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INTRODUCTION

Gut bacterial β-glucuronidase (GUS) is an acid 
glycoside hydrolase residing in the gastrointestinal tract, 
that catalyzes the hydrolysis of glucuronide conjugates 
and produces the corresponding aglycone (Pellock, 
Redinbo, 2017; Pollet et al., 2017; Wang et al., 2019). The 
released aglycone can be absorbed and accumulate in 
the intestinal tract, causing dose-limited gastrointestinal 

toxicities exemplified by the chemotherapy drugs (Clarke 
et al., 2019; Ervin et al., 2019). Irinotecan (CPT-11), an 
anti-cancer drug mainly used to treat colorectal cancer, 
can lead to severe delayed diarrhea and neutropenia, 
limiting its clinical applications (Bailly, 2019; Hahn 
et al., 2019; Shi et al., 2021). CPT-11 is hydrolyzed in 
vivo by carboxylesterase in the liver to its active as well 
as toxic metabolite SN-38 (Hicks et al., 2009; Tobin et 
al., 2006). After exerting its antitumor effect, SN-38 is 
primarily metabolized in the liver by uridine diphosphate 
glucuronyltransferase 1A1 to its inactive form SN-38-
glucuronide (SN-38G), which is then excreted through the 
urine and bile (Iyer et al., 1998). Nevertheless, the highly 
expressed GUS in the gut can hydrolyze SN-38G to SN-
38, leading to an excessive SN-38 present in the gut that 
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can cause delayed diarrhea and neutropenia (Jariwala et 
al., 2020). Recently, GUS inhibitors have been shown to 
alleviate the gastrointestinal toxicity of CPT-11 and other 
anticancer drugs (Awolade et al., 2020; Bhatt et al., 2020; 
Chamseddine et al., 2019; Wallace et al., 2010). 

Based on their source, existing GUS inhibitors can 
be divided into mainly two types including synthetic 
and natural inhibitors (Awolade et al., 2020; Cheng et 
al., 2017; Zhou et al., 2020). Natural products-based 
inhibitors of GUS have attracted considerable attention 
owing to their physiological tolerance, satisfying 
safety and favorable pharmacodynamic profiles (Li, 
2020; Sun, et al., 2020; Weng et al., 2017; Zhong et al., 
2020). Therefore, it is important to discover novel GUS 
inhibitors with improved efficacy and safety to alleviate 
the side effects caused by CPT-11 and anti-cancer drugs 
as well as assist the cancer treatment. Polygonum 
cuspidatum Siebold & Zucc., known as Huzhang in 
China, is often used to treat inflammation, damp-heat 
jaundice, rheumatoid or rheumatoid arthritis and other 
diseases (Bralley et al., 2008; Hu et al., 2018; Liu et 
al., 2014; S. Liu et al., 2016; Lu et al., 2012). Despite 
extensive pharmacological studies, there are currently 
no reports investigating the interactions between P. 
cuspidatum and the gut microbiota. In a preliminary 
experiment, P. cuspidatum displayed strong inhibitory 
effects on gut bacterial GUS, which elicited our interest 
in exploring the main components responsible for its 
inhibitory effects. 

The study aimed to identify the main components 
of the ethanolic extract of P. cuspidatum as it exhibited 
significant inhibitory effects on Escherichia coli GUS 
(EcGUS), and characterize the inhibitory mechanism 
and determine the inhibition constant of each inhibitory 
component. The chemical fingerprint of P. cuspidatum 
and EcGUS inhibition profile were combined to identify 
the components responsible for the inhibitory effect. 
Inhibition kinetic assays were performed to characterize 
the inhibitory behavior and obtain the kinetic constants 
(IC50, Ki) of the components that were active against 
EcGUS. Furthermore, molecular docking was carried 
out for evaluating the potential molecular determinants 
responsible for the potent inhibitory effects of the 
identified components of P. cuspidatum towards EcGUS.

MATERIAL AND METHODS

Chemicals and reagents

Dried rhizomes of P. cuspidatum were purchased 
from Beijing Tongrentang Co., Ltd. (Dalian, China) 
in January 2020, and identified by Prof. Jing-Ming 
Jia (Shenyang Pharmaceutical University). A voucher 
specimen (MO202001) has been deposited in the 
Department of Medicinal Chemistry, Dalian Medical 
University. DDAO was chemically synthesized and 
DDAOG was biosynthesized in our laboratory as 
reported previously (Feng et al., 2018). GUS from E. 
coli was purchased from Sigma-Aldrich (St. Louis, 
MO, USA). All other reagents were of analytical or 
HPLC grade.

