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We consider the disordering dynamics of an interacting binary alloy with a small admixture of va-
cancies which mediate atom-atom exchanges. Starting from a perfectly phase-segregated state, the
system is rapidly heated to a temperature in the disordered phase. A suitable disorder parameter,
namely, the number of broken bonds, is monitored as a function of time. Using Monte Carlo simula-
tions and a coarse-grained �eld theory, we show that the late stages of this process exhibit dynamic
scaling, characterized by a set of scaling functions and exponents. We discuss the universality of
these exponents and comment on some subtleties in the early stages of the disordering process.

I Introduction

The dynamics of binary alloys, undergoing mixing or

segregation processes, is a venerable problem in the

physics and materials science communities [1]. Much

interest has focused speci�cally on the dynamics of

phase ordering and domain growth, following a rapid

quench below the coexistence curve. Starting from

an initial non-equilibrium con�guration, the system

evolves towards its �nal equilibrium state, giving rise to

fundamental questions in both disciplines. Crucial to

metallurgy, the domain morphology is intimately linked

to structural stability while statistical physics focuses

on the universal, self-similar aspects of its temporal evo-

lution, manifested in characteristic growth exponents

and dynamic scaling.

A key ingredient in the study of these processes is

the mechanism by which two particles exchange posi-

tions. From the viewpoint of modelling and simulation

purposes, direct particle-particle exchanges obviously

lead to the simplest codes and coarse-grained equa-

tions. Moreover, invoking universality, it is expected

that the details of the microscopic mechanisms do not

a�ect large-wavelength, long-time properties, such as

growth exponents and universal scaling functions. In

this spirit, Kawasaki dynamics and the Cahn-Hilliard

equation have been extensively used to describe phase

ordering in binary alloys. However, in most real solids,

microscopic atom-atom exchanges can be mediated by

a variety of processes [2], with direct exchanges playing

a rather small role since steric hindrance tends to create

large energy barriers. The most common mechanisms

involve exchanges with defects, such as vacancies or in-

terstitial sites. For these reasons, alloys have often been

modelled by three-state models [3] whose dynamics is

controlled by atom-vacancy exchanges, with direct ex-

changes being completely forbidden. Two problems in

particular have attracted considerable attention: �rst,

the e�ect of vacancies on phase separation and domain

growth [4, 5], and second, their role in atomic interdif-

fusion [6, 7]. A number of studies have also addressed

vacancy-mediated ordering in a variety of antiferromag-

netic alloys [8], as well as surface modes of unstable

droplets in a stable vapor phase [9].

In this review, we will describe a third aspect of

defect-mediated dynamics, namely, the \inverse" of

the phase ordering problem. Instead of studying the

growth of order in response to a sudden temperature

decrease (a \quench"), we focus on the disordering of

a �nite system, following a rapid increase in tempera-

ture. Starting with a zero-temperature ferromagnetic

con�guration, i.e., a perfectly phase-segregated system

with sharp interfaces, we monitor how the interfaces

\roughen" and how particles of one species are trans-

ported into regions dominated by the other species.

Clearly, if the �nal temperature is suÆciently high, the

interfaces will eventually dissolve completely, leaving

us with a homogeneous �nal state. Several questions

emerge quite naturally: Are there characteristic time

scales on which the disordering takes place, and how

do they depend on system size, temperature and other

control parameters? How do local density pro�les and

correlation functions evolve with time? Are there any

scaling regimes, and what are the appropriate scaling

variables? How do these features respond to changes in

the relative concentrations of vacancies and alloy com-
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ponents?

In the following, we address some of these questions

in a simple model for defect-mediated interface destruc-

tion and bulk disordering. We consider a symmetric

(Ising-like) binary alloy of A and B atoms which is di-

luted by a very small number of vacancies (defects),

re
ecting the minute vacancy concentrations (of the or-

der of 10�5) found in most real systems. Following an

upquench from zero to a �nite temperature T , the va-

cancies act as \catalysts" for the disordering process,

exchanging with neighboring particles according to the

usual energetics of the (dilute) Ising model. The par-

ticles themselves form a passive background whose dy-

namics is slaved to the defect motion. Thus, this system

corresponds to a real material in which the characteris-

tic time scale for vacancy di�usion is much faster than

the ordinary bulk di�usion time. While vacancies are

typically distributed uniformly in the bulk, certain de-

fects may prefer to accumulate at the interfaces. Thus,

the number of defects is not necessarily extensive in

system size.

While we allow for some variation in the vacancy

number, we consider equal concentrations of A and B

atoms. Thus, our work forms a natural complement

to the only other study [10] of vacancy-mediated disor-

dering in the literature. There, the alloy composition

is chosen highly asymmetric: 95% of A atoms versus

only 5% for the B species, with a single vacancy. Thus,

the A atoms form a matrix for a B-precipitate. The

alloy is �rst equilibrated at a very low temperature, so

that small clusters of B atoms are present. It is then

rapidly heated to a higher temperature, and the num-

ber and size of B clusters are monitored. Three di�erent

scenarios are observed, depending on whether the �nal

temperature is below the miscibility gap, above the mis-

cibility gap but below Tc, or above Tc. In the �rst case,

the precipitates remain compact. They dissolve par-

tially at �rst, but then equilibrate again by coarsening.

In the second case, the precipitates also remain com-

pact but eventually dissolve completely, mostly through

\evaporation" from their surfaces. In the third case,

the clusters decompose rapidly (\explode") into a large

number of small fragments which then disappear di�u-

sively.

The complete or partial mixing of two materials at

an interface plays a key role in many physical pro-

cesses, such as corrosion or erosion phenomena [11].

