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Applications of Quantum Field Theory in Condensed Matter
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We present a brief review of some applications of quantum field theory in condensed matter systems. These
include isotropic and anisotropic antiferromagnetic chains, strongly correlated organic conductors, such as the
Bechgaard salts, carbon nanotubes and high-Tc superconductors. The review is by no means exhaustive and
points to a vast range of new interesting possible applications.

1 Introduction

Quantum field theory, since its birth, has been the basic fra-
mework for describing the physics of elementary particles
and their interactions. Firstly, its success in quantum elec-
trodynamics has been enormous, leading to the best theoreti-
cal predictions of the whole physics. Later on, use of quan-
tum field theory in the description of the weak and strong
interactions, was also extremely successful, converging for
the standard model, which has a vast and impressive body of
experimental support. It was in the 80’s, however, that the
efforts to produce a quantum field theory based grand uni-
fied model for the weak, strong and electromagnetic interac-
tions, failed. This was the starting point for the attempts to
use new methods such as string theory in high-energy phy-
sics.

Coincidentally, three paradigms of condensed matter
physics fell in the 80’s, namely, the independent electron ap-
proximation, the Landau theory of the Fermi liquid and the
BCS theory of superconductivity. The first one is the basis
upon which the so called solid state physics has been built
and allows a thorough understanding of metals, insulators
and semiconductors. The second one is a systematic pro-
cedure for introducing interactions among the electrons and
describes quite well a large variety of systems in condensed
matter. Both of them failed to provide an adequate descrip-
tion of new complex materials presenting strong electronic
correlations, found in the 80’s and 90’s. BCS theory, on the
other hand, for 30 years was the fundamental framework for
understanding the phenomenon of superconductivity. Ne-
vertheless, it was unable to provide an explanation for the
mechanism underlying the new high-temperature supercon-
ducting cuprates discovered in the mid 80’s.

Quantum field theory, being the natural framework for
the quantum description of interacting many-particle sys-
tems, found a fertile field of applications, precisely in the
description of those condensed matter systems, which could
not be described by traditional methods. A new and ac-
tive area of applications of quantum field theory in conden-
sed matter has thus been opened and is the object of this
brief review. We are going to concentrate basically in low-

dimensional quantum magnetic systems, strongly correlated
low-dimensional conductors, carbon nanotubes and high-Tc
superconductors.

2 Quantum magnetic chains

2.1 Isotropic Heisenberg antiferromagnet

Let us consider the one-dimensional AF Heisenberg hamil-
tonian (XXZ)

H = J
∑

i

[
Sx

i Sx
i+1 + Sy

i Sy
i+1 + δSz

i Sz
i+1

]
. (1)

The isotropic case corresponds toδ = 1. We can map this
into a fermionic system through the Jordan-Wigner transfor-
mation [1]

Sz
i = ψ†i ψi − 1 ; S+

i = ψ†i exp



iπ

i−1∑

j

ψ†jψj



 . (2)

Taking the continuum limit, we can use bosonization to map
the original spins into a bosonic system [2], namely

Sz
i =

β

2π
∂xφ +

(−1)i

β
cos βφ, (3)

and
S+

i = e−i 2π
β θ

[
cosβφ + (−1)i

]
, (4)

whereφ andθ are dual bosonic fields satisfying

∂xθ =
K

v
∂tφ ; ∂xφ = −K

v
∂tθ, (5)

whereK = β2/4π,

β =

√
2π

1− 1
π arccos δ

(6)

andv = πJ
2 is the characteristic velocity (spin-wave velo-

city). Observe that the isotropic case (δ = 0) corresponds to
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β2 = 2π. After bosonization, the original hamiltonian (1)
becomes

H =
v

2K

∫
dx

[
KΠ2

φ +
1
K

(∂xφ)2
]

. (7)

A similar expression can be obtained in terms ofθ by using
(5).

Usually, the most relevant quantity in a magnetic system
is the magnetic susceptibilty, which is given by

χ =
∫

dxdτ < Sz(x, τ)Sz(0, 0) > (8)

in the static homogeneous case. This can be evaluated by
using (3) and (7). In order to obtain finite temperature cor-
rections conformal perturbation theory must be used to cor-
rect the conformal invariant hamiltonian (7). The result is
[3]

χ(T ) =
1

Jπ2

[
1 +

1
2 ln(T0/T )

]
, (9)

whereT0 ' 7.7J . This expression for the susceptibility is
in excellent agreement with the experiment forSr2CuO3,
which is the best experimental realization of the antiferro-
magnetic quantum Heisenberg chain [4], provided we cho-
ose the exchange coupling asJ = 2200K.

