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Analysis of Nuclear Relaxation in Granular Systems
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The longitudinal nuclear magnetic relaxation time,T1, of powdered samples was analyzed following the
theory proposed by Browstein and Tarr to explain theT1 reduction of water confined in biological cells and the
proposed by Rabbani and Edmonds where the molecular diffusion in liquids is substituted by spin diffusion to
interpret theT1 behavior in solid particles. We have shown that the multiexponential character of magnetization
decay in solid particles with a narrow band size distribution allows to evaluate the spin diffusion coefficient of
this material. On the other hand if the diffusion coefficient of a material is given and the average size of a sample
of this material is known the relaxation decay curve can be used to determine the surface relaxivity as well as
the relative size of particles present in the other samples of same material. However, this analysis is unable to
provide the absolut measurement of the grain sizes. Furthermore, it is shown that the grain geometry does not
influence the relaxation decay curve.
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I. INTRODUCTION

Longitudinal and transverse magnetic relaxation of nuclei
in molecules within confined liquids and small particles show
a distinct behavior as compared to those in bulk samples: the
relaxation rates are enhanced and even when the decay in the
bulk follows a single exponential law its confined counterpart
may require a sum of exponentials for a correct description.
These features are found in the nuclear relaxation of water in
biological samples, fluids in porous media and fine powdered
solids. The basic physical model is similar in all these cases:
spin magnetization diffuses to the surface, where it decays in
a very short time due to a stronger coupling with the lattice
(for longitudinal magnetization) and internal magnetic field
gradients (for transverse components). This is observed in bi-
ological cells [1], where the proton relaxation of intracellular
water is affected by interactions with free radicals and para-
magnetic molecules in membranes. Also, in porous sedimen-
tary rocks the proton magnetization rate of decay of absorbed
water and hydrocarbons are improved by the molecular dif-
fusion of fluids towards the surface [2], where they remain
temporarily close to paramagnetic impurities and are relaxed.
This effect is expected to provide information about the av-
erage pore size, as a result of the sampling of the rock-fluid
interface by the protons during the relaxation process. Rab-
bani and Edmonds [3] (R&E) reported this same effect in fine
solid grains and explained it in terms of a two sites model:
each grain has molecules in the bulk, with a long relaxation
time, magnetically coupled by spin diffusion to those resident
in a thin layer at the surface. It is known that the phonon
spectrum in the surface is distinct with respect to that in the
bulk, due to a higher concentration of crystalline defects, like
dislocations, or to the amorphous character caused by plastic
deformations during the grinding process [4, 5]. The conse-
quence is a stronger coupling of spins to the lattice due to vi-
brations with increased number of degrees of freedom. These
effects act in parallel, thus shortening the characteristic decay

time constants. Detectable changes in relaxation rates occur
in cells, pores and grains with sizes of the order of one hun-
dred micrometers or less, depending upon the absorbed fluid
or the type of granulated solid. The spin diffusion process in
these samples is similar to the spin diffusion toward the para-
magnetic centers in doped single crystals [4, 6]. Brownstein
and Tarr [1] (B&T) proposed a simple theory for proton re-
laxation of water in biological cells, which found widespread
applicability [7–11]. It is based on the hypotheses described
earlier in this paragraph, with the spins in the bulk and in
the surface coupled by means of molecular diffusion. The
multi-exponential decay arises as a consequence of a sum of
eigenvalue solutions associated with the size and shape of the
cell. Since both water in biological tissue cells and grains of
a powder have similar microstructures of small unconnected
volumes, it is expected that the same solution can be applied
to fine grains if the role of the bulk diffusivity of water in cells
is replaced by the spin diffusion in the solid.