Preparation of P. cuspidatum ethanol extract 

The dried plant materials (500 g) were crushed, 
powered, and then extracted by 95% ethanol (100 mL) for 
three times in total 90 min. P. cuspidatum ethanol extract 
was afforded after removing the solvent. Subsequently, 
the extract (5 mg) was suspended in DMSO (100 μL), 
and stored at 4 °C.

Bioactivity-guided isolation and identification of 
active compounds of P. cuspidatum

Chemical fingerprinting and fraction collection 
were performed using a Waters Prominence HPLC 
system, equipped with a Waters 2767 sample manager, 
Waters 2545 binary gradient module, and Waters 2489 
UV/visible detector. A Waters XBridge C18 (19 mm × 
250 mm, 5 µm) chromatographic column was used. The 
mobile phase consisted of methanol (A) and water (B), 
and the following gradient condition was used: 0.0-10.0 
min, 20% B; 10.0-15.0 min, 20%-40% B; 15.0-45.00 
min, 40%-100% B; 45.0-46.0 min, 100% B; 46.0-60.0 
min, 100% B; 60.0-65.0 min, 100%-20% B; 65.0-80.0 
min, 20% B. The flow rate was set to 10 mL/min and 
the injection volume of the crude extract (50 mg/mL) 
was 300 µL. The effluent was monitored at 270 and 
220 nm with LC-UV detection. After establishing the 
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analytical method, the fractions were automatically 
collected into sample tubes based on chromatographic 
peaks or retention time. After rotary evaporation, all 
dried fractions were weighed and used subsequently 
for EcGUS inhibition assays. The fractions displaying 
potent inhibitory effects on EcGUS were further 
isolated and purified using semi-preparative high-
performance liquid chromatography (HPLC) (Singh 
et al., 2020). Finally, the structures of the purified 
compounds were elucidated using nuclear magnetic 
resonance spectroscopy.

DDAOG hydrolysis-based inhibition assays

The inhibitory effects of P. cuspidatum extract 
and its constituents on EcGUS were investigated using 
DDAOG as a specific fluorescent probe for EcGUS (Feng 
et al., 2018). The incubation system consisted of PBS 
buffer (pH 6.5, 100 mM), EcGUS (0.2 U/mL), DDAOG 
(10 μM for inhibition screening; 5-40 μM to determine 
the inhibition constants) in the presence or absence of 
the inhibitor. Each reaction was started by the addition 
of 10 μL DDAOG. After incubation at 37 °C for 30 min, 
the reaction was terminated by addition of an equal 
volume of ice cold acetonitrile. Then, 200 μL aliquots 
of the supernatants were diverted into a 96-well plate 
for fluorescence detection, at excitation and emission 
wavelengths of 600 and 660 nm, respectively.

Molecular Docking

The 3D crystal structure of EcGUS (PDB code: 
3K4D) was downloaded from Protein Data Bank (http://
www.rcsb.org/, code: 3K4D). PyMOL 2.4 was used to 

add non-polar hydrogen and remove water molecules. 
The cavity of EcGUS was set based on the site of the 
intrinsic ligand in 3D crystal structure of EcGUS, and 
the interactions of HZ-1 and HZ-2 with EcGUS were 
analyzed by AutoDock 4.2 with default parameters.

Data analysis

IC50 (half maximal inhibitory concentration) and 
Ki values were calculated by the nonlinear regression 
analysis of Graphpad Prism 7.0 (San Diego, CA, USA) 
(He et al., 2020; Song et al., 2019; Sun et al., 2020). The 
inhibition kinetic types including competitive inhibition, 
noncompetitive inhibition, uncompetitive type, or mixed 
inhibition were determined based on the goodness-of-fit 
parameters (Hou et al., 2020; Yi et al., 2019; Zhang et 
al., 2018). 

RESULTS AND DISCUSSION

Inhibitory effects of P. cuspidatum extract on 
DDAOG hydrolysis

As shown in Figure 1a, at 10 μg/mL ethanolic 
extract of P. cuspidatum, the residual activity of DDAOG 
hydrolysis was markedly reduced to be less than 5% 
of the negative control. Moreover, the crude ethanolic 
extract of P. cuspidatum inhibited EcGUS-mediated 
DDAOG hydrolysis in a dose-dependent manner with 
an IC50 value as low as 0.79 μg/mL, as depicted in Figure 
1b. These results demonstrate that the ethanolic extract 
of P. cuspidatum exhibited a strong inhibitory effect 
on EcGUS, indicating that the herb may contain potent 
inhibitors of EcGUS.
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FIGURE 2 - (a) HPLC-UV fingerprint of P. cuspidatum ethanol extract (50 mg/mL) monitored at 270 nm, Fr.1-Fr.20 represent 
eluted fraction numbered from 1 to 20, and (b) the corresponding EcGUS inhibition profile of each eluted fraction (2 μg/mL) 
towards EcGUS-mediated DDAOG hydrolysis. Note: trans-resveratrol 4’-O-β-D-glucopyranoside (HZ-1) and (-)-Epicatechin 
gallate (HZ-2) were purified from Fr. 4 and Fr. 5, respectively.