2.2 Heisenberg antiferromagnet in an aniso-
tropic field - copper benzoate

Copper benzoateCu(C6H5COO)2 · 3 H2O is a quite pe-
culiar quantum magnetic chain, because if we apply to it
an external magnetic fieldH in the z-direction, a transverse
staggered magnetic field proportional toH is generated. In-
deed, the hamiltonian is

H =
∑

i

[
J ~Si · ~Si+1 −HSz

i − h(−1)iSx
i

]
, (10)

whereh << H.
Specific heat measurements clearly show [5] that a fi-

eld induced gap is generated the spectrum, namely∆(H) ∝
H0.65±0.03. The quantum field theory treatment of this sys-
tem provides a beautiful explanation for this effect. Indeed,
using the bosonization technique described in the previous
subsection, we can write the hamiltonian above as the one
of the sine-Gordon theory [6]

H =
∫

dx

{
v

2K

[
KΠ2

θ +
1
K

(∂xθ)2
]
− hC cos

(
2π

β
θ

)}
,

(11)
whereθ is one of the two dual bosonic fields introduced be-
fore. Using scaling arguments one can show that the above
hamiltonian possesses a gap [6]

∆
J

=
2Γ(1/2)√
πΓ(2/3)

[
Γ(3/4)

27/4Γ(1/4)

] 1
2− π

β2
(

h

J

) 1
2− π

β2
(12)

In the isotropic caseβ2 = 2π (weak field), we see that
∆ ∝ h2/3 [6], which is in excellent agreement with the ex-
perimental results for the specific heat [5].

The sine-Gordon description of copper benzoate is also
very successful in describing the specific heat curves of this
material at low temperature. By means of thermal Bethe an-
saatz, one can obtain the free energy, namely [7]

f(T ) =
−2T∆

π

∞∑
n=1

(−1)n+1

n
K1

(
n∆
T

)
−2TM1

π
K1

(
M1

T

)
,

(13)
where

M1 = 2∆ sin (πξ/2) , (14)

with

ξ =
β2

8π − β2
, (15)

is the first breather mass. The specific heat, given byc =
T∂2f/∂T 2, thereby obtained is in excellent agreement with
the experiment [7].

Another successful application of sine-Gordon theory in
copper benzoate concerns its spectrum of excitations. From
(14) we can obtain the ratio of the breatherM1 and soliton
∆ masses. This may be compared with neutron scattering
experiments made with an applied magnetic field of7 T .
For this value of magnetic field, Bethe ansatz calculations
indicate a value ofβ2/2π = 0.82 [7]. Introducing this value
in (14), we get

M1

∆
' 0.78 (16)

The neutron scattering cross sections at7 T [5] present a
breather peak at0.17meV and a soliton peak at0.22meV
whose ratio is precisely' 0.78!

3 Strongly correlated organic con-
ductors

There is a class of quasi one-dimensional systems with very
rich physical propetries. These are the organic conductors
known as Bechgaarad salts, namely(TMTSF )2X, where
X = PF6, ClO4, AsF4. These highly anisotropic materials
consist in stacks of the planarTMTSF -molecules. At high
temperatures, the conductivity along the stack axis is two
orders of magnitude higher than along the transverse ones.
The electron dynamics along this direction is described by
the Hubbard hamiltonian

H = −t
∑

<ij>,σ

(
c†iσcjσ + h.c

)
+ U

∑

i

ni,↑ni,↓, (17)

wherec†iσ is the creation operator for an electron with spinσ

at the sitei andni,σ = c†iσciσ. The first term in (17) is a tight
binding hamiltonian (independent electrons), which corres-
ponds to an electron energyE(k) = −2t cos ka, wherea is
the lattice spacing. Filling the valence band and expanding
about the Fermi points (±π/a in the case of half filling), we
arrive at a continuum fermionic system. This can be bosoni-
zed as

H =
vc

2K

∫
dx

{
KΠ2

φ +
1
K

(∂xφ)2 + g 1
2n

cos
[
n
√

8πφ
]}

,

(18)
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where

vc = vF

[
1 +

4U

πvF

]1/2

(19)

and

K =
[
1 +

4U

πvF

]−1/2

. (20)

with vF being the Fermi velocity (vF = 2ta at half-filling).
The last term in (18) corresponds to the so called umklapp
term, describing the interaction of electrons in the vicinity
of one Fermi point with the ones around the opposite Fermi
point, for a filling factor of 1

2n . The bosonic field is related
to the original fermionic field as follows. Callingψ1 andψ2,
respectively, the continuum fields associated to the electrons
aroundk = +kF andk = −kF (right and left movers), we
have

j = ψ1ψ1 − ψ2ψ2 =
2√
π

∂tφ. (21)

A relevant quantity in the electronic system is the dyna-
mic conductivity, given by

σ(ω) = lim
q→0

i

ω

[
Π(ω, q) +

2vF K

π

]
, (22)

where Π(ω, q) is the Fourier transform of the retarded
current-curent correlator, namely,

Π(ω, q) = −i

∫
dxdteiqxe−iωt〈[j(x, t), j(0, 0)]〉ret.

