
density associated with the mass m, one has ε + σ ≈ 0 (in
this case the energy - momentum tensor of the quantum
fluctuations of a massive scalar field is of Λ - type).

2). x >> 1 ; W << m2
P/2m.

We have now
√

1+ x2 ≈ x and (15) appears as

W
V

=
m4x4

32π2

(
2+

1
x2 −

ln2x
x4

)
(24)

A new approximation leads to

W
V

=
m4x4

16π2 (25)

or, using the expression for x

W 5 =
m8

P
256π2 V. (26)

With all fundamental constant, W 5 = (~c17/256π2G4) V .
It is clear that the zero point energy in this case does not de-
pend on the mass m of the field. In addition, the same ap-
proximation gives σ = ε/3, the equation of state for radia-
tion. Therefore, the Lorentz invariance of the vacuum is pre-
served as the scalar field becomes massless in the approxima-
tion used (with x << 1, the Lorentz invariance was fulfilled by
ε = −σ). As we already noticed, we took here ε = W/V and
not dW/dV , sice W (V ) is a power function and the difference
is negligible.
Let us see now for what range of L we have W << m2

P/2m,
the condition of validity of (26). The restriction

m8
P

256π2 V <<
m10

P
32m5 (27)

must be fulfilled.
A simple calculation gives L << 1mm, the same limit as for
the case 1.
A more useful form of (26) would be

W
WP

=
(

1
16π

)2/5 (
L
LP

)3/5

. (28)

A comparison with (10) for the massless field shows that the
functions W (V ) are similar, excepting the numerical factor
and the range of validity.
3). x = 1 ; W = m2

P/2m.
Putting x = 1 in eq. (15), one obtains

W
V
≈ 3m4

32π2 . (29)

Combining with the condition W = m2
P/2m, we have

V
VP

= 50
(mP

m

)5
, (30)

whence L = V 1/3 ≈ 1 mm, which is the boundary between the
previous two regions. This “critical” length may be related
to the fundamental scale of quantum gravity [9] in the brane
world scenarios. For L << 1 mm the equation of state is σ =
ε/3 as for radiation, while for L >> 1 mm we have σ = −ε,
as for dark energy.

IV. CONCLUSIONS

We have proposed in this paper a model to render finite the
zero point energy of quantum fields. What we consider to be
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new with respect to the previous attempts is the appearance of
Newton’s constant, i.e. gravity, to make W finite.
The “transition” length L≈ 1 mm might be related to the brane
world models where the Newton law is supposed to undergo
changes for L below 1 mm. With L >> 1 mm (the macro-
scopic situation), W has a “classical” expression (no ~ appears
in its formula) and, in addition, the equation of state σ = −ε

leads to a Lorentz invariant vacuum.
We found that the energy density ε depends upon the volume
of the region taken into consideration, decreasing with V.
An open question would be the approximation used for eval-
uating W for the two ranges of L. With a higher accuracy we
could improve the results.
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