INTRODUCTION

Silver nanoparticles (AgNPs) are among the most known nanomaterials being used for several purposes, including medical applications. In this study, *Calendula officinalis* L. flower extract and silver nitrate were used for green synthesis of silver nanoparticles under red, green and blue light-emitting diodes. AgNPs were characterized by Ultraviolet-Visible Spectrophotometry, Field Emission Scanning Electron Microscopy, Dynamic Light Scattering, Electrophoretic Mobility, Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Isotropic and anisotropic silver nanoparticles were obtained, presenting hydrodynamic diameters ranging 90 – 180 nm, polydispersity (Pdi > 0.2) and moderate stability (zeta potential values around – 20 mV).

Keywords: Nanotechnology. Metal nanoparticle. Surface plasmon resonance.
MATERIAL AND METHODS

Material

Silver nitrate (AgNO₃) CAS n° 7761-88-8 was purchased from Merck (Germany). *C. officinalis* flowers of all seasons were collected from Ponta Grossa, Paraná, Brazil (-25° 05’ 42.00” S / -50° 09’ 42.98” W). Representative samples were deposited in the Garden of the State University of Ponta Grossa under the number 21682. Deionized water was used in all experiments.

Preparation of the *C. officinalis* flower extract

5 g of *C. officinalis* dried flower were weighed and washed several times with deionized water at room temperature. Then, the flowers were crushed and immersed in 100 mL of deionized water at 60-80 °C for 30 minutes. The *C. officinalis* flower extract was obtained by removing solids in simple filtration using qualitative filter paper (80 g, FITEC®) (Thema *et al.*, 2016).

Preparation of AgNPs

For green synthesis of AgNPs, a solution of *C. officinalis* flower extract in AgNO₃ (1 mmol.L⁻¹) was prepared in 1:20 ratio. This solution was exposed to red (630 nm), green (512 nm) and blue (455 nm) Light-Emitting Diodes (LEDs) light for 48 h. The obtained AgNPs were named as follows: AgNPsR (obtained AgNPs under exposure to red LED), AgNPsG (obtained AgNPs under exposure to green LED) and AgNPsB (obtained AgNPs under exposure to blue LED).

Characterization of AgNPs

Ultraviolet-Visible Spectrophotometry

Formation, size and shape of the AgNPs were monitored by Ultraviolet-Visible (UV-Vis) Spectrophotometry (50 UV-Vis Spectrophotometer, VARIAN CARY®) in the range of 300-600 nm (Raj, Mali, Triverdi, 2018). Prior to the analysis, the samples were diluted 1:7, in deionized water.

Field Emission Scanning Electron Microscopy

Morphological analysis of AgNPs was performed on Field Emission Scanning Electron Microscopy (FE-SEM) (Mira3, TESCAN®) at 15 kV. Prior to the analysis, the AgNPs were placed on copper tapes in stubs, dried at room temperature and submitted to metallization with gold (SC7620, QUORUM®).

Hydrodynamic Diameter, Polydispersity Index and Zeta Potential analysis

Hydrodynamic Diameter and Polydispersity Index of the AgNPs were determined by Dynamic Light Scattering (DLS) and Zeta Potential was determined by electrophoretic mobility (Zetasizer Nano ZS90, MALVERN®) in three times (T = 0 day, T = 30 days and T = 60 days) to stability evaluation. Prior to the analysis, the samples were diluted 1:20, in deionized water.

Fourier Transform Infrared Spectroscopy

In order to confirm the presence of the *C. officinalis* flower extract in the coating of the AgNPs was used Fourier Transform Infrared (FTIR) Spectroscopy (IRPrestige-21, SHIMADZU®) in the range of 4000-400 cm⁻¹ in 64 scans with 4 cm⁻¹ resolution and potassium bromide pallet method (Kumar *et al.*, 2016). Prior to the analysis, the AgNPs were centrifuged three times for 30 minutes at 18,000 rpm and then freeze-dried.