(23)
The conductivity (22) can be evaluated by using (18) and
(21). For frequencies much higher than the sine-Gordon gap
(ω >> ∆), one obtains [8]

σ(ω) ≈ ω4n2K−5. (24)

This can be comparaed with the experimental results for
(TMTSF )2X and adjusted to the value4n2K − 5 = −1.3
[8]. For half-filling (n = 1), we would haveK ≈ 0.93,
indicating that the system would be almost free in this case
(K = 1 is the free case). In the quarter filled case, which
corresponds to the real situation in the Bechgaard salts,
conversely, we haveK ≈ 0.23. This is very far from1
(0 < K ≤ 1) and implies these materials are quite strongly
correlated.

4 Carbon nanotubes

Carbon nanotubes are extremely interesting highly anisotro-
pic systems consisting in graphite sheets folded in cylindri-
cal tubes with a diameter of approximately1.5nm. The
electrons corresponding to theπ-orbitals of graphite can
move along the tube and may be modeled by the continuum
hamiltonian [9]

H =
∫

dx vF

∑
a,σ

[
ψ†R,a,σi∂xψR,a,σ − ψ†L,a,σi∂xψL,a,σ

]

+
1
2

∫
dxdyρ(x)Veff (x− y)ρ(y). (25)

In this expression, the right and left moving fields (R and
L) are obtained by expanding the tight-binding dispersion
relation about the two Fermi points at+kF and−kF , res-
pectively. The sum ina = 1, 2 runs over the two bands ob-
tained by folding the graphite sheet and expanding around
the Fermi points [9].σ =↑, ↓ are the two spin orientations.
The effective Coulomb potential along the cylinder axis is
such that its Fourier transform is given by [9]

Veff (k) =
2e2

κ
ln

(
1

kR

)
≈ 2e2

κ
ln

(
L

R

)
, (26)

whereR is the cylinder radius,L, its length andκ ≈ 1.4 is
the (experimentally determined) dieletric constant.

Applying the standard bosonization method [2] to theψ-
fields, we get

H =
vF

2K

∫
dx

[
KΠ2

φ +
1
K

(∂xφ)2
]

, (27)

where

K =
[
1 +

8e2

πvF κ
ln(L/R)

]−1/2

(28)

and

j = ψ†R,a,σψR,a,σ − ψ†L,a,σψL,a,σ =
2e√
π

∂tφ. (29)

Using the experimental value for the Fermi velocity, namely,
vF ' 8 × 105 m/s and the typical dimensions of a carbon
nanotube,R ≈ 0.75nm andL ≈ 1µm, we getK ≈ 0.28.
We see, therefore that carbon nanotubes, like the organic
conductors considered in the previous section, are strongly
correlated electronic systems.

A very interesting experimental set up, consists in ap-
plying a voltage differenceV to the carbon nanotube and
measuring the current through it. For a density of states,
given as a function of the energy asρ(ε) = εα, at a tempe-
ratureT , the differential conductance is given by [10]

dI

dV
∝ Tα cosh

(
eV

2kBT

) ∣∣∣∣Γ
(

1 + α

2
+ i

eV

4πkBT

)∣∣∣∣
2

.

(30)
This has been obtained by using tunneling theory [10]. From
(30), we can infer that

dI

dV
∼





Tα kBT >> eV

V α kBT << eV
. (31)

The parameterα associated to the electronic density of sta-
tes in the nanotube may be determined from bosonization
theory and (27), giving [11]

α =
1
8
[K + K−1 − 2], (32)

for tunneling into the bulk of the nanotube and

α = K−1 − 1, (33)

for tunneling into the edge. Eq. (30) withα given by (32)
and (33) is in excellent agreement with the experiments [12]
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5 High Tc superconductors

High-temperature superconductors are among the most inte-
resting and challenging materials ever investigated. Disco-
vered in 1986, the mechanism of superconductivity they pre-
sent, resists up to now its comprehension, despite the many
theories that have been proposed for their description. Here
we present a field theory based model, which has been quite
successful in describing part of the phase diagram of the
two best studied superconducting cuprates, namely LSCO
(La2−δSrδCuO4) and YBCO (Y Ba2Cu3O6+δ).

A common feature in all superconducting cuprates is the
presence ofCuO2 planes, withCu++ ions on the sites and
O−− ions on the links of a square lattice. TheCu++ ions
possess a localized electron per site. Upon doping (δ 6= 0)
holes are introduced in the oxygen ions. These can move
and interact among themselves and with theCu++ spin
background, eventually forming the superconducting Coo-
per pairs beyond a certain critical doping and below a criti-
cal temperatureTc(x).

