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Effect of a Magnetic Field on Tunneling Conductance in Normal Metal
d-Wave Superconductor Interfaces
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Through the analytic solutions of the Bogoliubov de Gennes (BdG) equations the effect of a static and ho-
mogeneous magnetic field applied parallel to the interface of an NIS (N: Normal metal, S: superconductor and
I: Insulator) junction on the differential conductance is calculated. For a dxy - symmetry we obtain zero bias
conductance peak that can be split by a magnetic field. The shift of the zero bias conductance peak depends on
the spread (β) of the tunneling electrons in k space, on the magnitude of the applied field H and on the ratio
between the Fermi energy of the superconductor and the normal region, EFS/EFN . Finally we estimate the
minimum value of the magnetic field, Hmin, that splits the zero bias conductance peak. In general Hmin depends
on β, EFS/EFN , the strength of the insulating barrier Z and on the temperature T .
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I. INTRODUCTION

In high temperature superconductivity different experi-
ments have been interpreted assuming a d-wave symmetry of
the pair potential, see for example [1]. A feature of d sym-
metry is the zero-bias conductance peak (ZBCP) observed in
tunneling conductance in NIS junctions [1]-[6]. The ZBCP
appears when the angle between the a axis of the supercon-
ductor and the vector normal to the interface is nonzero; it is
a maximum when this angle is ±π/4, (110) orientation. This
peak is due to the formation of the zero energy states (ZES)
that are originated by the Andreev reflection at the interface; it
undergoes a difference in phase of π due to the anisotropy of
the pair potential [7]-[10]. Different experiments have shown
that the ZBCP can be split due to application of a magnetic
field [2]-[5]. From numerical solutions of the Eilenberger’s
equations, it has been shown that the effect of the magnetic
field is to produce a shift of the ZES proportional to the ap-
plied magnetic field [11]-[12], other experiments show [13]-
[14] that the effect of the magnetic field is to decrease of the
heigth of the ZBCP. In this work we solve the BdG equations
for this system and show that the splitting depends on Z, β,χ
and T, The above mentioned experimental characteristics are
explained in this work.

II. THEORY

The quasiparticles in a superconductor are described by the
BdG equations. For steady states and anisotropic supercon-
ductors these equations are [15]

Z
dr2Ĥ(r1,r2)ψ(r2) = Eψ(r1), ψ(r1) =

(
u(r1)
v(r1)

)

Ĥ(r1,r2) =
(

He(r1)δ(r1− r2) ∆̃(r1,r2)
∆̃∗(r1,r2) −H∗

e (r1)δ(r1− r2)

)
, (1)

where He(r1) = (−i~∇− eA(r1))
2 /2m +V (r1)− µ is an elec-

tronic hamiltonian, with A(r1) the vector potential associated
with the magnetic fields present in the system, V (r1) the scalar
potential and µ the chemical potential, ∆̃(r1,r2) is the pair po-
tential, u(r1)and v(r1) are the wave function for the electron-
and hole-like components of a quasiparticle. The insulating

barrier of height V0 and thickness d is located in x > 0, this
barrier can be modeled by a delta function, V (x) = U0δ(x),
where U0 = V0d. We concentrate on cuprate superconduc-
tor junctions. It is supposed that the quasiparticle moves on
the CuO2 plane with the a and b axes in the x-y plane, the
interfaces are normal to the x-axis, see Fig. 1. The Fourier
transform of the pair potential is modeled by

