Open-access Vegetação lenhosa associada a afloramentos rochosos na Amazônia Meridional: um marco inicial que revela uma flora única

bn Biota Neotropica Biota Neotrop. 1676-0611 Instituto Virtual da Biodiversidade | BIOTA - FAPESP Resumo: A vegetação que se associa a afloramentos rochosos é responsável por incrementar a diversidade florística e de paisagens, uma vez que a flora pode ser distinta da paisagem circundante. Nosso objetivo foi caracterizar a vegetação lenhosa sobre o afloramento rochoso da RPPN Mirante da Serra, região do Cristalino, estado de Mato Grosso, Brasil. Em uma Floresta Estacional Decidual associada a afloramento granítico, demarcamos uma parcela de 1 ha. Realizamos coletas nesse plot, instalado para a realização de estudos de monitoramento e, ainda, coletas aleatórias em trilhas próximas da parcela para melhor representar a flora do afloramento. A amostragem resultou em um total de 126 espécies, 95 gêneros e 39 famílias. Ao todo, 18 espécies foram incrementadas à Flora do Cristalino, das quais sete são novos registros à flora do estado de Mato Grosso e quatro ao Domínio da Amazônia. Encontramos duas espécies ameaçadas e 17 endêmicas do Brasil. O afloramento rochoso presente na RPPN Mirante da Serra é uma importante área de conservação para uma contínua realização de estudos florísticos de modo a possibilitar um programa de monitoramento da área, considerando os novos registros de ocorrência e, também, por conter espécies ameaçadas. Introduction Rocky environments are characterized by temperature fluctuations, desiccant winds, water scarcity and high evaporation rates (Porembski & Barthlott 2000, Oliveira & Godoy 2007), as they can occur in places exposed to the sun, winds and frosts, as well as in permanently dark and humid places (Fernandes & Baptista 1988, Porembski 2007). These attributes allow environments to condition the spatial distribution of plants, forming suitable microhabitats so that they germinate and settle. It means that species do not occur randomly because rocky microhabitats affect species distribution due to the influence of soil depth, with greater sediment accumulation in flattened areas and shallower or absent soils in more rugged locations (Jumpponem et al. 1999, Conceição & Pirani 2005). In fact, the vegetation of environments like this differs markedly from that of the surroundings (Porembski et al. 1997, Barthlott & Porembski 2000). The absence of large accumulations of soil and the little storage of rainwater that is lost quickly with runoff is exacerbated, especially in places with a steep slope. Rocky environments often make it possible to observe displacement of individual plants and entire clumps, which are susceptible to detaching from the rocky substrate when saturated with water during heavy rains (Porembski 2007). In contrast, other rocky environments may have sites with higher sediment and nutrient accumulation, which are more conducive to the occurrence and densification of tree-shrub strata, in contrast to the steeper areas with smaller soil layer or larger portion of exposed rock, favoring smaller plant species or promoting most sparse distribution among species (Conceição & Pirani 2005). Rocky outcrops also interfere with water flow, with rapid loss of runoff water on steep slopes and water retention in flat and semi-concave areas (Benites et al. 2003). Other factors such as evolution, potential solar radiation, substrate type, area and age of outcrop, anthropogenic factors and microclimate also influence the distribution of vegetation in rocky outcrops, promoting specialization of organisms occurring in these habitats, contributing to the formation of vegetative mosaics and also protecting species from environmental changes (Wiser 1998, Moura et al. 2011, Silveira et al. 2015), making these environments a priority for conservation. Thus, studies with vegetation associated with rocky outcrops seek to associate plant species mainly with topography, substrate, water availability and climate severity. These factors provide several possible microhabitats for plant establishment, elucidating