The model we propose is defined by the partition func-
tion [13]

Z =
∫
Dz̄DzDψDψDAµ δ[z̄z − 1]e−S , (34)

where

S =
∫ β~

0

dτ

∫
d2x

{∑

i

1
2g0

|(∂µ − iAµ)zi|2

+
∑

α=↑,↓,λ=1,2

ψα,λ γµ (i∂µ − qσzAµ) ψα,λ



 .(35)

In this description, the localized spins of theCu++ ions are
given by ~S = z†i ~σijzj , wherezi (z†i zi = 1) are CP1 fi-
elds (Schwinger bosons) describing the fluctuations of the
spin background,Aµ is a Hubbard-Stratonovich field,g0 is
a coupling constant related to the original Heisenberg ex-
change for these spins. The creation operators for holes in
the O−− ions are given byc†i,α = µ†if

†
i,α, (α =↑, ↓) with

f†i,α creating a chargeless spin (spinon) andµ†i creating a
spinless charge (chargon). The Dirac fieldψα,λ that appears
in (35) is built out of thef fields (λ = Fermi surface branch
) [13] andq is the spinon-Schwinger boson coupling. The
chargon operatorµ†i is identified with the quantum skyrmion
(topological excitations) creation operator whose quantum
properties have been described in [14].

The quantum skyrmion correlation function is a power-
ful tool for evaluating the antiferromagnetic order parameter
for theCu++ spin lattice. Indeed, this is given by [14, 13]

< µ(x)µ†(y) >=
e−2πM2(δ,T )|x−y|

|x− y| q2
2

, (36)

whereM(δ, T ) is the staggered (sublattice) magnetization
of theCu++ spin lattice, as a function of temperature and
doping. Evaluation of (36) gives [15]

M(δ, T = 0) = M(0, T = 0)[1−Aδ2]1/2 (37)

for YBCO and

M(δ, T = 0) = M(0, T = 0)[1−Bδ − Cδ2]1/4 (38)

for YBCO. The constantsA, B andC have been computed
in detail from first principles in [15]. Expressions (37) and
(38), which have no adjustable parameters, are in excellent
agreement with the experimental results [15]. By studying
M2(δ, T = 0), we can obtain an expression for the Néel
temperatureTN (δ) as a function of doping, which is also
in excellent agreemet with the experiments for both com-
pounds [15].

We can also describe in our theory the superconducting
transition. Since skyrmions are the charge carriers, we must
investigate the skyrmion-skyrmion interacting potential pre-
dicted by the theory described by (35). For two static char-
ges of the same sign at positions~x1 and~x2, we get [13]

V (~x1 − ~x2) =
∫

d2~p Σ(~p, 0) ei~p·(~x1−~x1), (39)

whereΣ(~p, 0) ≡ ΠB(~p) + ΠF (~p) is related to the vacuum
polarization tensor corresponding to (35) as

Σµν(p) =
Σ(p)
p2

(
p2δµν − pµpν

)
. (40)

Notice that the bosonic and fermionic contributions to the
potential (39) correspond, respectively, to the spin fluctu-
ations associated to the localizedCu++ spins (Schwinger
bosons) and to the spin part of theO−− holes (spinons).

We can evalute the potential (39) as a function ofT and
δ. In order to find the superconducting temperature, we
study the condition for this potential to have a minimum.
This leads to the critical temperatureTc(δ). Our expression
for Tc(δ) is in good agreement with the experimental data
for LSCO and YBCO below optimal doping [13]. Our re-
sults are actually not valid beyond optimal doping because
in this region we are outside the pseudogap phase where the
continuum limit leading to (35) was taken.

6 Concluding remarks

The few cases described in this review allow us to con-
clude that Quantum Field Theory is an extremely power-
ful and efficient method for describing Condensed Mat-
ter systems. It is specially useful for the case of low-
dimensional and strongly correlated systems where the tra-
ditional methods of Condensed Matter fail. Our review has
not been, by no means, exhaustive and many interesting ap-
plications of Quantum Field Theory in the description of
Condensed Matter systems have not been covered. These in-
clude the Chern-Simons-Landau-Ginzburg theory for Quan-
tum Hall systems, conjugated polymers like polyacethilene,
ferromagnetic chains like the XY-model, Josephson junction
arrays, superfluid helium, heavy fermions and manganites
among many others. We conclude by pointing out that a vast
field of applications of Quantum Field Theory in Condensed
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Matter is open. This includes some fundamental problems
like the one of high-Tc superconductivity.
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