II. THEORY

Following B&T, the longitudinal magnetization component
of a solid powder grain can be obtain as a solution of the mod-
ified diffusion equation

∂M/∂t = D∇2M−M/T1b (1)

subject to the surface boundary condition

[D~n·∇M +ρM]S = 0. (2)

T1b is the bulk spin-lattice relaxation time,D is the spin diffu-
sion coefficient andρ is the relaxivity, the parameter express-
ing the effectiveness of the surface as a “relaxation sink”. For
a well-defined surface layer, with a very short relaxation time
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compared to that in the bulk, relaxivity is defined as the layer
thickness divided by the local relaxation time. The normal-
ized amplitude of the detected signal, the relaxation function
S(t), is

S(t) =
m∞−m(t)

f .m∞
=

exp(−t/T1b)
∞

∑
n=1

In(ξn)exp
[−(4D/d2)ξ2

nt
]

, (3)

wherem(t) is the magnetic moment of a grain, given by,

m(t) =
Z

M(r , t) dV (4)

and m∞ is its equilibrium value. The factorf is 1(2) for a
saturation-recovery (inversion-recovery) sequence, as usual,
andξn are roots of a transcendental eigenvalue equation of the
form

F(ξn) = A =
ρd
2D

, (5)

TABLE I: Characteristic eigenvalue equations derived from Eq. (2)
and the corresponding expansion coefficients of Eq. (3) for different
grain geometries, according to B&T.

Geometry F(ξn) In(ξn)

Plane ξn tan(ξn) = A 4sin2(ξn)
ξn[2ξn+sin(2ξn)]

Cylindrical ξnJ1(ξn)/J0(ξn) = A 4J2
1(ξn)

ξ2
n[J2

0(ξn)+J2
1(ξn)]

Spherical 1−ξncot(ξn) = A 12[sin(ξn)−ξncos(ξn)]2

ξ3
n[2ξn−sin(2ξn)]

derived from the boundary condition expressed in Eq. (2).
The functionsF(ξn) and the coefficients (intensities)In(ξn)
are characteristic of the assumed shape for the grains;d is
their typical size (diameter of sphere, cylinder, etc.).A is
a dimensionless parameter reflecting the effectiveness of the
surface in relaxing the diffusion transported magnetization,
the reduced sink strength. The analytic forms ofF(ξn) and
In(ξn) for plane, cylindrical and spherical geometry, detailed
in B&T’s article, are reproduced in Table I.

The behavior of the magnetization decay is classified ac-
cording to the value of the reduced sink strength:(a) A << 1
is the fast diffusion regime;M(r , t) is uniform over the grain
volume and the decay is monoexponential with the time con-
stantT0 given by

1
T0

=
1

T1b
+ρ(

S
V

) , (6)

where(S/V) is its surface area/volume ratio. In this regime
the intensitiesIn, decrease roughly as1/n4 and therefore, the

summation in Eq. (3) is essentially resumed to the first term.
(b) A > 10 is the slow diffusion regime; the intensitiesIn de-
crease roughly as1/n2 and are almost independent ofA. In
this regime, several terms must be considered for a correct de-
scription of the multiexponential decay.(c) 1 < A < 10 is the
intermediate condition.

Both cases(b) and(c) are inherently multiexponentials but
this may also be observed in case(a) for a powdered sample
with a wide distribution of grain size spreading over a range of
an order of magnitude or greater. In this situation the summa-
tion in Eq. (3) must be transformed into a volume weighted
average. Another important result demonstrated by B&T is
that T0 given by Eq. (6) is also the initial,t = 0, decay time
constant in regimes(b) and(c).

Nonlinear regression of experimental relaxation data to Eq.
(3) is expected to provide the bulk spin-lattice relaxation time
T1b and the following parameters associated to the granular
microstructure:

(a) the characteristic time

Θ =
d2

4D
, (7)

(b) the surface contribution to the initial decay time constant

1
T0S

= ρ(
S
V

) = k
(ρ

d

)
, (8)

and(c) A, implicit in the rootsξ(n), as defined in Eq. (5);k
is a geometry dependent integer:1 for planes,4 for cylinders
and6 for spheres and cubes. There is yet the following equa-
tion relating these parameters leaving only two independent
ones

A.T0S

Θ
=

2
k

. (9)

Although our description is referring to longitudinal relax-
ation, the conclusions for transverse relaxation are entirely
analogous, differing only in the experimental method and the
value of the relaxivity.