the role of environmental filters in the structuring of outcrop communities (Silva 2016). In addition, rocky outcrops can provide possible places of refuge during climate change, thus contributing to maintaining the high species diversity of tropical regions (Colinvaux et al. 2000, Speziale & Ezcurra 2014). In fact, the diversity of occurrence sites and the factors that influence species distribution are the main premises that have aroused a growing interest in the investigation of vegetation on rocky environments in Brazil (Moura et al. 2011). Rocky environments are present in all phytogeographic domains of Brazil, as well as the transition bands between these domains, thereby providing geologic, geomorphologic, climatic and phytophysiognomic diversity (IBGE 2001, Ab’Sáber 2003). Vegetation-related investigations of Brazilian rocky outcrops have been conducted mainly in Central Brazil, Southeast region and Chapada Diamantina (Bahia), addressing the smaller vegetation of the grassland and savannah formations on granites, quartzites, sandstones and cangas (e.g., Scarano 2002, Caiafa & Silva 2005, Conceição & Pirani 2005, Oliveira & Godoy 2007, Viana & Lombardi 2007, Messias et al. 2012, Viana et al. 2016). However, there is a demand for studies aimed at understanding the Amazon forest formations that occur on these outcrops, such as dry forests or seasonal forests (Scarano 2007, Melo et al. 2014). In the state of Pará, the so-called Amazon rocky grassland (in portuguese - pt, ‘campo rupestre da Amazônia’), a low vegetation with few trees on canga in Serra dos Carajás, was investigated (Silva et al. 1996). The terrain relief associated with the impermeability of the canga retains water in the soil, directly influencing the vegetation physiognomy and its floristic composition (Silva et al. 1996). In eastern Mato Grosso State, the rocky cerrado (in pt, ‘cerrado rupestre’) with quartzite predominance has high basal area and species diversity and structural stability of the woody community due to the fact that this phytophysiognomy is present in a transition region between Cerrado and Amazon, and because of the good preservation status of the conservation unit in which the area is located (Maracahipes et al. 2011). Also in Mato Grosso state, two savannas on sandstone rocks were compared with low nutrient concentration, showing low floristic similarity. The first savanna was called “Transitional Rocky Cerrado” (in pt, ‘cerrado rupestre de transição’) because it occurs in a transition area between Cerrado and Amazon, with great influence of the Cerrado flora of Central Brazil, while the second was called “Rocky Savannah Amazon” (in pt, ‘savana amazônica rochosa’) because its floristic composition is influenced by Amazon vegetation types, which occur surrounding this vegetation type (Pessoa 2014). In northern Mato Grosso state, previous diagnosis of rocky outcrops in areas of the Cristalino and Xingu State Parks were performed (Sasaki et al. 2010, Zappi et al. 2011, 2016). These studies emphasized the need to intensify the vegetation sampling and the floristic composition determination on the rocky outcrops that occur in Mato Grosso. Such environments occur in small portions in a fragmented way; the preliminary results, in the case of Cristalino region, are surveys performed mainly on trails for ecotourism. In this sense, our objective was to characterize the woody vegetation of a rocky outcrop of the ‘RPPN Mirante da Serra’, located in the Cristalino region, Southern Amazon, and to verify its conservation relevance. In order to achieve this goal, we elaborated the following questions: 1) What are the floristic characteristics of the rocky outcrop in the RPPN Mirante da Serra? 