We mention just two applications with huge techno-

logical potential for device fabrication. The �rst con-

cerns nanowire etching by electron beam lithography

[12]: If a thin �lm of platinum is deposited on a silicon

wafer, interdi�usion of Pt and Si produces a mixing

layer. If this layer is heated locally by, e.g., exposure to

a conventional electron beam, silicides, such as Pt2Si

and PtSi, form. The unexposed platinum can subse-

quently be etched away, leaving conducting nanoscale

structures behind. The second example concerns meso-

scopic superlattice structures, consisting of alternating

magnetic and nonmagnetic metallic layers. If adjacent

magnetic layers couple antiferromagnetically, the appli-

cation of a large uniform magnetic �eld to these layered

structures results in giant magnetoresistance [13]. How-

ever, the performance of these devices requires precisely

engineered layer thicknesses and interfaces, and can be

signi�cantly a�ected by disorder [14], including inter-

di�usion or interfacial 
uctuations.

While motivated by these applications, our study

can only form a baseline here, for further work on

more realistic models. However, it also has some rather

fundamental implications. First, it serves as a test-

ing ground for a basic problem in statistical physics,

namely, how a system approaches its �nal steady state,

starting from an initial non-stationary con�guration. A

second view of our study addresses the e�ect of a ran-

dom walker on its background medium. Each move of a

vacancy rearranges the background atoms slightly, leav-

ing a trail behind like a child running across a sandy

beach. In the simplest case, the walker is purely Brown-

ian. In our language, this corresponds to an upquench

to in�nite temperature, T = 1, where energy barri-

ers are completely irrelevant. In this case, there is no

feedback from the background to the local motion of

the vacancy. Nevertheless, each displaced atom dis-

plays its own intriguing dynamics (mainly in d = 2)

[16, 17]. To study the collective behavior of the atoms,

[18] explored a lattice �lled with just two species of (in-

distinguishable) particles. Beyond this simple case is a

system heated to �nite temperatures. Since the back-

ground a�ects the vacancy through the local energetics

associated with the next move, no exact solutions are

known. Instead, progress relies mainly on simulations.

The key result of our study is the observation

of three distinct temporal regimes, separated by two

crossover times, provided the �nal temperature is not

too close to Tc. The intermediate and late stages of

the disordering process exhibit dynamic scaling, with

characteristic exponents and scaling functions that are

computed analytically. For the system sizes considered

here, a clear breakdown of these scaling forms is ob-

served for temperatures within about 10% of Tc. We

argue that this occurs when the correlation length be-

comes comparable to the system size. In contrast, the

early stage of the disordering process consists of inter-

facial destruction in a highly anisotropic manner [17].

This article is organized as follows. We �rst in-
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troduce our model and de�ne an appropriate \disor-

der" parameter. We then review the purely di�usive

case, corresponding to T = 1 [18]. Simulation re-

sults for two-dimensiononal systems and an exactly sol-

uble mean-�eld theory in general dimension are dis-

cussed. In Section IV, we present a number of new

results, concerning upquenches to �nite temperatures

where particle-particle interactions come into play. We

conclude with some comments on the e�ect of external

�elds, upquenches to temperatures T < Tc, and details

concerning interfacial destruction in the early stages.

II The Model

In this section, we describe the dilute Ising model un-

derlying our Monte Carlo simulations. It is de�ned on

a two-dimensional (d = 2) square lattice of dimension

L�L, with sites denoted by a pair of integers, r �(x; y).
The boundary conditions are fully periodic in all di-

rections. To model the two species of particles, black

(\spin up") and white (\spin down", displayed as gray

in the �gures), and the vacancies, we introduce a spin

variable �r at each site which can take three values: +1

(�1) if the site is occupied by a black (white) particle,

and �r = 0 if it is empty. Multiple occupancy is for-

bidden. The numbers of black (N+) and white (N�)

particles are conserved and di�er by at most 1. The

number of vacancies, M , is much smaller: M � N+.

In fact, most of our simulations will be restricted to

M = 1, to model the minute vacancy concentrations in

real systems. In our analytic work, we will also con-

sider a more general case, where M is allowed to vary

with system size according to M / L
 . Di�erent val-

ues of the vacancy number exponent 
 2 [0; d] will be

discussed. Clearly, the single vacancy case corresponds

to 
 = 0.

The particles and vacancies interact with one an-

other according to a dilute Ising model:

H[�r] = �J
X
hr;r0i

�r�r0 (1)

with a ferromagnetic, nearest-neighbor coupling J > 0.

Since the dilution is so small, the behavior of the system

is that of the ordinary (non-dilute) two-dimensional

Ising model. Thus, it has a phase transition, from

a disordered to a phase-segregated phase, at the On-

sager critical temperature, Tc = 2:267:::J=kB [19]. The

ground state is doubly degenerate. It consists of a strip

of black and a strip of white particles, each �lling half

the system, separated by two planar interfaces running

parallel to a lattice axis. Since the particle-particle in-

teractions are ferromagnetic, the few vacancies accumu-

late at the interfaces.

Next, we turn to the dynamics of the model. Only

particle-hole exchanges are allowed and performed with

the usual Metropolis [20] rate: minf1; exp(���H)g,
where �H is the energy di�erence of the system be-

fore and after the jump, and � = 1=(kBT ) is the in-

verse temperature. The initial con�guration of the sys-

tem is perfectly phase-segregated, with two interfaces

chosen to lie along the x-axis. The vacancies are lo-

cated at random positions along one of the interfaces.

