INTRODUCTION

Polysaccharides are renewable, biodegradable, and generally non-toxic materials of biological origin that have been applied in the pharmaceutical, cosmetic, and food industries because of their chemical, physical, and biological properties (Matsumoto, Ohmori, 2001; Manivasagana et al., 2015; Tian et al., 2015).

Some of the properties that contribute to their broad application and, consequently, the realization of extensive research in this area, includes easy production by bacterial fermentation and manipulation by recombinant DNA technology, the ability to retain water and form films, specific rheological behavior, and the potential to improve the immune response (Barbara et al., 2009; Dlamini et al., 2007; Dlamini et al., 2009; Snapper, 2016; Sun et al., 2016; Donot et al., 2012).

The carbohydrate polymers secreted by a wide variety of bacteria are known as exopolysaccharides (EPS), which exhibit important biological activities, including immunomodulation, antioxidant, prebiotic, and anti-proliferative properties (Shi, 2016; Zha et al., 2015; Sugihara et al., 2001; Wang et al., 2015).

Klebsiella oxytoca is known as a nitrogen-fixing bacterium, and in the past, a strain was isolated from rice...
rhizosphere (Hirota et al., 1978). Strains of *K. oxytoca* are also known to produce EPS of environmental and pharmaceutical interest (Baldi et al., 2001; Sugihara et al., 2000). Furthermore, according to Sugihara et al. (2000; 2002), the AZ9 polysaccharide produced by *K. oxytoca* has been shown to exhibit important immunosuppressive activity in experimental models of chronic inflammatory and allergic diseases.

However, to the best of our knowledge, no studies have described the anti-inflammatory activity of EPS produced by *K. oxytoca*. Thus, the aim of this study was to produce EPS from *K. oxytoca* and to evaluate the anti-inflammatory activity in a pleurisy model in rats.

MATERIAL AND METHODS

Strain and medium

The microorganism *K. oxytoca* was isolated from the rhizosphere of *Aspidosperma polyneuron* and identified according to biochemical tests (Celloto et al., 2012). The strain was also phylogenetically identified by partial 16S rDNA sequence analysis and the GenBank data homology research search result was 99% according to the methodology described by Nogueira et al. (2004) and Procópio et al. (2009).

The *K. oxytoca* strain (1.5 × 10⁸ CFU/mL standard bacterial suspension) was cultured in liquid medium (10 mL/L inoculum) as described by Sugihara et al. (2001). Cultures were grown in Sugihara medium (SM) (5.0 g/L K₂HPO₄, 0.5 g/L MgSO₄·7H₂O, 2.0 g/L polypeptone, and 20 g/L glucose) in 100 mL Erlenmeyer flasks at 28 °C with shaking at 200 rpm for 48 h. The bacterial culture was then transferred aseptically to 2000 mL Erlenmeyer flasks containing 900 mL of SM, incubated at 28 °C for 120 h then maintained at 4 °C prior to EPS isolation.

Isolation and purification of *K. oxytoca* EPS

Bacterial cells were separated by centrifugation at 12,000 × g for 20 min at 5 °C. The supernatant was collected and concentrated to 100 mL in a rotary evaporator at 50 °C. Following this, the concentrated solution containing EPS was precipitated from the clear supernatant by adding three volumes of cold acetone and maintained at 4 °C for 48 h. The crude exopolysaccharides from *K. oxytoca* (KEPSC) were obtained by filtration, lyophilized and weighed to calculate the yield (Kazy et al., 2002; Sugihara et al., 2000; Sugihara et al., 2001; Sugihara et al., 2002). Once isolated, the KEPSC solution was deproteinized with trichloracetic acid (20%, w/v) at a ratio of 1:1, maintained at 4 °C for 2 h, and then centrifuged (12,000 × g for 20 min at 5 °C). Deproteination and precipitation were performed twice to remove remnant proteins. The polysaccharides were dissolved in bidistilled water and dialyzed (cellulose membrane, MWCO: 12,000, Sigma-Aldrich, St. Louis, MO, USA) at 4 °C for 4 days. Finally, the deproteinated exopolysaccharides (KEPS) were lyophilized, weighed to calculate the yield and stored at 4 °C until further use (Ruas-Adiedo, Creyes-Gavilan, 2005; Marcial et al., 2013).

