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Diverging Tendencies in Multidimensional Secession
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We review mean-field and fluctuation-dominated behaviors exhibited by the Seceder Model, which moves an
evolving population to various critical states of self-organized segregation, delicately balancing opposed soci-
ological pressures of conformity & dissent, and giving rise to rich ideological condensation phenomena. The
secession exponent and finite societal Seceder limits are examined.

This paper discusses recent research [1] on the Seceder
Model [2], an intriguing far-from-equilibrium stochastic
model of opinion dynamics in which the competing tenden-
cies of conformity and dissent cause an evolving popula-
tion to fragment, disperse, and coalesce,forming distinct
groups characterized by free and frequent interchange of in-
dividuals. We imagine a population that is ultimately eco-
nomic, sociological, or political in character, with interac-
tions based upon shared investment strategies, cultural opin-
ions, or electoral inclinations. This is in sharp contrast to
many well-known examples of inanimate cluster formation
found in Nature (e.g., in the astrophysical context- Saturnian
rings, globular clusters, Virgo galactic supercluster, etc.),
where the underlying forces are physical in origin; here, the
interactions are based upon signaling, opinion, and infor-
mation exchange. The Seceder Model bears close spiritual
kinship to a number of distinguished evolutionary minor-
ity games, among them the Zhang & Challet variant [3] of
Arthur’s El Farol Bar problem [4], as well as its stochas-
tic generalization by Johnson and coworkers [5], where it
was discovered that the introduction of chance brought the
population to a state ofself-organized segregationin which
two groups adopted diametrically opposed strategies. Fur-
ther work by Hod & Nakar [6] revealed a dynamical phase
transition in this setting, between 2-group segregation and
single-group clustering, driven by the economic cost-benefit
ratio implicit in the model. Relevant, too, is the work of
Hauert and collaborators [7, 8], who studied 3-group dy-
namics amidst cooperation, defection, and abstention in a
noncompulsory public goods game, mischievously dubbed
by popular science pundits [9] as the “Physics of Loners”!
In its initial rendering, they considered a well-mixed for-
mulation in which participants could interact readily with
any other member of the population. Afterwards, they intro-
duced spatial structure, finding peculiar traveling wave phe-
nomena within the model; see Hauert’s web page. Finally,
in a paper titled “Meet, Discuss, and Segregate!” Weisbuch
et al. [10] consider a model of opinion dynamics in which
a population of interacting agents adjust continuous posi-

tions via randombinary interactions subject to threshold
constraints. High thresholds (large inertial barriers) produce
a societal convergence of opinion to a single group in overall
agreement, whereas low thresholds result in multiple opin-
ion clusters. These, and related consensus models, such as
those of Bonabeau [11], Sznajd [12], and others, have been
discussed in wry pedagogical fashion by Stauffer in a nice
review [13]. Issues on a grander scale were addressed by
Stauffer and his close Brazilian colleagues [14].

The Seceder mechanism was devised to demonstrate that
a dynamics favoring individuality, yet permitting confor-
mity, cannot only create distinct groups, but also yields a
rich diversity of cluster-forming dynamics. The essential
trick was to benefit individuals that distinguish themselves
from others. This is natural, for one recalls from an epi-
demological point of view, genetic differences can enhance
long-term survival probabilities. Similarly, for players in a
minority game or traders on the stock market floor, distinct
strategies can yield large returns. The Seceder Model is suc-
cintly stated: Within a population ofN individuals, each
described by ad-dimensional opinion vector (representing a
multicomponent investment strategy, ideological or political
position), we implement the following update algorithm-

• A member (the “voter”) of the population is chosen at
random to revise his position.

• Pickm individuals (a “polling group”) from the popu-
lation; calculate the mean vector of this subset.

• From among this selection multiplet of sizem, choose
the mostdistinct member; i.e., the fellow farthest from the
mean- that is, the subset center of mass.