Since this is technically a zero-temperature con�gura-

tion, while the dynamics occurs at temperature T > 0,

the vacancies will move around, disordering the inter-

faces and, if T > Tc, dissolving them eventually. The

�nal steady state is an equilibrium state of the usual

two-dimensional Ising model. Therefore, many of its

properties are exactly known [21].

In our simulations, the system sizes range from

L = 30 to 60. The �nal temperature T , measured in

units of the Onsager temperature Tc, varied between

1:1Tc and in�nity. Our data are averages over 10
2 to 104

realizations (or runs) depending on the desired quality

of the data. The time unit is one Monte Carlo step

(MCS) which corresponds toM attempted particle-hole

exchanges. All systems investigated equilibrate after

about 108 MCS.

To monitor the evolution of the system, we measure

a \disorder parameter", de�ned as the average number

of black and white nearest-neighbor pairs, A(L; t), as
a function of (Monte Carlo) time t. This quantity is

easily related to the Ising energy,

A(L; t) = d

2
Ld +

1

2J
hHi+O(L
) (2)

where h�i denotes the con�gurational average over runs.
The correction is due to the vacancies and remains

much smaller than the two leading terms. More de-

tailed information is carried by the local hole and mag-

netization densities, de�ned respectively as

�(r; t) � 

Æ�r;0

�
 (r; t) � h�ri (3)

The Kronecker-Æ ensures that lattice site r is occupied

by the vacancy. Non-zero values of  (r; t) indicate an

excess of white or black particles at lattice site r, which

is obviously a sensitive measure of the disordering pro-

cess. The full time dependence of these densities can in

general only be computed within a mean-�eld approach.

However, their stationary forms are easily found from

exactly known properties of the two-dimensional Ising

model.
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III Brownian Vacancies: T =1

In this Section, we focus on the simplest case, namely,

upquenches to in�nite temperature. As a consequence,

the nearest-neighbor coupling J plays no role at all,

and all attempted particle-hole exchanges are executed

with unit rate. Thus, the vacancies perform a Brownian

random walk, regardless of their local environment. We

�rst summarize our simulation results which suggest the

key to the mean-�eld analysis, namely, a separation of

time scales. We then introduce a suitable set of expo-

nents and scaling forms and show that the late stages

of the disordering process display dynamic scaling. Fi-

nally, we turn to a mean-�eld theory and compute these

exponents and scaling functions analytically.

III.1 Simulation Results

To illustrate the gradual destruction of the inter-

faces and the disordering of the bulk, Fig. 1 shows the

evolution of a typical con�guration, in a 60 � 60 sys-

tem with a single vacancy (which is represented by a

white square in the �gures). At t = 0, the vacancy is

located at the interface in the center which begins to

break up slowly. Eventually, the second interface also

becomes a�ected, as more and more particles are trans-

ported into regions of opposite color, until the system

�nally disorders completely. For later reference, we note

that the last two con�gurations, at 107 and 108 MCS,

are both already fully random. The disordering pro-

cess is clearly re
ected in the number of broken bonds:

A(60; t), shown in Fig. 2, increases from its minimum

of O(L) for the initial con�guration at t = 0, to O(L2)

for the fully equilibrated system at t = 107. One clearly

distinguishes three regimes, shown schematically in the

inset: an early regime (I), the intermediate, or scaling,

regime (II), and �nally a late or saturation regime (III)

in which the system has e�ectively reached the steady

state. Tracking the motion of the vacancy, the physical

origin of these three regimes is easily identi�ed. For

early times (regime I), the vacancy is still localized in

the vicinity of its starting point, far from the boundaries

of the system. After a time of O(L2), however, the va-

cancy has explored the whole system and is e�ectively

equilibrated. This marks the onset of the intermediate

regime. The particle distribution is still strongly inho-

mogeneous here and does not equilibrate until the sys-

tem enters the saturation regime. We emphasize that

the second and third regimes emerge only in a �nite

system. In an in�nite system, regime I persists for all

times. Some aspects will be brie
y summarized in the

concluding remarks.

Figure 1. Sequence of snapshots showing the disordering process of a 60 � 60 system with T = 1. The black and gray
squares represent the two types of particles(� = �1) and the white square denotes the vacancy(� = 0). The con�gurations
were recorded after 0; 104; 105; 106; 107 and 108 MCS.
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Figure 2. Plot of the total number of broken bonds, A(L; t)
vs t, for L = 60 and T = 1. It shows the emergence of
an early regime (I), an intermediate, or scaling, regime (II),
and a late or saturation regime (III). The straight reference
line has slope 0:5.

Our key observation is that, independent of dimen-

sion, Regimes II and III exhibit dynamic scaling. To

characterize this behavior, we introduce a set of expo-

nents: First, the saturation value of A scales with sys-

tem size according to limt!1A(L; t) � Asat(L) � L�.

Second, in the intermediate regime, A(L; t) grows as

A(L; t) � L�t�. Finally, the two crossover times

(\early" and \late") scale as te � Lze , and tl � Lzl .

Thus, the intermediate-to-late time crossover can be

summarized by the scaling form

A(L; t) � L�f (t=tl) (4)

with a scaling function f which satis�es f(x) ' const

for x � 1, and f(x) � x� for x � 1 (but large enough

to fall within Regime II). The consistency condition

A(L; tl) ' Asat(L) yields the scaling law

� + zl� = �: (5)

Due to the presence of the novel exponent �, (5) di�ers

from the familiar z� = � which controls surface growth

in, e.g., the Edwards-Wilkinson [23] or KPZ [24] mod-

els.