Chemical characterization

Colorimetric analyses

The total sugar content was determined using the phenol sulfuric acid method (Dubois et al., 1956); determination of reducing sugars was performed according to the spectrophotometric method of p-hydroxybenzoic acid hydrazide (Lever, 1972); uronic acid was assayed using the carbazol sulfuric acid method (Chaplin, Kennedy, 1994); pyruvic acid was analyzed using the colorimetric method of 2,4-dinitropheny-hydrazine reagent (Sloneker, Orentas, 1962); and total protein was quantified using the Hartree method (Hartree, 1972).

Analyses of the monosaccharide composition of KEPSC

Neutral monosaccharide components of the KEPSC (1 mg) were determined by gas chromatography–mass spectrometry. Their ratios were determined by hydrolysis with 1 mL of 2 M trifluoroacetic acid for 8 h at 100 °C, followed by conversion to alditol acetates by successive NaBH₄ (1 mg) reduction and acetylation with 1 mL acetic anhydride-pyridine (1:1, v/v) at room temperature for 14 h. The resulting alditol acetates were extracted with chloroform. The alditol acetate analysis was carried out using a Varian model 3300 gas chromatograph linked to
Exopolysaccharides from *Klebsiella oxytoca*: anti-inflammatory activity

TABLE I - Total carbohydrate, reducing sugars, uronic acid, pyruvic acid, and protein content of exopolysaccharides from *K. oxytoca*

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total carbohydrate (%, w/w)</th>
<th>Reducing sugars (%, w/w)</th>
<th>Uronic acid (%, w/w)</th>
<th>Pyruvic acid (%, w/w)</th>
<th>Protein (%, w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEPSC</td>
<td>65.57<sup>a</sup></td>
<td>6.68<sup>a</sup></td>
<td>7.90<sup>a</sup></td>
<td>3.01<sup>a</sup></td>
<td>16.83<sup>b</sup></td>
</tr>
<tr>
<td>KEPS</td>
<td>62.82<sup>b</sup></td>
<td>6.50<sup>b,a</sup></td>
<td>6.21<sup>b</sup></td>
<td>1.68<sup>b</sup></td>
<td>8.92<sup>c</sup></td>
</tr>
</tbody>
</table>

*Different letters indicate statistical differences by Tukey’s test at 5% level of significance.
*Tukey’s test was used to compare the means of triplicate observations in the different samples of exopolysaccharides.
The total carbohydrate contents in KEPSC and KEPS were 65.57% and 62.82%, respectively. Among the EPS tested, the relative contents of uronic acid in KEPSC and KEPS were 7.90% and 6.21%, respectively, while the contents of pyruvic acid in KEPSC and KEPS were 3.01% and 1.68%, respectively. The relative protein content of KEPSC (16.83%) and KEPS (8.92%) suggested they might be protein-bound polysaccharides (Qiao et al., 2009).

The low concentration of reducing sugars and the high content of total carbohydrate present in the KEPS indicated that the carbohydrates are present in the structural form of polysaccharides. Analyses of uronic acid and pyruvic acid confirmed that the EPS extracted from *K. oxytoca* are acidic. It is likely that these differences in composition are responsible for the different rheological behavior of the solutions, which provide strong gels (Lamb et al., 2004; Junhua et al., 2013). Gas chromatography revealed that the monosaccharide composition of the crude EPS consisted of rhamnose (Rha; 29.83%), glucose (Glc; 11.21%), galactose (Gal; 52.45%), and mannose (Man; 6.50%); thus, galactose and rhamnose are the major components. These data are in agreement with those found by Dlamini et al. (2007) and Feng, Li, Chen (2009), who used different media cultures for the production of EPS from *K. oxytoca*.