2) Are there endemic and threatened species in this area? Material and Methods Study Area We conducted this study in an area of Deciduous Seasonal Forest associated with granitic rocky outcrop in the RPPN Mirante da Serra, Cristalino region (Figure 1), located in the Novo Mundo municipality, near the Alta Floresta border, in the northernmost region of the state of Mato Grosso (09°35’12 ”S, 55°54’59” W; elevation ~248-351 m). The Cristalino region is a term locally used to refer to the Mato Grosso part of the Cristalino River Basin, which flows into the Teles Pires River (Zappi et al. 2011). The areas constituting the region are the Cristalino State Park (PEC) and the four Private Natural Heritage Reserves (RPPNs according to the Brazilian Legislation) managed by the Cristalino Ecological Foundation (FEC), called Cristalino, Gavião Real, Castanheira and Mirante da Serra. Figure 1 Location of the RPPN Mirante da Serra (study area) in the Cristalino Region, Southern Amazon, Mato Grosso, Brazil. In the study region, the climate is warm, seasonally dry (three to five months per year), with annual average temperatures above 26ºC and mean annual rainfall between 2,400 mm and 2,800 mm (Alvares et al. 2013, Oliveira-Filho 2017). During this study (July 2016 - July 2017), the total annual rainfall was 2,080.27 mm, with the rainy period from September to April and the dry period - months with precipitation <100 mm - from May to August. February was the month with the highest precipitation (350.28 mm), August with the lowest (22.1 mm) and the months of June and July showed no precipitation. The average annual temperature during the study was 26.52 ºC, with the highest temperatures in April (minimum mean = 22.35 ºC) and August (maximum mean = 36.08 ºC). These data were obtained from station A-924, municipality of Alta Floresta-MT, at 61.5 km from the study area, approximately. In the rocky outcrop studied, the temperatures in the drought period can reach 43 ºC (E. Gressler, personal observation). The relief forms of the region are structurally complex, varying from flat to mountainous, being characterized in four geomorphological units: I. Cachimbo Plateau; II. Northern Depression of Mato Grosso; III. Interplanaltic depression of the Juruena/Teles Pires; and IV. Rivers - Residential Plateaus of the Southern Amazon (IBGE 2006). The sampled area is situated in this last geomorphological unit. Considering the entire Cristalino region, soils are generally acidic, medium to low fertility, sandy and susceptible to erosion; low nutrient and water availability quartzarenic neosols predominate, with dystrophic red-yellow argisols, alic red-yellow argisols, dystrophic lithic neosols and dystrophic dark red oxissols (Mato Grosso 2001). The studied outcrop presents a litholic neossol formed mainly by granite. The vegetation of the Cristalino region has areas of ecological tension, characterized by contacts between rainforest and seasonal forest; seasonal forest and savanna (Figure 2); and rainforest and savanna. Sasaki et al. (2010) and Zappi et al. (2011) described eight phytophysiognomies for the region. The vegetation associated with the rocky outcrop studied here was described by Sasaki et al. (2010) and Zappi et al. (2011) as a Dry Forest, found on the higher slopes or occasionally on the tops of the mountains, presenting most of the trees fully or almost totally leafless during the dry season. The canopy is relatively open (20 - 25 m high) with emerging trees up to 30 m high and the understory ranging from dense to open. Figure 2 Aspects of the Deciduous Seasonal Forest associated with rocky outcrop in the RPPN Mirante da Serra, Cristalino Region, Southern Amazon, Mato Grosso, Brazil. A: Study area in the rainy season. B: Study area in the dry season. C: Saxicolous Tree. D: Rocky outcrop Tree. E: Arboreal individuals in shallow soil. Data collection Based on the RAINFOR network methodology described by Phillips et al. (2016), we allocated a permanent plot of 1-ha area, installed for conducting monitoring studies. The plot was located at 335 m altitude and marked by iron rebar (5 mm in diameter and 1 m in length) fixed to the ground. During the period from July 2016 to July 2017 we collected the individuals in reproductive stage found in the plot, in the access paths and in the 10 m surrounding the plot. We provided the habits of each species based on basic books of plant morphology (e.g., Gonçalves & Lorenzi 2011); in particular, we