X-ray Diffraction

X-ray Diffraction (XRD) analysis of the AgNPs were realized in a X-ray diffractometer (XRD-6000, SHIMADZU®) employing 40 Kv, 30 mA, Cu kα radiation (λ = 1,5418 Å), 20 from 10° to 100° and scan of 1°.min⁻¹. Prior to the analysis, the AgNPs were centrifuged five times for 20 minutes at 18,000 rpm and then freeze-dried.
RESULTS AND DISCUSSION

During preparation of the formulations there was a change of color from pale yellow to reddish brown, indicating that *C. officinalis* flower extract compounds were able to promote the reduction of silver from Ag\(^{+1}\) to Ag\(^{0}\), forming AgNPs (Baghizadeh *et al.*, 2015).

Formation, size and shape of AgNPs can be characterized by UV-Vis spectroscopy (Baghizadeh *et al.*, 2015) since AgNPs show optical absorption, named surface plasmon resonances, at wavelengths of 350-500 nm (Bindhu, Umadevi, 2015; Pal, Tak, Song, 2007). The larger is the nanoparticles, the greater is the wavelength of maximum absorbance and the bands intensity. The wavelength of maximum absorbance also varies according to the different AgNPs shapes (Khan *et al.*, 2011; Bhui *et al.*, 2009; Pal, Tak, Song, 2007).

According to Mie’s theory, a single plasmon absorption band is expected in the spectra of spherical nanoparticles, whereas more than one plasmon absorption bands are expected in the spectra of anisotropic nanoparticles (Pal, Tak, Song, 2007). Figure 1 shows the plasmon absorption bands of AgNPs obtained using LEDs.

![UV-Vis spectra of AgNPs plasmon absorption bands.](image)

The AgNPsR presented plasmon absorption band at 440 nm and the FE-SEM image showed the obtaining of spherical nanoparticles (Figure 2A). Chidambaram *et al.* (2014) and Baghizadeh *et al.* (2015) also used *C. officinalis* flower extract in green synthesis and obtained AgNPs with plasmon absorption band around 440 nm. The AgNPsG presented plasmon absorption bands at 410 nm and the FE-SEM images showed the obtaining of anisotropic nanoparticles (Figure 2B). The AgNPsB presented plasmon absorption bands at 410 and 560 nm and the FE-SEM images showed the obtaining of spherical and anisotropic nanoparticles (Figure 2C).
FIGURE 2 - FE-SEM images of A) AgNPsR; B) AgNPsG and C) AgNPsB.

Table I shows that the use of red LED resulted in smaller nanoparticles than the use of green and blue LEDs. However, the hydrodynamic diameters values obtained for all AgNPs produced were higher than the hydrodynamic diameters values found in the literature for AgNPs obtained by green synthesis without LEDs (Baghizadeh et al., 2015; Bindhu, Umadevi, 2015; Bhui et al., 2009).

All dispersions showed polydispersity (PdI > 0.2) (Soema et al., 2015) and moderate stability once presented zeta potential values around -20 mV (Coviello et al., 2015). The negative zeta potential values obtained can be attributed to the C. officinalis flower extract compounds.

After 60 days, AgNPsR increased by 111.71% their hydrodynamic diameters, AgNPsG increased by 52.77% and AgNPsB increased by 35.49%. However, the zeta potential values remained very close to the initial values, evidencing the maintenance of stability.

The AgNPs FTIR spectra showed the same bands found in the C. officinalis flower extract spectrum (Figure 3 and Table II), confirming the presence of the C. officinalis flower extract in the coating of the AgNPs. However, a new C=O band of ketone groups appeared at 1722-1716 cm\(^{-1}\) in the AgNPs spectra, which may be result of a reduction reaction. Bands on \(\sim 1060\) cm\(^{-1}\) suggest terpenoid or flavonoid compounds (Rad, Mokhtari, Abbasi, 2018; Hosseinkazemi et al., 2015).