∆FT (k,r) =
Z

dR eik·R∆̃(r1,r2)' ∆(k̂)Θ(x), (2)

where R = r1−r2,r = (r1 +r2)/2 , Θ(x) the Heaviside func-
tion and ∆(k̂) is the pair potential that undergoes a quasipar-
ticle with momentum k, for s-symmetry ∆(k̂) = ∆0 and for
dx−y-symmetry ∆(k̂) = ∆0 sin2θs,where θs is the quasipar-
ticle angle in the superconductor region θs = sin−1(ky/ |k|).
The magnetic field H, is applied parallel to the z-axis, there-
fore the vector potential can be written as A(r) = Ay(x)ĵ. We
consider the situation of a high Tc superconductor where the
coherence length of the pair potential ξ is much smaller than
the penetration length λ of the magnetic field and approximate
Ay =−Hλ. As the potentials depends only on x, the solutions
of the BdG equations can be written as ψ(r) = eikyyψ̃(r).
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FIG. 1: NIS junction, The insulating barrier is located in x = 0 and
is modeled by a delta function. For dxy-symmetry, the pair potential
is modeled as ∆(θS) = ∆0 sin(2θS). The solid and dashed lines rep-
resent the electron and the hole-like components of a quasiparticle,
respectively.

Considering an incoming electron from the normal region,
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the wave functions ũ(x) and ṽ(x) are given taking into account
the in the Andreev approximation [15] by

(
u(x)
v(x)

)
=

(
eik̃+x

(
1
0

)
+aeik̃−x

(
0
1

)
+be−ik̃+x

(
1
0

))
Θ(−x)

+
(

Ceik̃+
+x

(
u+

0
v+

0 e−iϕ+

)
+De−ik̃−−x

(
v−0

u−0 e−iϕ−

))
Θ(x), (3)

where

k̃± =
√

k2
FNx±2mẼ/~2, kFNx =

√
k2

FN − k2
y ,

k̃±± =
√

k2
FSx±2mΩ̃±/~2, kFSx =

√
k2

FS− k2
y ,

ũ±0 =

√
1+ Ω̃±/Ẽ

2
, ṽ±0 =

√
1− Ω̃±/Ẽ

2
, if E > VA

ũ±0 =−
√

1− Ω̃∗±/Ẽ
2

, ṽ±0 =

√
1+ Ω̃∗±/Ẽ

2
, if E < VA,

Ω̃± =
√

Ẽ−|∆±|2, Ẽ = E−VA,VA =
e}kyλH

m
. (4)

The wavenumbers kFN and kFS are determined by the Fermi
energy in the normal and superconducting regions respec-
tively, k2

FS/k2
FN = EFS/EFN = χ2. The quasiparticles with k+

+
and k−− wavenumber move in the pair potential ∆+ and ∆−
respectively

∆±(θs) = ∆(±k±± ı̂+ ky ĵ)≡ ∆±eiϕ± . (5)

The effect of the magnetic field is an energy shift that depends
on ky and H. One finds a, b, C and D using the boundary
conditions in x = 0. The electron-electron and electron-hole
reflection coefficients are respectively, Re = |b|2, Rh = |a|2 .

III. DIFFERENTIAL CONDUCTANCE

Using the model developed by Blonder et al.[16] the differ-
ential conductance for an angle θS and for T = 0K is calcu-
lated from Re and Rh coefficients as

σS(eV,θS) = σN(θS)(1+Z2)(1+Rh(eV,θS)−Re(eV,θS))

= σN
1+TN Γ̃2

+ +(TN −1)
∣∣Γ̃2

+Γ̃2−
∣∣

∣∣1− (TN −1) Γ̃+Γ̃−e−i(ϕ+−ϕ−)
∣∣2 , (6)

with

Γ̃± =
ṽ±0
ũ±0

,χ =
kFS

kFN
, Z =

mU0

~2kFN
,

TN =
4χcosθN cosθS

(cosθN +χcosθS)2 +4Z2 , (7)

σN is the differential conductance when ∆ = 0 (NIN junction),
Z is the strength of the barrier and θN is the quasiparticle an-
gle in the normal region and is determined by the momentum
conservation condition in y direction

sinθN = χsinθS. (8)

Firstly the case of χ = 1 (θN = θS ≡ θ) is analyzed. The
relative total differential conductance is found by integration
in the k-space as

σR (eV ) =
〈σS(eV,θ)〉
〈σN(θ)〉 , (9)

where

〈...〉=

R π/2
−π/2 dθcosθe−βsin2 θ...
R π/2
−π/2 dθcosθe−βsin2 θ

, (10)

and β is related to the spread of tunneling electron in k- space,
it is given by

β = ~dk2
F/

√
2mV0. (11)