The 1H NMR spectrum of KEPS contained seven signals in the anomeric region between 5.25 and 4.50 ppm (labeled A–G in order of decreasing chemical shift, Figure 1 A, B); these were assigned by monosaccharide composition through comparison with the structure and spectroscopic data of exopolysaccharide isolated from *K. oxytoca* BAS-10 described by Leone et al. (2007). The signals of anomic hydrogen δ 5.23, 5.16, 5.14, and 5.04 were suggested to be α-Rha di-substituted (2 → 1, A and/or B), α-Rha di-substituted (3 → 1, C), and α-Rha tri-substituted (3 → 1,4, D), respectively. The signals at δ 4.79 and 4.69 were suggested to be β-GlcA terminal (E) and 4-β-GlcA (F), respectively. The signal at δ 4.55 was suggested to be 3-β-Gal (G). Moreover, between 1.11 and 1.31 ppm, the signals of four methyl groups were observed and each was suggested to be the 6-deoxy position of a Rha unit.

The 13C NMR spectrum of KEPS showed anomic carbon signals at 104.49, 103.20, 102.33, 101.43, 101.57, 101.19, and 98.13 ppm (Figure 1C). Designation of these signals was conducted by comparison with data obtained from the literature (Leone et al., 2007), giving the C-1 of β-galactose (G), β-glucuronic acid (F), β-glucuronic acid terminal (E), α-Rha 3-substituted (C and/or B), and α-Rha 2-substituted (D and/or A), respectively (Table II).

Colorimetric determination of glucuronic acid present in KEPS was 6.20% and its presence was confirmed by the carboxyl group signal at 172.95 ppm. The presence of C-6 (CH₃) of rhamnose units was evidenced by signals at δ 16.83 and 16.69. The signal at 61.18 ppm (C-6) represents galactose present in the biopolymer.

This partial chemical characterization of EPS showed that their structures could be related to the EPS isolated from *K. oxytoca* BAS-10 by Leone et al. (2007).
FIGURE 1 - NMR spectra of the KEPS from <i>K. oxytoca</i> in D$_2$O: (A) 1H NMR spectrum (300.06 MHz); (B) Zoom into anomeric region of the 1H NMR spectrum; (C) 13C NMR spectrum (75.45 MHz).
Anti-inflammatory activity of EPS from *K. oxytoca*

Cg-induced pleurisy in animals is an effective model that has often been used to investigate the pathophysiology of acute inflammatory response and to evaluate the anti-inflammatory activity of numerous compounds. The intrapleural injection of Cg in rats induces an acute inflammatory response characterized by a significant increase in the volume of pleural inflammatory exudate and the cells that migrate into the cavity when compared to normal animals (without injection of Cg). Polymorphonuclear leukocytes are the dominant cell type, which are recruited to the site up to 12 h after injection, after which they are replaced by mononuclear leukocytes (Amdekar *et al.*, 2012; Adebayo *et al.*, 2012).

Oral administration of 400 mg/kg EPS (KEPSC, KEPS) prior to Cg-induced pleurisy did not significantly change the volume of inflammatory exudate or the number of recruited leukocytes into the pleural cavity (Figure 2; Table III). Possible explanations for this include: 1) when administered orally, EPS (KEPSC, KEPS) isolated from *K. oxytoca* may be degraded in the acidic environment of the stomach, or 2) that the high molecular weight polysaccharides may not be absorbed in the systemic circulation via oral administration (Wang *et al.*, 2017).

TABLE II - 13C (75.45 MHz, D$_2$O) NMR chemical shifts of KEPS from *K. oxytoca*

<table>
<thead>
<tr>
<th>Position</th>
<th>C-1</th>
<th>C-2</th>
<th>C-3</th>
<th>C-4</th>
<th>C-5</th>
<th>C-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-α-Rha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>101.19 (100.3)</td>
<td>78.16 (78.0)</td>
<td>69.98 (69.7)</td>
<td>72.36 (71.9)</td>
<td>69.18 (69.1)</td>
<td>16.69 (16.5)</td>
</tr>
<tr>
<td>B</td>
<td>98.19 (99.5)</td>
<td>79.32 (79.0)</td>
<td>69.80 (69.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-α-Rha D</td>
<td>101.57 (101.9)</td>
<td>70.25 (69.6)</td>
<td>80.15 (80.6)</td>
<td>78.82 (78.2)</td>
<td></td>
<td>16.83 (16.9)</td>
</tr>
<tr>
<td>3-α-Rha</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>101.43 (101.9)</td>
<td>69.43 (69.7)</td>
<td></td>
<td>71.21 (71.1)</td>
<td>69.18 (69.2)</td>
<td></td>
</tr>
<tr>
<td>t-β-GlcA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>102.33 (102.4)</td>
<td>72.88 (73.4)</td>
<td>75.13 (75.7)</td>
<td>72.03 (72.0)</td>
<td>76.96 (76.5)</td>
<td></td>
</tr>
<tr>
<td>4-β-GlcA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>103.20 (103.3)</td>
<td>73.78 (73.6)</td>
<td>74.28 (74.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-β-Gal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>104.49 (104.0)</td>
<td>71.36 (71.1)</td>
<td></td>
<td>68.83 (68.6)</td>
<td></td>
<td>61.18 (61.10)</td>
</tr>
</tbody>
</table>