We �rst consider a single vacancy, in d = 2. For

this case, the data give � = 2 � 0:1, � = 0:5 � 0:06,

ze = 2 � 0:2, zl = 4 � 0:2, and � = 0 � 0:1. Clearly,

these exponents satisfy the scaling law (5). Excellent

data collapse is obtained by plotting A(L; t)=L� ver-

sus t=Lzl , shown in Fig. 3 for a range of system sizes.

The same indices are observed for several vacancies,

provided their number remains constant as the system

size L is varied, corresponding to a vacancy exponent


 = 0. We note brie
y that the exponent � is required

here to accomplish good data collapse in dimensions

greater than 2.

Figure 3. The scaling plot of A(L; t)=L2 vs t=L4 for L =
30 � 60 with T = 1. The straight reference line has slope
0:5.

Another natural case is 
 = d � 1, corresponding

to a situation where the defects are initially \frozen"

at the interfaces, and their number scales with the in-

terfacial area. Such a scenario could occur in surface

catalysis or in welding. Since our data are restricted

to d = 2, we examine the case 
 = 1, i.e., M / L.

Here, the data collapse only if (i) curves corresponding

to di�erent system sizes are shifted by anM -dependent

factor along the ln t-axis, and (ii) the late crossover ex-

ponent takes on the new value zl = 3�0:2, while � and

� remain unchanged. This behavior suggests that the

exponent � depends non-trivially on 
. For 
 = 1, the

data are consistent with � = 1=2, so that the scaling

form (4) still holds and the scaling law (5) is satis�ed

with the modi�ed exponent zl.

This concludes the discussion of our simulation re-

sults. We now turn to an analytic description of the

disordering process.

III.2 Mean-Field Theory

As a �rst step, we summarize the exactly known

results for the initial con�guration and the �nal, fully

disordered state. The analysis is easily performed in

general dimension, for a hypercube of side length L with
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fully periodic boundary conditions. The initial value of

the disorder parameter is given by the number of bro-

ken bonds across the two initial, 
at interfaces between

black and white particles: A(L; t = 0) = 2Ld�1+O(M).

The saturation value, Asat(L) = d
2L

2d=(Ld � 1) fol-

lows easily from the fact that the �nal steady state is

completely random for the Brownian vacancy case with

T =1. Thus, we can read o� the exact result � = d.

To proceed further, we derive a set of equations of

motion, for the coarse-grained local hole and particle

densities. Starting from the microscopic master equa-

tion, we can easily obtain evolution equations for the

discrete densities, �(r; t) and  (r; t). Since there is no

feedback from the particle background, the equation

for �(r; t) is completely independent of  (r; t). In con-

trast, the motion of the particles is slaved to that of the

vacancy, so that the equation for  (r; t) is inherently

nonlinear and contains two-point functions of the form

�r0Æ�r;0

�
. Here, a mean-�eld assumption is required,

to truncate these averages. Finally, we take the contin-

uum limit, by letting the lattice constant vanish at �xed

system size L. For simplicity, we use the same notation

for discrete densities and their continuous counterparts.

The position vector r � (x1;::::; xd) denotes a point in

the hypercube �L=2 � xi � +L=2, i = 1; 2; :::; d, with

volume V � Ld. We also retain the symbol t for time,

since Monte Carlo time and its coarse-grained counter-

part di�er only by a scale factor. After some suitable

rescalings, we obtain the desired mean-�eld equations:

@t�(r; t) = r2�(r; t)

@t (r; t) = �(r; t)r2 (r; t)�  (r; t)r2�(r; t):(6)

The simple di�usion equation for � re
ects the Brown-

ian random walk of the vacancies. The magnetization

density  obeys a balance equation: the �rst term re-


ects a gain, provided a vacancy is initially present and

a particle \di�uses" in from a neighboring site. The

second term accounts for a loss, due to a particle jump-

ing to a vacant nearest-neighbor site. Similar equations

have been discussed in the context of biased di�usion of

two species [25] and vacancy-mediated interdi�usion [7].

Note that both equations take the form of continuity

equations, due to the conservation laws on the particle

numbers. The two densities are normalized, according

to
R
V �(r; t) = M , and

R
V  (r; t) = 0. Given fully pe-

riodic boundary conditions, these equations have to be

supplemented with appropriate initial conditions. For

our simulations, we choose �(r; 0) = M
Ld�1 Æ(y) where

y � xd, and  (r; 0) = 2�(y) � 1. The �nal state is, of

course, trivial: �(r;1) � �o =M=V , and  (r;1) = 0.

To solve for the hole and magnetization densities, we

seek the separation of time scales, �rst observed in the

Monte Carlo data, in the equations (6). The hole den-

sity, with a di�usion coeÆcient of O(1), relaxes rapidly

to the �nal value M=V . By contrast, the magnetiza-

tion density is essentially slaved to �(r; t) and relaxes

with a di�usion \coeÆcient" of O(1=V ). The hole den-

sity spreads di�usively and reaches the boundaries of

the system after a time of O(L2), marking the end of

the early regime. Thus, we identify the early crossover

time te / L2 and read o� ze = 2. For later times, the

vacancies are uniformly distributed over the system, so

that �may be replaced by its stationary value, �o =
M
V .

Inserting this into the equation for  results in a simple

di�usion equation

@t = �or2 (7)

with a di�usion coeÆcient M=V . Its solution, subject

to the initial and fully periodic boundary conditions, is

easily found:

 (r; t) =
4

�

1X
n=1

sin[2�(2n� 1)y=L]

2n� 1
e�� t(2n�1)

2

; (8)

where � � 4�2�o=L
2. Of course,  (r; t) depends on y

only, re
ecting the homogeneity of initial and bound-

ary conditions in the d � 1 transverse directions. We

also note that, while this form is exact, it converges

rapidly only for late times, � t � 1, corresponding

to the saturation regime. There, the pro�le is har-

monic with a rapidly decaying amplitude:  (r; t) '
4
� sin[2�y=L]e

�� t. Below, we will present an equivalent

form with good convergence in the opposite limit.