considered as trees the freestanding individuals >3m height (Oliveira-Filho 2017). We used IBGE (2012) as the phytogeographic classification system to assign each species to its respective vegetation type, a step in which we were also supported by Sasaki et al. (2010) and Zappi et al. (2011). To compose the botanical collection, we followed the procedures recommended by Fidalgo & Bononi (1989) and IBGE (2012). The collected materials were incorporated into the collection of the Southern Amazon Herbarium - HERBAM, Mato Grosso State University, Alta Floresta - MT. Species were identified through partnerships with botanists experienced in the regional flora, as well as the use of dichotomous keys in review works (Goldenberg et al. 2012, Oliveira et al. 2012, Zappi et al. 2017), comparison with materials deposited in the HERBAM collection and online herbarium databases that provide expertly reviewed exsiccate images (e.g., Reflora, SpeciesLink, Tropicos, Kew Herbarium Collection, New York Botanical Garden - NYBG Virtual Herbarium, and Field Museum). We also consulted specialists in some more complex groups, such as the Myrtaceae families (Marcos Sobral, Carolyn Proença and Marla Ibrahim), Malvaceae (Sue Frisby), Rubiaceae (Daniella Zappi), Fabaceae (José M. Fernandes) and Melastomataceae (Fernandes Guimarães and Renato Goldenberg). In order to obtain greater confidence and success in identifying infertile individuals that were measured in the plot, we collected an individual sample for comparison with the HERBAM scientific collection, whose collection consists mainly of samples from the regional flora, including those from the Cristalino State Park. The species list was structured from the compilation of our random collections, the composition of the 1-ha plot, the species occurring within 10 m around the 1-ha area and the materials deposited in HERBAM from previous surveys carried out during the ‘Flora Cristalino Program’. We validated the accepted and correct spelling of the scientific names and their authors based on Flora do Brasil 2020 em construção (2019); APG IV (2016) was consulted for the genealogical classification of botanical groups. We also obtained information regarding conservation status and endemism of each species from the Red List of ‘Centro Nacional de Conservação da Flora’ (CNCFlora; http://www.cncflora.jbrj.gov.br) to provide a quantitative relevance of the Cristalino region for biodiversity conservation. Results and Discussion From the compilation of the data in our study and the materials deposited in HERBAM, we listed 126 woody species, 95 genera and 39 families for the vegetation associated with the RPPN Mirante da Serra rocky outcrop. Considering these species, eight were identified to the genera level due to the complexity of the groups and the absence of fertile material (Table 1). The families with the largest number of species were Fabaceae (20), Malvaceae (13), Apocynaceae and Rubiaceae (eight species each), and Bignoniaceae and Myrtaceae (seven each). Table 1 Woody species of Deciduous Seasonal Forest associated with rocky outcrop in the RPPN Mirante da Serra, Cristalino region, Southern Amazon. Threatened categories according to CNC Flora (DD: Deficient Data; LC: Least Concern; NE: Not Evaluated; VU: Vulnerable). *Taxa added to the Cristalino flora as result of our sampling survey. Family Species Threatened category (CNCFlora) Endemic to Brazil Habit Submontane Rainforest ('Floresta Ombrófila Densa Submontana') Alluvial Rainforest ('Floresta Ombrófila Densa Aluvial') Submontane Open Rainforest ('Floresta Ombrófila Aberta Submontana') Deciduous Seasonal Forest ('Floresta Estacional Decidual') Semideciduous Seasonal Forest ('Floresta Estacional Semidecidual') 'Campinarana Florestada/Gramíneo-lenhosa' 'Campo Rupestre da Amazônia' Pioneering Formations with River Influence ('Formações Pioneiras com Influência Fluvial') RPPN 'Mirante da Serra' Parque Estadual Cristalino Voucher Anacardiaceae Astronium lecointei Ducke NE not endemic tree x x x x Indivíduo 628 Spondias mombin L. NE not endemic tree x x x x in loco