III. EXPERIMENTAL PART

Six powdered maleic acid samples differing in the average
grain sizes were prepared from the raw commercial grade ma-
terial (S1). The bulk proton spin-lattice relaxation time in this
substance is very long (≈ 104s), thus making it a good candi-
date to study the improvement of magnetic relaxation due to
surface contribution. Three samples were prepared by crush-
ing a fraction ofS1 in a mortar and selecting the grain size
range by sieving it successively with four different mesh size
sieves: 180µm, 80µm, 75µmand 53µm. Sample two (S2) is
the remaining material over the sieve with 80µmmesh. Sam-
ple three (S3) is the remaining material over mesh size 75µm
and sample four (S4) is the material over the sieve with mesh
53 µm. SamplesS5 andS6 were obtained from another frac-
tion of S1 ground in a ball mill during 16 and 72 hours, respec-
tively. The specifications of these samples are summarized as
follows:
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• S1 commercial grade, unprocessed

• S2 crushed and sieved, with 180µmand 80µmmesh
size

• S3 crushed and sieved, with 80µmand 75µmmesh
size

• S4 crushed and sieved, with 75µmand 53µmmesh
size

• S5 16 hours grinding, (20± 2) µm(SEM)

• S6 72 hours grinding.

All samples were dried in an oven at40◦C during one hour
and stored at room temperature with silica-gel until measure-
ments were carried out. The micrograph of sample S5 was
obtaind using a JEOL JEN 840-A scanning electron micro-
scope, which allowed the accurate measurement of grain size
in this sample and it was used as a comparison standard. The
spin-lattice relaxation of protons of these samples were mon-
itored at room temperature in a 0.77 T magnetic field (Lar-
mor frequency 33 MHz). The saturation-recovery pulse se-
quence with detection of the solid echo amplitude was elected
as the most appropriate technique, mainly due to the very long
characteristic time constants of maleic acid. The NMR spec-
trometer employed in this experiments was mounted using
an American Microwave Technology M3446 Pulse amplifier,
a MITEQ preamplifier and an APOLLO NMR (TECMAG)
console. A diagram of the pulse sequence is shown in Fig. 1.
In these measurementsτ = 100ms, TSE= 35ms, Taq = 300ns,
and∆ was varied from10−2 to 104 seconds in a quasi geomet-
ric sequence.
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FIG. 1: Pulse sequence for the spin-lattice relaxation monitoring.

The relaxation function S(t), Eq. (3), as defined for the
three basic grain shapes suggested by B&T (plane, cylindrical
and spherical), was fitted to experimental data using Micro-
cal Origin 6.1TM software. The summation was extended to 8
terms and inclusion of additional terms did not lead to any sig-
nificant change or improvement in the accuracy of fitting pa-
rameters.A was taken as an adjustable parameter,i.e., leaving
to the nonlinear regression method the task of specifying the
relaxation regime. This procedure differs with respect to that
followed by R&E: they performed nonlinear fittings of theo-
retical expression representing the relaxation of a system of
uniform grains decaying in the regime of very slow diffusion
A→ ∞, when the roots of Eq. (5) assume the limitξn = nπ

and the intensities in Table I take the formIn ≈ 6/(πn)2. Al-
though this may be justified on the ground of the very slow
spin diffusion usually found in nonconducting solids, and that
one fitting parameter is removed in the computing task, it has
the disadvantage of making the relaxation function, Eq. (3),
to assume infinite initial slope, thereby eliminating any infor-
mation supplied by Eq. (6) and Eq. (8). Despite the attention
given to the recording of decay signal amplitudes for short∆
values, with the purpose of determining the initial relaxation
time constant (T0S), the poor signal to noise ratio in the begin-
ning of the decay leads to results both unreliable and strongly
dependent upon the extension of the chosen time interval. It
was eventually decided for the numerical differentiation of the
fitted relaxation functions at short times.

IV. RESULTS

All samples showed clear multiexponential decay behavior,
as can be seen in Fig. 3, defining the slow diffusion relaxation
regime. The attempts to determine the bulk relaxation time
as a fitting parameter were unsuccessful. The method only
yielded very large values with uncertainties greater than 100
percent, even when the parameterA was fixed as a very high
number, thus approximating R&E’s fitting function [3]. This
has been interpreted as indicative of a very slow bulk relax-
ation rate, justifying the approximationT1b À (Θ/(ξ1)2) and
the substitution of unity for the exponential factor in Eq. (3).
The notationT0 ≡ T0S thus will be adopted hereafter.

FIG. 2: Fittings of data points of samplesS5to plane, cylindrical and
spherical grains. The fitted curves are almost indistinguishable.