To describe the simulation results, we need an ex-

pression for the disorder parameter A. Recalling its

connection to the average Ising energy, Eqn (2), we

invoke the continuum limit of the latter [26], hHi =

�dJ R
V
 (r; t)2, which is correct up to surface terms of

O(1=Ld�1). Thus, we obtain

A(L; t) = d

2

�
V �

Z
V

 (r; t)2ddr

�
: (9)

We note that this form is manifestly extensive.

Moreover, since surface terms have been dropped, the

initial value of A is now simply 0.

The time evolution of this quantity follows from (8):

A(L; t) = d

2
V [1� S(2�t)] ; (10)

where S(�) � 8
�2

P1
1 e��(2n�1)

2

=(2n � 1)2. Since

S(0) = 1 and S(1) = 0, we verify that A does

take on the correct initial and �nal values. It is also

consistent with our postulated scaling form, Eqn (4),

provided we identify the scaling exponent � with d



Brazilian Journal of Physics, vol. 30, no. 1, Mar�co, 2000 145

and the scaling variable t=tl with �t. This suggests

to de�ne the late crossover time as tl � 1=�. Col-

lecting the dependence on system size, we identify

tl / L2=�o = Ld+2�
 . Hence, we read o� zl =

d + 2 � 
 for the scaling exponent which controls the

late crossover time. Thus, �t � 1 marks the satura-

tion regime where Eqn (4) converges well, exhibiting

a simple exponential approach to the saturation value:

A(L; t) = d
2V

�
1� 8

�2 e
�2�t +O(e�4�t)

�
.

In contrast, the intermediate regime (II) corre-

sponds to �t � 1. To capture the time dependence

here, we re-express the in�nite sum via a Poisson re-

summation [27]. The key advantage of this procedure

is to convert a sum with rapid convergence in one limit

(�t� 1) into an equivalent sum with good convergence

in the opposite (�t � 1) limit. Deferring technical de-

tails to an Appendix, we introduce um � �m=
p
8�t and

arrive at

c

A(L; t) ' 2d

�3=2
V
p
2�t

(
1 + 2

1X
m=1

(�1)m
�
e�u

2

m � um�

�
1

2
; u2m

��)
(11)

d

where �(�; �) denotes the incomplete Gamma function.
In this form, the sum over m is suppressed for small
�t. Thus, A(L; t) / V

p
2�t / Ld

p
Mt=L2+d, yielding

the remaining indices, namely � = 1
2 independent of

dimension, and � = 1
2 (d+ 
 � 2). It is straightforward

to check that our exponents satisfy the scaling relation
(5). In two dimensions, our theory predicts zl = 4 and

� = 0 for 
 = 0, while zl = 3 and � = 1
2 for 
 = 1, in

complete agreement with the Monte Carlo data.
Since the full magnetization pro�le contains more

detailed information than the disorder parameter, one
might also be interested in its form for early times,
�t � 1. A similar Poisson resummation, of Eqn (8),
results in

c

 (r; t) = erf

�
~y

2
p
�t

�
+

1X
m=1

(�1)m
�
erf

�
~y + �m

2
p
�t

�
+ erf

�
~y � �m

2
p
�t

��
; (12)

d

where ~y � 2�y=L. For �t � 1, this form still re
ects
the sharpness of the initial �-function which is only
gradually \washed out".

This concludes our discussion of the mean-�eld the-
ory, for the Brownian vacancy case. We note brie
y
that our results remain unchanged (up to a trivial am-
plitude) if periodic boundary conditions are replaced by
re
ecting ones. We should also reiterate that our focus
here rests on the intermediate and late regimes. A full
microscopic treatment of the early regime is beyond the
scope of this paper. For the bene�t of the reader, how-
ever, a short summary is provided in the conclusions.
Instead, we turn to the role of interactions.

IV The e�ect of interactions:

Tc < T <1

When the �nal temperature of the system is �nite,
T < 1, the full Hamiltonian, Eqn (1), comes into
play when a vacancy attempts to move. In partic-
ular, the defects no longer perform a simple random

walk, since the jump rates now carry information about
the local environment, i.e., the distribution of black
and white particles around the originating and receiv-
ing site. Thus, a feedback loop between vacancy and
background is established, in stark contrast to the case
T = 1. One might expect that this has signi�cant
consequences for pro�les and disorder parameter, and
that dynamic scaling exponents might be modi�ed. It
is immediately obvious that we should distinguish �-
nal temperatures above criticality from those below. In
the former case, the �nal steady-state con�gurations
are still homogeneous, even if correlations become more
noticeable. In the latter case, however, the equilibrium
state itself is phase-separated, so that the only e�ect of
the vacancies is to \soften" the initial interfaces. This
aspect of vacancy-induced disordering should be par-
ticulary interesting in two dimensions, where Ising in-
terfaces are known to be rough [28]. There, the vacan-
cies must mediate both the development of an \intrin-
sic interfacial width" and the emergence of large-scale
wanderings of the interface [29]. Certainly, we expect
these two phenomena to take place on drastically dif-
ferent time scales, since they are associated with local
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vs. global disorder.
In this Section, we focus on �nal temperatures above

criticality: Tc < T < 1, and a single vacancy, M = 1.
Starting with a set of typical evolution pictures, we in-
vestigate the dynamic scaling properties of the disorder
parameter. Since the equations of motion now become
highly nonlinear, we have not been able to solve them
exactly. Thus, we o�er only a few comments in conclu-
sion.