Signs in parentheses have been cited by Leone *et al.*, 2007, for exopolysaccharides from *K. oxytoca* BAS-10.
FIGURE 2 - KEPS and KEPSC effects on the volume of pleural inflammatory exudate. The pleurisy was induced by intrapleural carrageenan injection (Cg - 200 µg/cavity) in rats (n = 6-7), 1 h following oral administration of the EPS at 400 mg/kg or saline (Cg). Indomethacin (Indo, 5 mg/kg) was orally administered as an anti-inflammatory reference drug (positive control). N = normal animals that received no pleural injection of carrageenan. Each point represents the mean ± standard error of the mean of volume of exudate 4 h after injection of carrageenan. a p < 0.05 when compared with normal rats; b p < 0.05 when compared with group of rats injected with carrageenan and untreated (Cg) (ANOVA, Tukey’s test).

TABLE III - Effect of oral administration of KEPS and KEPSC on the number of total and differential leukocytes in pleural inflammatory exudate of rats

<table>
<thead>
<tr>
<th>Groups of animals</th>
<th>TL Cells/mm³</th>
<th>MN Cells/mm³</th>
<th>PMN Cells/mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MN</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>5200 ± 230</td>
<td></td>
<td>1560 ± 121</td>
</tr>
<tr>
<td>Cg</td>
<td>73470 ± 2530a</td>
<td>10238 ± 990a</td>
<td>63232 ± 2406a</td>
</tr>
<tr>
<td>Indo 5 mg/kg</td>
<td>66727 ± 2938a</td>
<td>11909 ± 340.2a</td>
<td>54818 ± 3654a</td>
</tr>
<tr>
<td>KEPS 400 mg/kg</td>
<td>62625 ± 3647a</td>
<td>11305 ± 815.0a</td>
<td>51320 ± 4241a</td>
</tr>
<tr>
<td>KEPSC 400 mg/kg</td>
<td>65851 ± 4437a</td>
<td>12880 ± 1734a</td>
<td>52971 ± 4016a</td>
</tr>
</tbody>
</table>

Pleurisy was induced by intrapleural carrageenan injection (Cg - 200 µg/cavity) in rats (n = 6-7) 1 h following oral administration of polysaccharides at 400 mg/kg or saline (Cg). Indomethacin (Indo; 5 mg/kg) was administered subcutaneously as an anti-inflammatory reference drug (positive control). N = normal animals that received no pleural injection of carrageenan; TL = total leukocytes; MN = mononuclear leukocytes; PMN = polymorphonuclear leukocytes. Each point represents the mean ± standard error of the mean of the number of leukocytes recruited into the pleural cavity 4 h following injection of carrageenan. *p < 0.05 compared with normal rats (ANOVA, Tukey’s test).
Literature data report that *K. oxytoca* EPS isolated from the soil, and produced under the same cultivation conditions as that employed in this work, have an average molecular weight of approximately 200 kDa (Sugihara *et al.*, 2000; Sugihara *et al.*, 2001) and KEPS and KEPC are probably high molecular weight macromolecules.

The treatment of rats, by subcutaneous administration, with KEPS significantly reduced both the volume of the pleural inflammatory exudate (edema) and the number of recruited leukocytes into the pleural cavity (polymorphonuclear and mononuclear) (Figure 3, Table IV). The inhibitory effect on edema was similar for all four doses tested (Figure 3). However, KEPS treatment at doses of 50, 100, 200 and 400 mg/kg reduced the number of recruited leukocytes by 68%, 84%, 83% and 90%, respectively. No significant difference was found between the 100 and 200 mg/kg doses of KEPS (Table IV).