It is important to note that the insulating barrier is character-
ized by the parameter Z and β. If in the equation (6) H = 0, our
results agree with [7]-[8]. When H 6= 0 the differential con-
ductance σS(eV,θ) has a shift given by VA(θ).The Gaussian
distribution, e−βsin2 θ , diminishes 99% for a angle given by
θc =

√
ln(100)/β. The maximum peak energy shift is deter-

mined by VA(θmax), where θmax is the maximum angle for
which an electron tunnels the insulating barrier. This angle is
π/2-ε (ε→ 0) if 0 < β≤ 4.2 or approximately θc if β > 4.2.

VA,max = e}kF sinθmaxλH/m. (12)

The maximum value of VA is max{∆(θ)} = ∆0, therefore the
maximum magnetic field is

Hmax = Hc/sinθmax, (13)

with Hc the bulk critic magnetic field. The average shift is
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FIG. 2: Relative differential conductance σR for different values of
β with Z = 3, the inset shows how the maximum of σR changes with
β.

δV = 〈|VA|〉 = e~λH 〈|sinθ|〉/m. For β >> 1,δV is approxi-
mately

δV = 〈|VA|〉= ∆0
H
Hc

1√
πβ

. (14)
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FIG. 3: σR for different values of H with Z = 3, the inset shows how
the peak of σR changes with H.
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FIG. 4: σR for different values of H with Z = 0.5, (a) β = 5, (b)β =
10.

The average shift δV is strongly affected by β , this behavior
is due to the fact that as β increases, the tunneling cone dimin-
ishes and therefore the shift energy decreases. Fig. 2 shows σR
at different values of β, the splitting of ZBCP increases as β
decreases. In the inset of the Fig. 2 it is contrated the average
shift obtained in Eq. (14) with the numerically value. Fig. 3
shows σR for different values of H with Z =3, ZBCP is split
and the shift depends on the magnetic field and β, as shown
the inset of Fig. 3. Fig. 4(a) shows σR for different values of
H with Z =0.5. Is observed that beyond some value the mag-
netic field ( Hmin ) the ZBCP is split. This value depends on
Z and β as shown the figures 4(a) and 4(b). For an estimation
of Hmin one can compare δV with the width Γ0 of the ZBCP.
For an angle θ, the width is given by

Γ0(θ) =
TN |∆(θ)|

2(1−TN)1/2 . (15)

Averaging over θ the width is approximately

Γ̄0 = 〈Γ0(θ)〉 ' 2∆0

Z(1+Z2)1/2
√

πβ
. (16)

As β increases , Γ̄ decreases, this is because the tunneling cone
decreases and therefore average gap diminishes. The splitting
appears when δV ∼ Γ̄/2, from this relation we obtained Hmin

Hmin =
Hc p

Z(1+Z2)1/2 , (17)

with p ∼ 1. Hmin is independent of β , this is due to the fact
that as β increases, the width of ZBCP decreases but also δV
decreases and these effects compensate each other. It is im-
portant to stand out that although in this case Hmin is indepen-
dent of β, Hmax depends on β. If H > Hmin the magnetic field
induces a splitting of the ZBCP, but if Hmin > Hmax it is not
possible to observe this splitting, as is shown in figures 4(a)
and 4(b) for β = 5 and β = 20 respectively, and Hmin ' 1.4Hc
with p = 0.8. If β = 5, Hmax = 1.2Hc < Hmin and the split-
ting does not take place. If β = 20, Hmax ' 2.2Hc and ZBCP
is split. In both cases if H < Hmin the effect of the magnetic
field is to decrease the height of the ZBCP.