Fig. 4 shows the evolution of a typical con�gura-
tion, in a 60 � 60 system with a single vacancy at
T = 1:5Tc. Note that the MC times are the same as in
Fig. 1. Again, we observe the gradual, yet eventually
complete, destruction of the interfaces. In comparison
with Fig. 1, however, two obvious di�erences emerge:

First, the system takes longer to reach the �nal sta-
tionary state. Second, the �nal con�guration shows
clear evidence of a finite correlation length. Both fea-
tures are induced by the interactions. In particular, the
disordering process is slowed down since the breaking
of bonds is energetically costly. At a more quantita-
tive level, this is documented by Fig. 5 which shows
the disorder parameter, for a 60� 60 system and sev-
eral temperatures. One observes that the late crossover
time shifts to later times as the temperature decreases.
In contrast, the early crossover time appears to be less
a�ected. Also, the saturation value of the disorder pa-
rameter decreases. However, being essentially the Ising
energy, it remains extensive, with a T -dependent am-
plitude.

Figure 4. Sequence of snapshots showing the disordering process of a 60 � 60 system with T = 1. The black and gray
squares represent the two types of particles(� = �1) and the white square denotes the vacancy(� = 0). The con�gurations
were recorded after 0; 104; 105; 106; 107 and 108 MCS.

It is natural to ask whether the scaling forms found
in the previous section still hold. In Fig. 6, we present
the scaling plots for the disorder parameter, i.e., we
show A(L; t)=Ld plotted vs. t=L4. Each graph corre-
sponds to a di�erent temperature: T = 3:5Tc (Fig. 6a),
T = 1:5Tc (Fig. 6b), and T = 1:1Tc (Fig. 6c). Focusing
on Fig. 6a, it is quite evident that the data collapse just
as well for T = 3:5Tc as for T = 1 (cf. Fig. 3). The
three temporal regimes are well separated and easy to
distinguish. In the intermediate regime, the disorder
parameter follows the t1=2 power law, over more than
three decades. Thus, the data at this temperature still
obey the scaling form (4), with the same set of expo-
nents. However, for the next temperature, T = 1:5Tc

(Fig. 6b), the range of perfect data collapse begins to
shrink: the curve for the smallest system size (L = 30)
merges noticeably later than in Fig. 6a. Also, the power
law no longer persists over such a wide region, and the
exponent � becomes more diÆcult to determine. Still,
the larger system sizes collapse rather well, so that there
is still a well-de�ned scaling function even if its form
appears to change. Finally, Fig. 6c shows the data for
T = 1:1Tc: here, the imposed scaling form manifestly
fails to match the data.
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Figure 5. A(L; t) vs t for L = 60 with T =1, 3:5Tc, 1:5Tc

and 1:1Tc.

Figure 6. The scaling plot of A(L; t)=L2 vs t=L4 for
L = 30 � 60 with (a) T = 3:5Tc, (b) T = 1:5Tc and
(c) T = 1:1Tc. The straight reference lines have slope 0:5.

We conclude that, for temperatures not too close to
the critical temperature Tc, the dynamic scaling form
of the purely di�usive case, Eqn (4), still holds. In
two dimensions, we identify the saturation exponent
� = 2 and, for a single vacancy, the late crossover ex-
ponent zl = 4. The scaling function itself, however,
develops more curvature in the intermediate regime, so
that it becomes more diÆcult to extract a pure power
law, t� . One might be tempted to �t the data to a
pure power law, resulting in a temperature-dependent
exponent �, noticeably smaller than 0:5. However, we
believe that there is little physical support for such a
drastic change in scaling properties, especially in the
disordered phase of the Ising model. Instead, we con-
jecture that � = 1=2 is still valid but that T -dependent

corrections-to-scaling begin to play a stronger role. In
support, we checked that the data for T = 1:5Tc,
in the earlier part of regime II, can be well �tted
by a power law with an exponential correction, i.e.,
A(L; t)=L2 / t1=2

�
1 + c1(T ) exp[�c2(T )t=L4]

	
. This

form is gleaned from Eqn (11), by keeping the lead-
ing and �rst sub-leading term but allowing for two
temperature-dependent �t parameters c1(T ) and c2(T ).
Of course, we should anticipate signi�cant changes in
the scaling behavior upon entering the critical region.
Since 1:1Tc is \at the doorstep" of the latter, some pre-
cursors such as an increased correlation length begin to
make their in
uence felt.

In the following, we comment brie
y on some ana-
lytic results. First, we can easily check that the satura-
tion values, Asat(L), are consistent with exact results
for the two-dimensional Ising value. Table 1 shows this
comparison for a 60� 60 system with a single vacancy,
at several temperatures. AMC

sat is the measured satura-
tion value of the disorder parameter. ATH

sat is calculated
on the basis of Eqn (2), where hHi is the exact bulk
value for the average energy of the usual Ising model
[21]. The e�ect of the vacancy has been neglected. The
agreement is very good, within the statistical errors of
our data. The discrepancies are of course largest for
the last column, with T closest to Tc.

Finally, since hHi, and therefore Asat(L), are ex-
tensive, we still have an exact value for the saturation
exponent � = d.