• The “voter” adopts an ideological position nearby the
dissenter; aside from a superposed, but small, deviate, this
adjustment is perfect. [15]

Clearly, the model as defined induces two intrinsically
opposed tendencies. If the polled group is tightly-knit in
the first place, the result is to enhancehomogeneity,since
the voter, potentially at some ideological distance from that
subset, vacates his position and effectively conforms. On
the other hand, should there be an outlier among the selec-



612 Arne Soulier, Natalie Arkus, and Tim Halpin-Healy

tion multiplet, the voter choses the underdog, rather than the
majority view. Therefore, dissent, and by extension,seces-
sion, is implicitly encouraged. Of course, there is a catch,
since distinct individuals frequently, but not always, inspire
a following, thereby becoming part of the mainstream them-
selves. In dissenting, they guarantee the demise of their dis-
tinction. In what follows, we employ the standard conven-
tion that N -updates of the population corresponds to one
generational time-step. Using this definition, each individ-
ual will, on average, be replaced once per generation. Our
initial condition is always the same, an entirely homoge-
neous population with all individuals ideologically located
at the origin.

For convenience, we consider first the cased=1, a single
ideological axis, and investigate them-dependence of this
Seceder Model. We expect the limitm → N, which guar-
antees enhanced cross-correlation throughout the society, to
elicit inevitably, a simpler “mean-field” type of behavior, if
only in the extreme case whenm = N, when we’re aver-
aging over the entire population using the societal mean to
determine the most distinct, and ultimately, adopted posi-
tion. In fact, this is what we discovered first, numerically.
The shock, though, comes with the suddenness of the transi-
tion. There is, surprisingly, a marked change of behavior as
we switch from a triplet(m = 3) to quartet(m = 4) polling
groups. In Figure 1a, we show single runs of the Seceder
Model using multiplet selectionm = 3 − 8, within a large
population,N = 512. For m = 3, we have classic Seceder
pattern formation, with self-similar branching characterized
by three dominant, but fluctuating arms, with ample small-
scale stochastic structure associated with the transient ap-
pearance of variously short-lived subbranches. Rather than
a gradual crossover, we find that formc = 4, the typical sta-
ble configurationabruptly involves two groups, not three.
In addition, these two branches exhibit only minor fluctua-
tions. Settingm = 5 further diminishes the fluctuations (one
barely notices any subbranches here...), but hardly affects
the tilt of what seems to be the nearlylinear space-time tra-
jectories of the two divergent groups. Next, form = 6&7,

there is, strangely, a discrete jump to an altogether differ-
ent, but closely allied pair of segregating groups. With
m = 8(&9), another jump in velocity is evident in our
space-time plot. So it goes with each successive even-odd
pair of multiplet selection group. Thus we see that the dom-
inant dynamic of Seceder involves, form ≥ mc = 4, self-
organized segregation into two evenly populated opposing
groups with continuous interchange of individuals over the
course of time. Similar dynamical segregation was reported
by Johnsonet al., within their stochastic evolutionary mi-
nority game.

Ensemble averaging over many realizations, we can sys-
tematically study the growth of the population diameter over
time. Figure 1b shows a a double-log plot of that diameter
for multiplet selection groupsm = 3 − 12, drawn from a
populationN = 512, with 3000 runs guaranteeing decent

statistics. Inferences made previously from the single runs
are quickly corroborated here- form ≥ 4, we retrieve es-
sentially linear behavior, with successive even/odd selection
groups paired up; indeed, the logarithm renders them nearly
indistinguishable already at timest > 100 for m = 6&7,
though they can be separated easily enough at earlier times.
The figure renders apparent the decreasing gap size in the
discrete velocity spectrum. The scaling exponents are 0.99+

for m = 8 − 10, fitting data fort ∈ (1000, 3000). Only for
the case of triplet selection,m = 3, where the segregative
dynamics involves stable multiple-branch solutions, do we
see a very different power-law scaling behavior. Indeed, for
m = 3, which corresponds to the lowest curve in Figure
1b, the diameter asymptotically scales with asecession ex-
ponentof 3/4, our extracted value being 0.74±0.01.