In the Figure 4, C. officinalis flower extract diffractogram showed no crystalline planes. In contrast, the AgNPs diffractograms exhibit a typical X-ray diffraction pattern of crystal structures of silver, with peaks in 37°-38°, 44°-46°, 64°-65° and 76°-77°, which correspond to crystallographic planes (111), (200), (220) and (311), respectively (Yang, Dennis, Sardar, 2011). These results are similar to those found in the literature (Baghizadeh et al., 2015; Bindhu, Umadevi, 2015).

(continues on the next page...)
TABLE I - Hydrodynamic Diameter (HD), Polydispersity Index (PdI) and Zeta Potential (PZ) of AgNPs at three times

<table>
<thead>
<tr>
<th>AgNPs</th>
<th>DAY 0</th>
<th>DAY 30</th>
<th>DAY 60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HD (nm) ± SD</td>
<td>PdI ± SD</td>
<td>PZ (mV) ± SD</td>
</tr>
<tr>
<td>AgNPsR</td>
<td>88,62 ± 6,02</td>
<td>0,530 ± 0,028</td>
<td>-22,86 ± 1,48</td>
</tr>
<tr>
<td>AgNPsG</td>
<td>138,11 ± 5,52</td>
<td>0,468 ± 0,037</td>
<td>-21,00 ± 1,44</td>
</tr>
<tr>
<td>AgNPsB</td>
<td>175,43 ± 21,25</td>
<td>0,510 ± 0,035</td>
<td>-17,33 ± 2,08</td>
</tr>
</tbody>
</table>

SD: Standard Deviation.

TABLE II - Wavenumber (cm⁻¹) and its corresponding chemical structure of FTIR spectra of AgNPsR, AgNPsG, AgNPsB and *Calendula officinalis* flower extract

<table>
<thead>
<tr>
<th>C. officinalis flower extract</th>
<th>AgNPsR</th>
<th>AgNPsG</th>
<th>AgNPsB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavenumber (cm⁻¹)</td>
<td>Chemical Structure</td>
<td>Wavenumber (cm⁻¹)</td>
<td>Chemical Structure</td>
</tr>
<tr>
<td>3398</td>
<td>O-H</td>
<td>3398</td>
<td>O-H</td>
</tr>
<tr>
<td>2936</td>
<td>C-H</td>
<td>2993</td>
<td>C-H</td>
</tr>
<tr>
<td>1622</td>
<td>C=O</td>
<td>1722</td>
<td>C=O</td>
</tr>
<tr>
<td>1405</td>
<td>C=C</td>
<td>1625</td>
<td>C=O</td>
</tr>
<tr>
<td>1265</td>
<td>C-H</td>
<td>1389</td>
<td>C=C</td>
</tr>
<tr>
<td>1065</td>
<td>C-O</td>
<td>1063</td>
<td>C-O</td>
</tr>
</tbody>
</table>
FIGURE 3 - FTIR spectra of AgNPsR, AgNPsG, AgNPsB and *C. officinalis* flower extract.

FIGURE 4 - XRD patterns of AgNPsR, AgNPsG, AgNPsB and *C. officinalis* flower extract.

CONCLUSION

Were obtained isotropic and anisotropic AgNPs with hydrodynamic diameters of 89 to 175 nm from *C. officinalis* flower extract and AgNO$_3$ under red, green and blue LED. AgNPs remained stable during the evaluated period with potential zeta values around -20 mV, but increased their hydrodynamic diameters considering that AgNPsB showed a smaller increase than AgNPsR and AgNPsG. AgNPs with required properties can be produced from the proposed method in order to be used as antimicrobial in health products.
ACKNOWLEDGEMENTS

The authors would like to thank C-LABMU/PROPESP - UEPG for characterization of silver nanoparticles analysis. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

REFERENCES