The time-dependence of the disorder parameter
poses a much more diÆcult problem. It is of course
possible to obtain the temperature-dependent general-
ization of Eqns (6), by averaging the microscopic mas-
ter equation, followed by a mean-�eld approximation
and a naive continuum limit. For a dynamics slightly
di�erent from ours, this procedure was followed in [5].
However, these equations are no longer easily soluble:
First, both of them are inherently nonlinear, due to in-
teractions. Second, the equation for the local hole den-
sity, �(r; t), no longer decouples from the magnetiza-
tion  (r; t), since the background feeds back into the
motion of the vacancy. Thus, it is not apparent how
a clean time scale separation could emerge from these
equations. As a consequence, we are reduced to nu-
merical solutions or approximate techniques, such as a
high temperature expansion. Preliminary results, based
on the latter, provide some support for our conjecture
that � = 1=2 is still valid and that larger corrections-to-
scaling are responsible for the curvature in the scaling
function [30].

To summarize this section brie
y, our data indicate
that, for temperatures not too close to the critical tem-
perature Tc, the dynamic scaling form of the purely
di�usive case still holds, even though corrections-to-
scaling become more noticeable. In contrast, for T near
Tc we observe a clear breakdown of these scaling forms.
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Table 1. Comparison of exact and measured values of
the saturated disorder parameter for several tempera-
tures.

T=Tc 1 3:5 1:5 1:1
ATH
sat 3600:0 3134:6 2367:0 1602:9

AMC
sat 3598:6 3134:0 2368:9 1615:7

V Concluding Remarks

To summarize, we have analyzed the vacancy-driven
disordering process of an initially phase segregated bi-
nary system, which is rapidly heated to a temperature
T above criticality. The number of vacancies scales with
system size as L
 , where the vacancy exponent 
 is a
parameter. To quantify the evolution of the system,
we measure the number of broken bonds, A(L; t), as a
function of time. This \disorder parameter" allows us
to identify three temporal regimes, distinguished by the
distribution of the vacancies through the system. Our
key result is that the late stages of this process exhibit
dynamic scaling. A set of exponents fze; zl; �; �;�g can
be de�ned, characterizing, respectively, the system size
dependence of two crossover times, the �nal saturation
value of the disorder parameter, and its amplitude in
the intermediate regime. The temporal growth of A
during the latter regime is captured by the exponent
�. If the �nal temperature is in�nite, i.e., T = 1, the
motion of the vacancies is a simple Brownian random
walk, and all indices can be computed analytically, in
excellent agreement with the data. In particular, we
�nd that the typical time scale tl � Lzl , which controls
the crossover between increasing disorder and satura-
tion, is set by zl = 2+ d� 
, and thus depends explic-
itly on both the space and vacancy dimensionalities, d
and 
. Measurements of zl can therefore provide in-
formation about the vacancy distribution in a sample.
In the most familiar case, standard vacancy di�usion
in solids, the number of vacancies is extensive (
 = d),
so that the well-known result zl = 2 is reproduced [2].
In contrast, in two dimensions we �nd zl = 4 for a
single vacancy (
 = 0) and zl = 3 if the defects are
generated at the initial interface. For �nite tempera-

ture T
>� 1:5Tc, we observe that these scaling forms

still hold. Even though interparticle interactions now
play a role, correlations in the system are still short-
ranged, so that the vacancy still performs a random
walk if viewed on a length scale which exceeds the cor-
relation length, �(T ). As T approaches Tc, however,
�(T ) reaches O(L) so that the simple random walk sce-
nario must break down. In our simulations, signi�cant
deviations from the high-temperature scaling form ap-
pear already for T = 1:1Tc, where �(T ) ' 6, in units of
the lattice spacing [21].

All the investigations above are focused on up-
quenches to the disordered state. A natural extension

of this project is to set the �nal temperature below crit-
icality. Needless to say, new questions and interesting
phenomena can be expected. In particular, the �nal
equilibrium state is still phase separated, so that all
the interfacial properties come into play. With a single
vacancy in a �nite system, there may be a further sep-
aration of time scales. We expect that, soon after the
early stage, the \intrinsic" density pro�le of the inter-
face can be built. At this point, the interfacial width,
w, is most likely controlled by �. On the other hand, at
suÆciently long times, the capillary waves will surely
make their presence felt. In the d = 2 case, the in-
terface is always rough, so that we can always expect
the latter crossover to occur. How, and if, w(�; L; t)
scales will be of great interest. Besides dynamics and
timescales, we could study the equilibrium probability
pro�le of the vacancy, i.e., where the vacancy spends
most of its time. In case more than one vacancy is
present, this pro�le should map into a density pro�le
for the vacancies. In either case, we expect the vacan-
cies to be trapped, to a greater or lesser extent, at the
interface. Now, if more and more vacancies are added to
the system, the interface pro�le should be altered, since
a preponderance of vacancies may signi�cantly modify
the interfacial energy. For d = 3 Ising models, there are
further interesting phenomena, associated with rough-
ening transitions. Given that interfacial energies should
depend on vacancy concentrations, how the locations
(if not the nature) of such transitions are a�ected is a
natural question. Finally, it would be extremely inter-
esting to study the dynamic content of these systems,
such as scaling properties when the upquench is set at
a roughening temperature.