It was first investigated the possibility of distinguishing the
granular geometric shape through the quality of a specific re-
laxation function to experimental data. Satisfactory curves
were obtained with respect to the “goodness of fit” for the
three basic geometries, as shown in Fig. 2. TheΘ values listed
in Table II are very different according to the assumed grain
shape, but it was possible to verify a fair coincidence of the
ratio ξ2/Θ for the prevailing leading term in the summation
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of Eq. (3). This means that it is not possible to identify the
grain shape through the “better fitting selection”: regression
does not provide easily interpretable geometric information,
which must be known in advance in order to assign a depend-
able meaning toΘ (andd).

FIG. 3: Fittings of data points for all samples with assumed cubic
grains.

TABLE II: Values of Θ, in 103s, obtained after fitting of Eq. (3) for
the three elementary grain geometries to experimental data.

Geometry S1 S2 S3 S4 S5 S6
Spherical 71 55 16 12 1.2 0.84

Cylindrical 38 28 8.6 6.5 0.66 0.46
Plane 15 9 3 2.5 0.26 0.18

Aside the three basic geometric forms considered by B&T,
Eq. (1) with the1/T1b omitted can also be solved for cubic
grains of sided with six active relaxation sink surfaces, trans-
forming into a simple form,

S(t) =

[
∞

∑
n=1

In(ξn)exp
[−ξ2

nt/Θ
]
]3

. (10)

whereξn are roots of the same eigenvalue equation as that
characteristic of plane geometry. The summation raised to the
third power is a result of the method of separation of variables
applied to the differential equation and the orthogonality of
eigenfunctions. The fittedΘ values were essentially the same
as those obtained for assumed spherical symmetry, although
with lower associated uncertainties. This coincidence of char-
acteristic times is not surprising if we consider that spheres
and cubes have the same surface area to volume ratio. The
regression parameters of the relaxation function in the form
of Eq. (10) were then chosen for the analyses to follow. The

assumption of uniform grain sizes was maintained for all sam-
ples: a detailed calculation taking into account a wide prob-
ability distribution of sizes would be useless when applied to
the typical decay curves, which do not present features that
allow such level of resolution. Fig. 3 shows the normalized
experimental detected signal amplitudes and the fitted relax-
ation curves, Eq. (10). The values of characteristic and initial
time constants are both listed in Table III.

TABLE III: Logarithmic time derivative at t=0 (initial slope) and
characteristic times determined as fitting parameters of experimen-
tal decay data to Eq. (10)(cubic grains)

T0(s) Θ(103s) A AT0/Θ
S1 2334±25 70±2 15.8±1.2 0.53
S2 1132±2 50.2±1.5 50±5 1.10
S3 344±1 14.6±0.5 39±4 0.92
S4 246±7 10.3±0.6 37±8 0.89
S5 32.2±0.5 0.94±0.04 13.6±1.4 0.46
S6 25.1±0.5 0.657±0.012 12.5±0.5 0.48

Since the samples were all obtained after different mechan-
ical processing – crushing, sieving, milling – of the same raw
material they are expected to exhibit the same bulk spin dif-
fusion coefficientD. Eq. (7) indicates thatD can be eval-
uated if the diameterd, actually the cube side length in this
case, is independently measured. Samples S3, S4 and S5 sat-
isfy this requirement. The calculated diffusion coefficients
are, in µm2/s: D3 = 0,103± 0,006, D4 = 0,099± 0,025
and D5 = 0,106± 0,016, its error weighted average being
D = 0,103± 0,010µm2/s. The close agreement among cal-
culatedD values as well as the compatibility between defined
and measured (fitted)Θ supports the assumption of the bulk
relaxation time far exceeding the time constants determined
by surface relaxation mechanism. The use of this average spin
diffusion coefficient makes possible the evaluation of average
grains sizes for the remainder samples, and with the help of
Eq. (8), ρ = d/(6T0), the analysis can proceed toward the
calculation of surface relaxivities.

TABLE IV: Experimental (S3, S4 and S5) and extrapolated values
(S1, S2 and S6) of grain sizes, plus calculated relaxivities.