TABLE IV - KEPS effect on the number of total and differential leukocytes in pleural inflammatory exudate of rats

<table>
<thead>
<tr>
<th>Groups of animals</th>
<th>TL</th>
<th>Cells/mm3 MN</th>
<th>PMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>6767 ± 129.5</td>
<td>4897 ± 493.1</td>
<td>1870 ± 103.9</td>
</tr>
<tr>
<td>Cg</td>
<td>73167 ± 471a</td>
<td>9347 ± 1158a</td>
<td>63820 ± 584.5a</td>
</tr>
<tr>
<td>Indo 5 mg/kg</td>
<td>71800 ± 5530a</td>
<td>12078 ± 1606a</td>
<td>59722 ± 6316a</td>
</tr>
<tr>
<td>KEPS 50 mg/kg</td>
<td>23501 ± 1159a,b</td>
<td>3361 ± 34.6a,b</td>
<td>20140 ± 325.2a,b</td>
</tr>
<tr>
<td>KEPS 100 mg/kg</td>
<td>11211 ± 896.5a,b,c</td>
<td>2119 ± 502.8a,b</td>
<td>9092 ± 37.91a,b,c</td>
</tr>
</tbody>
</table>
Although cell migration is important for the body’s defense in inflammatory processes, heightened mobilization to the site of injury can damage tissue depending on the activity of metalloproteinases and the generation of reactive oxygen/nitrogen species (Paula-Neto et al., 2011). Thus, a decrease in the number of recruited leukocytes into the pleural cavity following treatment with KEPS indicates potential clinical benefits of this compound by reducing the extent of the injury.

Corroborating our data, previous studies utilizing other experimental models (in vitro and in vivo) have shown that exopolysaccharides isolated from a variety of microorganisms (bacteria and fungus) have anti-inflammatory activity (Du et al., 2016; Du et al., 2017; Gangalla et al., 2018). These studies have also shown that the anti-inflammatory response can be associated with an inhibitory action on enzymes and mediators involved in the inflammatory response (COX-2, 5-LOX, NO, cytokines) (Zha et al., 2015).

In both experimental assays, indomethacin treatment (oral and subcutaneous administration), which was used as an anti-inflammatory drug reference, caused a reduction in the exudate volume but did not change the total number of recruited leukocytes. This can be explained by the fact that indomethacin was given at a low dose (5 mg/kg). Previous reports have shown that the effect of indomethacin on leukocyte migration depends on the administered dose and the experimental model used (Higgs et al., 1980; Jain, Parmar, 2011).

It is important to highlight that in the present study, in the evaluation of anti-inflammatory activity administered subcutaneously, only KEPS was used, as it is a more purified compound than KEPSC, and therefore less likely to interfere with the inflammatory response and confound interpretation of the results (Hamuro et al., 2017).

Overall, our data showed that the production of EPS by K. oxytoca is viable using the method described in this study, easy to perform, and results in a good yield. In addition, we showed that EPS exhibit important anti-inflammatory activity when administered subcutaneously in rats, and that the choice of drug administration route is a crucial factor in the experimental model used (Hamuro et al., 2017).

CONCLUSION

Overall, the deproteinated exopolysaccharides from K. oxytoca may be a candidate for the development of new therapeutic agents for the treatment of inflammatory diseases.
anti-inflammatory agents, nevertheless, further studies are warranted to isolate and to identify their mechanisms in modulating the inflammatory process.

ACKNOWLEDGMENTS

This work was supported by the Coordenação de aperfeiçoamento de Pessoal de Nível Superior, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Araucária (FA, grant no. 15195), and the Instituto Nacional de Ciência e Tecnologia para Inovação Farmacêutica.

The authors thank Jailson Araújo Dantas for technical assistance.

CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest. All authors have contributed equally.

REFERENCES

Exopolysaccharides from *Klebsiella oxytoca*: anti-inflammatory activity

Received for publication on 12th August 2019
Accepted for publication on 05th April 2021