We conclude with a few remarks on related prob-
lems. It is obviously interesting to test the range of
universality of the high-temperature scaling forms, with
respect to changes in the boundary conditions and the
microscopic dynamics. Returning to T = 1, we have
investigated several cases. First, replacing periodic by
re
ecting boundary conditions changes only trivial am-
plitudes. A more signi�cant modi�cation is the addition
of a bias E, such as a gravitational or electric �eld [31]:
if all particles carry equal charge while the vacancy is
neutral, vacancy moves along a selected direction will
be suppressed. In this case, the boundary conditions
determine the nature of the resulting steady state. For
re
ecting boundary conditions, it is described by a sim-
ple Boltzmann factor, incorporating a gravitational or
an electrostatic potential. Here, a new scaling vari-
able, � � LE, emerges which characterizes the poten-
tial di�erence between opposing boundaries. In con-
trast, in the periodic case the steady state is a non-
equilibrium one. Moreover, it is translation-invariant,
so that all dependence on E disappears in a suitably
chosen co-moving frame! Remarkably, however, these
boundary-induced di�erences appear only in the scal-
ing functions, leaving us with a universal set of scaling
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exponents fze; zl; �; �;�g [31].
Finally, we should add a few remarks on the early

regime. As pointed out above, for an in�nite system
with a single vacancy, this is the only regime. First, no-
tice that only the phenomenon of interfacial destruction
is relevant, since bulk disordering would take in�nitely
long times. Next, considering the e�ective range of a
Brownian walker, it is clear that the size of the disor-
dered region grows at most with t1=2. In more detail,
we see that there are two distinct types of disorder.
Loosely, we will label them \transverse" and \longitudi-
nal." The �rst type is associated with a monolayer-like
disorder from the initially sharp interface, spreading
from where the vacancy began its journey. In particu-
lar, each time the vacancy crosses the plane at a new
location, a particle is moved into the \wrong" phase.
Thus, we may expect transverse disorder to spread like
t1=2. The second type is a measure of the width of the
interfacial pro�le. For this to occur, the vacancy must
\carry" e.g., a black particle deeper and deeper into
the sea of white ones. Thus, the return probability of
the walker plays a crucial role. Only in d = 2 is this
probability both relevant and non-trivial. Applying the
well-known results of random walks [22], we �nd that

\longitudinal" disorder grows as (ln t)
1=2

[17].
Even though our model is very simple, it forms the

basis for the description of a large variety of related sys-
tems. Moreover, it is truly gratifying that considerable
analytic progress is possible for a problem that is both
nonlinear and time-dependent. Work is in progress to
probe the e�ect of 
uctuations on the structural decom-
position process at a more microscopic level [32].
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Appendix: Poisson resummation

In this Appendix, we add a few details of the Poisson

resummation procedure. Our starting point is Equation
(10). Dropping the constant prefactor, we focus on the
expression in the brackets, with � � �t:

F (�) � 1� 8

�2

1X
n=1

e��(2n�1)
2

=(2n� 1)2 (13)

This sum converges rapidly in the limit � ! 1. We
seek a form which converges equally well in the limit
� ! 0. We �rst recast this sum in terms of a much
simpler one, namely,

S(�) �
1X
n=1

e�(�n)
2

: (14)

We begin by noting that
P1

1 1=(2n � 1)2 = �2=8 so
that

F (�) =
8

�2

1X
n=1

1� e��(2n�1)
2

(2n� 1)2

=
8

�2
�

Z 1

0

ds

1X
n=1

e��(2n�1)
2s (15)

It is easy to recognize the sum in this expression as the
\odd" terms in S(�), with � =

p
s�. This suggests that

we should recast S(�) in the form

S(�) =

1X
n=1

e�(2�n)
2

+

1X
n=1

e�(�(2n�1))
2

� Se(�) + So(�)

where the \even" terms just reproduce S(�), via
Se(�) = S(2�). Summarizing so far, we obtain

F (�) � 8

�2
�

Z 1

0

ds So(
p
�s)

=
8

�2
�

Z 1

0

ds
h
S(
p
�s)� S(2

p
�s)

i
(16)

Thus, it is suÆcient for us to resum S(�). We recall
the Poisson resummation formula [27], for a function
f (x), de�ned on 0 � x < 1 with limx!1 f(x) = 0
and

R1
0
dx f(x) �nite:

c

1

2
f(0) +

1X
n=1

f(n�) = ��1

"
1

2
~f(0) +

1X
m=1

~f(
2�m

�
)

#
(17)

where ~f is the Fourier cosine transform of f :

~f(�) � 2

Z 1

0

dx f(x) cos(�x) :

From Eqns (14), we can immediately read o� f(x) = exp(�x2) for our case whence
~f(�) =

p
� exp(��2=4) :
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Thus, we obtain

S(�) = �1

2
+ ��1

(p
�

2
+
p
�

1X
m=1

e�(m�=�)2

)
(18)

Clearly, the original form of S(�), Eq. (14) converges rapidly for large �, while the alternate form presented here
converges rapidly for �! 0. Inserting our result into Eq. (16) and performing the integration results in

F (�) =
4

�3=2

p
�

(
1 + 2

1X
m=1

(�1)m
�
e�u

2

m � um�(
1

2
; um)

�)
(19)

where um � �m=
p
8�t. This leads immediately to our result for the disorder parameter, Eq. (11).

The Poisson resummation of the magnetization pro�le, Eq.(8), is a little more involved, but follows an analogous
series of steps. In this case, the problem can be reduced to resumming

�(~y; �) �
1X
n=1

sin(n~y)

n
e��n

2

;

where ~y � 2�y=L, since we can rewrite

 (r; t) =
4

�

�
�(~y; �)� 1

2
�(2~y; 4�)

�
:

The resummation leads to

�(~y; �) = � ~y

2
+
�

2
erf

�
~y

2
p
�

�
+
�

2

1X
m=1

�
erf

�
~y + 2�m

2
p
�

�
+ erf

�
~y � 2�m

2
p
�

��

so that we �nally arrive at Eq. (12).

d
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