Identification of the major EcGUS inhibitors in P. 
cuspidatum 

After establishing the chemical fingerprint of P. 
cuspidatum, the 20 eluted fractions were automatically 
collected into sample tubes and evaporated to dryness 
(Figure 2a). Then, the dried fractions were evaluated for 
their inhibitory effects on EcGUS based on the high-
throughput screening method. As shown in Figure 2b, 

two fractions (No. 4 and 5) significantly inhibited EcGUS 
with the residual activities less than 25%, while the other 
fractions displayed moderate or negligible inhibitory 
effect on EcGUS. Subsequently, fractions 4 and 5 were 
isolated using preparative HPLC, and two compounds 
were purified and identified as trans-resveratrol 4’-O-β-
D-glucopyranoside (HZ-1) and (-)-epicatechin gallate 
(HZ-2) with purity > 95% (Figure S1-S4).

FIGURE 1 - (a) Inhibitory effects of P. cuspidatum ethanol extract (0, 1, 10, 100 μg/mL) on EcGUS-mediated DDAOG hydrolysis, 
and (b) the corresponding dose-dependent inhibition curve of different concentrations of P. cuspidatum ethanol extract against 
EcGUS-mediated DDAOG hydrolysis. All data represent the mean of triplicate determinations.
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TABLE Ι - IC50 and Ki values of HZ-1 and HZ-2 against GUS

Compound name IC50 
(μM)

Ki 
(μM)

Inhibition 
type

HZ-1 25.88 9.95 Mixed

HZ-2 2.24 1.95 Mixed

Inhibition kinetics of the two identified 
constituents against EcGUS

Inhibition kinetics experiments were further carried 
out to calculate the Ki values of the identified constituents 
for EcGUS and to characterize their corresponding 
inhibition behaviors. As shown in Figure 4a-4f, both 

FIGURE 3 - (a) Inhibitory effects of HZ-1 and HZ-2 at the concentrations of 0, 1, 10, 100 μg/mL on EcGUS-mediated DDAOG 
hydrolysis, and (b) the concentration dependent inhibition of EcGUS-catalyzed DDAOG hydrolysis by HZ-1 and HZ-2. Each 
data point corresponds to the average values calculated from triplicate measurements.

Inhibitory effects of the two constituents isolated 
from P. cuspidatum against EcGUS

In order to further validate and explore the inhibitory 
effects of the two isolated constituents against EcGUS, 
the preliminarily screening experiments were performed. 
The residual activities of EcGUS-mediated DDAOG 
hydrolysis were reduced to be 65.7% and 16.9% of the 
negative control, respectively, when 10 µM HZ-1 or HZ-2 
were used. (Figure 3a and 3c). Moreover, their dose-
dependent inhibition curves against EcGUS were also 
depicted. As shown in Figures 3b and 3d, HZ-1 and HZ-2 

displayed evident concentration-dependent inhibition of 
EcGUS mediated DDAOG hydrolysis. The IC50 values 
of HZ-1 and HZ-2 against EcGUS-mediated DDAOG 
hydrolysis were evaluated to be 25.88 μM and 2.24 μM, 
respectively (Table I). These results demonstrated that 
both HZ-1 and HZ-2 exhibited inhibitory effects towards 
EcGUS, among which, HZ-2 was a more potent inhibitor 
of EcGUS. Notably, the IC50 of HZ-2 determined in our 
study was in agreement with that reported previously 
(Feng et al., 2018), wherein it was identified to be one of 
the main constituents of Rheum palmatum L responsible 
for the strong inhibitions of EcGUS.
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P. cuspidatum and its constituents are known for 
their wide spectrum of pharmacological activities, such 
as anti-asthmatic, anti-oxidant, anti-inflammatory, and 
anti-cancer effects (Peng et al., 2013). In this study, HZ-1 
and HZ-2 from P. cuspidatum were identified as a new 
class of naturally occurring EcGUS inhibitors. Inhibitory 
effects and molecular mechanism of the identified 
EcGUS inhibitors were systemically characterized 
using a selective fluorescent probe substrate for EcGUS. 
Compared with synthetic GUS inhibitors, these two 
naturally occurring dietary compounds might be readily 
available and safe owing to their natural, nontoxic and 
multiple pharmacological effects. 