Sampled(µm) ρ(µm/s)
S1 170 0.0122
S2 140 0.0205
S3 78 0.0376
S4 64 0.0434
S5 20 0.104
S6 16 0.106

Table IV resumes the values of sizesd and relaxivitiesρ de-
termined after the procedures described in the preceding para-
graph. The relaxivities uncertainties are in the range from five
to ten percent. SamplesS1andS2do not have homogeneous
granularities and their tabulated grain sizes and relaxivities,
obtained by extrapolation and indirect calculations, are only
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rough average values estimations instead of accurate deter-
minations. However, it is possible to infer that grinding the
commercial grade compound for 16 hours decreases the par-
ticle linear dimensions by almost an order of magnitude into
a narrow size distribution, whereas grinding it for 48 hours
more results in the additional decrease of only 20 percent.
Observing the third column we detect an apparent raise in re-
laxivities with increasing surface area to volume ratio in sam-
plesS1throughS4, suggesting that manual crushing does not
equally affect the surfaces of grains with different volumes.
On the other hand, it can be seen that grinding maleic acid in
a ball mill during 16 hours changes drastically its surface crys-
talline structure, both creating lattice defects which lead to the
shortening of the local relaxation time, and certainly produc-
ing thicker boundary layer of stronger relaxation. Additional
milling process, which causes little effect on the particle sizes,
does not change its relaxivity. As a consequence, samples that
have already been milled to this limit condition of unaltered
surface sink strength must present initial decay time constants
in the ratio

To j

Tok

∼= d j

dk
(11)

according to Eq. (8). SamplesS5 andS6 are expected to
fulfill that condition and to satisfy the relationship above. Ac-
cording to Table III the ratio(T05/T06) is 1.30±0.05and from
Table IV (d5/d6) is 1.25±0.15, a good agreement if the error
spread is taken into account. If the thickness of the surface
layer is assumed to be of the order of 10Å and this value is
combined with the relaxivities of samplesS5andS6, it is pos-
sible to obtain the typical spin-lattice relaxation time in that
layer as10ms, lower by a factor105 with respect to the char-
acteristic times measured in those samples.

The values of the parameterA extracted from decay data
points, although confirming the slow diffusion regime, do not
show any of the regularities observed for the time parame-
ters. Its determination is quite imprecise, as can be seen in
the third and 4-th columns in Table III, particularly in this last
one, where all numbers should be close to 1/3. Large changes
of A in this range do not affect in appreciable amounts the
rootsξn, and so this quantity was not considered for numeri-
cal evaluation purposes.

V. CONCLUSIONS

Under the adopted theoretical basis the analyses of mag-
netic relaxation decay functions of fine powdered materials do

not provide absolute measurement of grain sizes, even if the
simplifying assumption of uniform granularity is followed:
the independent knowledge of the spin diffusion coefficient
or the comparison with the function of a well characterized
standard sample is required. Nor can the prevailing grain geo-
metric form be identified on the ground of specific features of
the observed decay curves, for they cannot be decomposed in
spectra of definite relaxation rates. However, the access to the
relaxation function of a single sample with a well known grain
size allows, as has been presently done, the evaluation of the
diffusion coefficient for this material. On the other hand, if
the diffusion coefficient of a material is known and the aver-
age size of a sample of this material is known the relaxation
decay curve can be used to determine the surface relaxivity as
well as the relative size of other samples of the same mater-
ial. These possibilities arise as application of a simple phys-
ical model which leads to algebraic expressions involving a
few parameters representing quantities of interest in describ-
ing microscopic properties of granular solids. This must be
compared to the other common tools employed in the analy-
sis of multiexponential relaxation: the numerical inversion of
the Laplace transform [12–15], and the stretched exponential
fitting [7, 16, 17]. The first one requires a lot of experimental
data for every relaxation decay, does not lead to a unique solu-
tion for relaxation times distribution, and it usually works on
the oversimplified basis of a definite particle or pore size for
every decay time component. This is not true, as can be ob-
served in the form of the relaxation function, solution of the
magnetization diffusion differential equation. The stretched
exponential and its modified form [18] , on the other hand, in-
volve no more than three parameters and good quality fittings
can be achieved with less experimental data, if conveniently
distributed. However, they are not associated to an established
physical model which permits the development of analyses of
the kind carried out in this article.
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