It’s interesting to consider finite-size effects within the
extremesocietal Secederlimit. In Figure 1c, we show the
generic behavior when the entire population serves as the
selection group. A glance at this figure reveals that for the
smallest populations,N = m = 3 − 6, the dominant ef-
fect is a single, fairly tightly knit group that is essentially
localized near the origin; i.e, the trajectory wanders little
from the horizontal time axis. While there is, of course, no
branch formation per se forN = m = 3, we see already
for N = m = 4, the occasional appearance of a short-lived
branch budding off of the primary Brownian path. The ef-
fect is amplified forN = m = 5&6 where the transient
branching phenomena is more apparent, especially in the lat-
ter case where we notice that there is an effectively entropic
repulsion between the newly created branch and its ancestor;
i.e., they head off at some characteristic angle (in this case,
roughly 45 degrees)w.r.t. each other. At these population
sizes, there’s little difference typically between trajectories
generated by triplet and higher multiplet selection dynam-
ics. ForN = m = 7&8, however, we gain a glimpse of the
true mean-field asymptotic behavior- a strong tendency to
bifurcate into two dominant groups, heading off symmetri-
cally from the origin. Occasionally, branch-splitting occurs;
though this happens less and less frequently for increasing
m, the branches are longer lived. Note, especially the clear
progression in this manner forN = m = 6, 7, 8. As be-
fore, we notice a strong temporal correlation between the
statistical death of one branch, marked by the nearly im-
mediate birth, or splitting off of another, so as preserve the
sanctity of choice. In this context, were a branch to die,
without replacement elsewhere, the result would be a single
group (nearly all identical individuals), anathema to a seces-
sional dynamic which encourages difference, at least for a
while. For larger population sizes,N = m = 10&25, we
see essentially deterministic divergence of the two groups.
Of course, on larger time scales, splitting would inevitably
occur for these smallish mesoscopic populations, but the
asymptotic behavior is clear. For infinitem, the trajectories
would be linear, symmetrically splayed about the origin, in
a V-pattern, suggested already in Figure 1a.
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Figure 1. a) Single runs for the 1d stochastic Seceder model, using
selection multipletsm=3,4&5, 6&7, 8, within a population of size
N = 512, b) Scaling plot of the divergent population diameter,
averaged over 3000 realizations. Form ≥ mc = 4, the behavior is
essentially linear, whereas a triplet selection produces a divergent
population that scales ast3/4, and c) Finite-size effect within the
societal Secedermodel, wherein the entire population serves as the
selection group. Shown are the casesm=N=3-8,10,25.

Investigating higher dimensions,d=2 and 3, we discover
that the critical multiplet selection group size remains fixed
atmc=4, but that the rate of secession scales nearly linearly
in these cases even form=3. More specifically, we show

in Figure 2a, the time trace of the three divergent groups in
a typical two dimensional simulation. Notice the roughly
equilateral arrangement of the three branches. A careful ex-
amination of the temporal evolution of the population diam-
eter reveals, see Figure 2b, that at early times (t < 100) the
group separation grows as a square root- the solid line in the
figure has slope 1/2. By contrast, later on, the separation rate
is just a hair sublinear- the dashed line has slope 1. Fits to
the final 2000 time steps yields exponents 0.889,0.941,0.992
for population sizesN=512,1024,2048, respectively. Simu-
lations ind=3 produce very similar results; e.g., the seces-
sion exponent being 0.948 for the intermediate population
size. Perhaps the most stunning conclusion from the higher
dimensional numerics is that additional degrees of freedom
associated with extra ideological axes are, from the point of
view of the triplet Seceder dynamic, mainlyirrelevantsince
the typical dynamical situation involves collapse to an hy-
perplane containing just three groups. If one starts, ind=3,
with four equally-sized parties at the corners of a tetrahe-
dron, it simply won’t last- one group always goes extinct! It
is an intrinsicallyunstableconfiguration, eventually suffer-
ing dimensional-reductionto a flat triangular arrangement.
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Figure 2. a) Short-time trace in the xy-plane of 2dm=3 triplet Se-
ceder Model, and b) Scaling plot of the divergent population diam-
eter for the same model, averaged over 1000 realizations. Slopes
of the fit lines are indicated.
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Interestingly, much can be gleaned about thisstochastic
Seceder Model by considering a deterministic, discretized
version written as a system of coupled, nonlinearreplicator
equations, [16] well-known to some members of the math-
ematical biology/game theory community. For example, if
we consider the simplest case of the triplet (m=3) selection
dynamics and study the stability ofB=3 branches (opinion
groups), the relevant first-order rate equations read:

ẋ1 = x3
1 + 3x1(x2

2 + x2
3) + 3x1x2x3 − x1

ẋ2 = x3
2 + 3x2(x2

1 + x2
3)− x2

wherex1,2,3 represent population fractions of the three clus-
ters. We’ve not bothered with the equation forẋ3, since it is
identical to the first (modulo interchange of indices); prob-
ability conservation requiresx1+x2+x3=1, and since group
2 lies midway between 1 & 3 on the 1D ideological axis,
it is fundamentally disadvantaged in matters of distinction.
If we examine the equation foṙx1, the nature of the RHS
should be apparent- the cubic term promotes homogene-
ity [17], the next- secession [18], while the trilinear piece,
involving equal representation in the polled group by each
of the three branches, is shared equally by the growth vari-
ables of the outer two groups [19]. These equations are triv-
ially solved (though less and less so asB increases...), and
we find several unstable fixed points-(1, 0, 0), ( 1

2 , 1
2 , 0), and

permutations therein, as well as a singlesuperstablefixed
point (FP): ( 2

5 , 1
5 , 2

5 ). Investigating the situation forB=4
groups, we have:

ẋ1 = x3
1+3x1(x2

2+x2
3+x2

4)+3x1x2x3+6x1x3x4−x1

ẋ2 = x3
2 + 3x2(x2

1 + x2
3 + x2

4) + 3x2x3x4 − x2

Note, again, that all terms are third order, because we’re
still looking at triplet selection,m=3. In any case, be-
cause the stable branches are symmetric about its central
axis, the flow equations for the remaining variables are eas-
ily obtained via the interchangex1 ↔ x4 and x2 ↔ x3

and, indeed, the globally stable fixed point (no negative
eigenvalues!) must lie within this reduced subspace, mir-
ror variables identified. For the case at hand, invoking the
constraintx2 = 1/2 − x1 and demandinġx1 = 0 leads
to the cubic equation7x3

1 − 6x2
1 + 5/4x1 = 0, yield-

ing (x1, x2, x3, x4) = ( 5
14 , 1

7 , 1
7 , 5

14 ), in addition to the 2-
branch solutions( 1

2 , 0, 0, 1
2 ) and (0, 1

2 , 1
2 , 0). Of course, if

we brute force numerically integrate the coupled ODEs on
the computer, following the trajectories from a randomly
generated initial condition, we flow with 100% probabil-
ity to this unique superstable fixed point. The situation for
B = 5 recalls the 3-branch case; try it! You’ll find the stable
FP( 4

13 , 2
13 , 1

13 , 2
13 , 4

13 ), though there’s an unstable solution,
( 1
4 , 1

4 , 0, 1
4 , 1

4 ), self-similar to the 2-branch( 1
2 , 0, 1

2 ). The 6-
branch is eaily seen to be irrational, involving solution of the
cubic equation20x3

2 + 80x2
2 + 133x2 − 17 = 0, possessing

one real, 2 imaginary roots. Don’t bother looking for an 8-
branch FP; it doesn’t exist! Instead the flows will bring you
to ( 11

40 , 1
8 , 0, 1

10 , 1
10 , 0, 1

8 , 11
40 ), exactly self-similar to theB=3

superstable FP( 2
5 , 1

5 , 2
5 ). For additional details regarding the

self-similarhierarchical gapped spectrum intrinsic to triplet
selection, see [1]. Finally, the replicator formalism provides
some hidden extra benefits, among them an explanation for

the critical critical selection multiplet sizemc = 4. As-
suming arbitrarym, one performs a stability analysis of the
2-branch FP( 1

2 , 0, 1
2 ), focussing on the Seceder term arising

from the multinomial expansion [1]; in this fashion, we dis-
coverẋ2 =

[
2
(
m
1

)(
1
2

)m−1−1
]
x2+O(x2

2), so we flow back
to vanishingx2 for 2m ≤ 2m−1; i.e., m ≥ 4, as the pref-
actor of the quadratic term is easily shown to be negative.
Lastly, with the replicator equations, we see why the great-
est degree of population fragmentation occurs for the case of
one ideological dimension where three groups are the norm
though 4, 5, 6 groups are not uncommon. By contrast, in
d ≥ 3, the population self-organizes to a coarsened trio of
three tightly-knit opinion clusters, effectively collapsing to
a 2D ideological plane [1].

Our present efforts focus on the political perspective- un-
derstanding the kinetic symmetry breaking phenomena, in-
termittent dynamics, and subpopulation fluctuations intrin-
sic to the Seceder mechanism [20].
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