Now we study the effect of the Fermi energy difference be-
tween the normal and superconductor regions. This difference
is quantified by the parameter χ = kFS/kFN , the average angle
in Eq. (10) is modified by

〈...〉=

R θm
−θm

dθSe−βχ2 sin2 θS cosθS
R θm
−θm

dθSe−βχ2 sin2 θS cosθS...
. (18)

where θm is the maximum angle in the superconductor, forχ <
1 , θm = π/2 and for χ > 1, θm = sin−1(1/χ). If βχ2 >> 1
from Eq´s. (10), (14), (15), δV and Γ̄0 are

δV = ∆0
H
Hc

1√
πβχ

(19)

Γ̄0 ' 4∆0√
πβ(1+χ2 +4Z2)((1−χ)2 +4Z2)

. (20)

In this case Hmin and Hmax are

Hmin ' 4χHc p√
πβ(1+χ2 +4Z2)((1−χ)2 +4Z2)

, (21)

Hmax ' χHc
√

β
2.15

. (22)

In Figs. 5(a) and 5 (b) σR is plotted against V for χ = 0.5
and χ = 1.5 respectively. From Eq. (22) Hmin = 0.8Hc and
Hmin = 1.6Hc in agreement with the numerical results shown
in the figures.

Finally we study the differential conductance at finite tem-
perature, in this case σR is calculated from

σR (eV ) =
Z ∞

−∞
dEσR(E)

d ( f (E− eV )− f (E))
d(eV )

, (23)

with f (E) the Fermi-Dirac distribution function at tempera-
ture T .̇ Fig. 6 shows σR for T = 0.1Tc and for different values
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FIG. 5: σR when EFN 6= EFS for different values of H. a) χ = 0.5,
(b)χ = 1.5. In both cases Z = 0.5 and β = 20.
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FIG. 6: σR for different values of H with T = 0.1Tc, (a)Z = 0.5,
(b)Z = 3. In both cases β = 20 and χ = 1.

of Z. The main effect of T is to increase the width of the peak
to H = 0 and therefore to increase Hmin. In order to analyze
the width of the ZBCP we considerer first the case kBT << Γ̄0,
we find that width of the ZBCP is

Γ̄(T ) = Γ̄0

(
1+

3
2

(
KBT
Γ̄0/2

)2
+O

(
KBT
Γ̄0/2

)4
)

, (24)

and Hmin is given by

Hmin(T ) = Hmin(0)

(
1+

3
2

(
KBT
Γ̄0/2

)2
)

. (25)

Therefore the value Hmin at finite temperature is larger than Hmin
for T = 0. The relative difference∆H/Hmin(0) = (Hmin(T ) −
Hmin(0))/Hmin(0) is proportional to K2

BT 2/Γ̄2
0, and therefore in

this case the relative increase of Hmin is always less than one, as
shown in Fig, 6(a) where Hmin ' 1.6Hc ; from Eq’s. (17) and (22)
Hmin(0) = 1.4Hc and Hmin(T ) = 1.57Hc as shown in the figures. For
kBT >> Γ̄0

Γ̄(T ) = 1.76kBT
(

1+O(Γ̄0/(kBT )2
)

,

Hmin ' 1.76kBT
√

πβpHc/(2∆0). (26)

In this case the width is determined main by the temperature Γ̄ ∼
KBT , Hmin(T ) is proportional to T and β1/2, and can be larger than
Hmin(0), in contrast to the previous case , see Fig. 6(b).

IV. CONCLUSIONS

Starting from the solutions of the Bogoliubov of Gennes equations
in an NIS junctions we have determined the effect of a magnetic field
on the differential conductance. For dxy symmetries the differential
conductance presents a ZBCP. The magnetic field induces a splitting
of the ZBCP when H > Hmin, where Hmin depends on Z, χ,and T ,
in this case the shift of the peak is proportional to H/(β1/2χ). When
H < Hmin the effect of the magnetic field is to decrease of the height
of the ZBCP. If Hmin > Hmax, the splitting does not take place when
the magnetic field is applied; the value of Hmax depends on χ,and β.
This results can be used for the interpretation of the tunneling char-
acteristic in high Tc superconducting junctions in applied magnetic
fields.
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