Notably, HZ-1 could also be found in grapes and 
several traditional medicinal plants, including Rheum 
tanguticum, R. rhaponticum, and P. multiflorum (Zhao 
et al., 2019), whereas HZ-2 is abundantly distributed in 
teas including green, oolong, and black tea (Tao et al., 
2016). It is readily conceivable that these food plants 
and herbal medicines may also display strong inhibitory 
effects towards EcGUS due to the presence of HZ-1 or 
HZ-2. Furthermore, it is admitted that whether these 
inhibitors can selectively inhibit human gut GUS needs to 
be evaluated both in vitro and in vivo. Therefore, further 
studies are warranted to determine the inhibitory potency 
of these two inhibitors against human β-glucuronidases 
and other bacteria strains.

FIGURE 4 - (a) Lineweaver-Burk plot of HZ-1’s inhibition towards DDAOG hydrolysis in EcGUS, (b) Dixon plot of HZ-1’s 
inhibition towards DDAOG hydrolysis in EcGUS, (c) Second plot with the slopes from Lineweaver–Burk plot towards the 
concentrations of HZ-1, (d) Lineweaver-Burk plot of the inhibition of HZ-2 towards EcGUS-catalyzed DDAOG hydrolysis, (e) 
Dixon plot of the inhibition of HZ-2 towards EcGUS-catalyzed DDAOG hydrolysis, and (f) Second plot with the slopes from 
Lineweaver–Burk plot towards the concentrations of HZ-2. The results shown are the means of duplicate experiments.

Lineweaver-Burk and Dixon plots indicated that HZ-1 
and HZ-2 followed the mixed inhibition behavior against 
EcGUS-mediated DDAOG hydrolysis. The Ki values 
for HZ-1 and HZ-2 were evaluated as 9.95, and 1.95 
μM, respectively. These results further demonstrated 

that HZ-1 and HZ-2 were potential inhibitors towards 
EcGUS and responsible for the strong inhibitory effects 
of P. cuspidatum towards EcGUS. In addition, HZ-2 
displayed much stronger inhibition potency towards 
EcGUS compared with HZ-1.
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FIGURE 5 - A stereo view of the docking conformation of HZ-1 (a) and HZ-2 (c) (stick model) in the active site of EcGUS. The 
carbon atoms in these two molecules (HZ-1 and HZ-2) were colored in cyan. Residues in EcGUS interacting with HZ-1 (b) and 
HZ-2 (d) are shown (conventional hydrogen bond, green; π-donor hydrogen bond, light green; π-π stacked, magenta). 

Molecular docking 

Molecular docking was used to evaluate the potential 
determinants responsible for the inhibitory effects of 
HZ-1 and HZ-2 toward EcGUS. The crystal structure 
of EcGUS was downloaded from Protein Data Bank 
(http://www.rcsb.org). As depicted in Figures 5a and 5c, 
HZ-1 and HZ-2 could enter the active site of EcGUS 
and occupy the active pocket to prevent DDAOG 
hydrolysis. As shown in Figures 5b and 5d, HZ-1 and 
HZ-2 could form hydrogen bonds and have, van der 
Waals, π-π stacked, T-shaped, and π-alkyl interactions 
with the amino acid residues Asp163, Ser360, Leu361, 

Ile363, Glu413, Val446, Met447, Tyr468, Tyr472, Val473, 
Glu504, Trp549, Leu561, and Lys568. More importantly, 
the amino acid residues Asp163, Ser360, Ile363, Glu413, 
Glu504, and Lys568 could interact with the hydroxy and 
carbonyl groups of HZ-1 and HZ-2, Glu413 and Glu504, 
especially, in the active site of GUS were responsible 
for the hydrolysis of the glucuronide glycoside bond. 
Notably, same bonds with the enzyme are formed with 
amentoflavone, demethylbellidifolin, and gentisin, 
which were reported to be inhibitors of EcGUS in the 
previous researches (Tian et al., 2021; Sun et al., 2012). 
These findings explain the molecular mechanism of the 
inhibition of EcGUS by HZ-1 and HZ-2.
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CONCLUSIONS

Taken together, our results demonstrated that HZ-1 
and HZ-2 from P. cuspidatum were the key components 
responsible for EcGUS inhibition. Inhibition kinetic 
analysis demonstrated that both HZ-1 and HZ-2 were 
mixed-type inhibitors of EcGUS-mediated DDAOG 
hydrolysis. Molecular docking results elucidated the 
importance of amino acid residues Asp163, Ser360, Ile 
363, Glu413, Glu504, and Lys 568 in EcGUS inhibition 
by HZ-1 and HZ-2. These findings demonstrated 
the inhibitory effects of P. cuspidatum and its two 
components toward EcGUS, thereby supporting their 
further evaluation and development as novel candidates 
for alleviating drug-induced intestinal damage.
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