Apocynaceae Aspidosperma macrocarpon Mart. & Zucc. LC not endemic tree x x x x Da Silva, D.R. 128 A. multiflorum A.DC. NE endemic tree x x x x x Sasaki, D. 2248 A. subincanum Mart. NE not endemic tree x x Indivíduo 360 Aspidosperma sp. tree x x Indivíduo 349 Mandevilla scabra (Hoffmanns. ex Roem. & Schult.) K.Schum. NE not endemic liana x x x Da Silva, D.R. 146 Marsdenia cf. macrophylla (Humb. & Bonpl.) E.Fourn. NE not endemic shrub, liana x x x Da Silva, D.R. 118 M. weddellii (Fourn.) Malme NE unkown liana x x x Da Silva, D.R. 137 Odontadenia sp. liana x x Morfotipo 71 Arecaceae Bactris acanthocarpa Mart. NE not endemic palm x x x x Sasaki, D. 1180 Syagrus cocoides Mart. NE endemic palm x x x Da Silva, D.R. 141 Aristolochiaceae Aristolochia sp. liana x x Morfotipo 28 Bignoniaceae Adenocalymma impressum (Rusby) Sandwith NE not endemic liana x x Ribeiro, R.S. 250 Fridericia cinnamomea (DC.) L.G.Lohmann NE not endemic liana x x x in loco Handroanthus capitatus (Bureau & K.Schum.) Mattos NE not endemic tree x x x Da Silva, D.R. 119 H. serratifolius (Vahl) S.Grose* NE not endemic tree x x Koch, A.K. 843 Pyrostegia venusta (Ker Gawl.) Miers NE not endemic liana x x x x x x in loco Tabebuia aurea (Silva Manso) Benth. & Hook.f. ex S.Moore NE not endemic tree x x x Henicka, G.S. 107 Tynanthus polyanthus (Bureau ex Baill.) Sandwith NE not endemic liana x x x x x Sasaki, D. 1625 Bixaceae Cochlospermum orinocense (Kunth) Steud. NE not endemic tree x x x x Sasaki, D. 1337 C. regium (Mart. ex Schrank) Pilg. LC not endemic shrub x x x Da Silva, D.R. 95 Calophyllaceae Kielmeyera regalis Saddi NE endemic tree, shrub x x x x x Henicka, G.S. 111 Caricaceae Jacaratia digitata (Poepp. & Endl.) Solms NE not endemic tree x x x x Morfotipo 10 Clusiaceae Clusia panapanari (Aubl.) Choisy NE not endemic shrub, hemiepiphyte x x x Sasaki, D. 1606 C. weddelliana Planch. & Triana NE not endemic tree, hemiepiphyte x x x x x Da Silva, D.R. 186 Combretaceae Buchenavia tomentosa Eichler NE not endemic tree x x x x Gallo, S.C. 190 Combretum laxum Jacq. NE not endemic liana x x x x x x Da Silva, D.R. 184 Connaraceae Connarus coriaceus G.Schellenb. NE not endemic liana x x x x Sasaki, D. 2234a Cucurbitaceae Siolmatra pentaphylla Harms* NE not endemic liana, subwoody vine x x Gallo, S.C. 69 Erythroxylaceae Erythroxylum anguifugum Mart. LC endemic tree, shrub x x x x Da Silva, D.R. 138 E. leptoneurum O.E.Schulz NE not endemic shrub x x Da Silva, D.R. 125 Euphorbiaceae Croton hadrianii Baill.* NE endemic shrub x x x Da Silva, D.R. 168 Manihot anomala Pohl NE not endemic shrub x x Gallo, S.C. 71 M. tristis Müll.Arg. NE endemic shrub, liana x x x x Da Silva, D.R. 145 Maprounea guianensis Aubl. NE not endemic tree x x in loco Fabaceae Amburana cf. acreana (Ducke) A.C.Sm. VU not endemic tree x x Indivíduo 878 Anadenanthera peregrina (L.) Speg. NE not endemic tree x x x x x Da Silva, D.R. 134 Bauhinia cf. brevipes Vogel* NE not endemic tree, shrub x x Da Silva, D.R. 180 B. depauperata Glaz. unkown unkown shrub x x x Henicka, G.S. 17 Bauhinia cf. rufa (Bong.) Steud.* NE not endemic shrub x x Da Silva, D.R. 181 Camptosema ellipticum (Desv.) Burkart NE not endemic liana, subwoody vine x x x x x Gallo, S.C. 123 Chamaecrista cf. brevicalyx (Benth.) H.S.Irwin & Barneby* DD endemic shrub x x Da Silva, D.R. 163 Chloroleucon acacioides (Ducke) Barneby & J.M.Grimes NE not endemic tree x x x Da Silva, D.R. 188 Dalbergia gracilis Benth. NE not endemic shrub, liana x x x x Sasaki, D. 1618 Enterolobium maximum Ducke NE not endemic tree x x Nascimento, J. 34 Erythrina fusca Lour. NE not endemic tree x x x x Gallo, S.C. 190 E. ulei Harms NE not endemic tree x x x Da Silva, D.R. 93 Galactia striata (Jacq.) Urb.* LC not endemic shrub, subwoody vine x x Da Silva, D.R. 148 Hymenaea courbaril L. LC not endemic tree x x x x x x PFC. 241 Machaerium acutifolium Vogel NE not endemic tree x x x Gallo, S.C. 34 M. amplum Benth. NE not endemic tree; shrub; liana x x Gallo, S.C. 193 Periandra coccinea (Schrad.) Benth. NE endemic liana, subwoody vine x x Da Silva, D.R. 175 Platymiscium trinitatis Benth. NE not endemic tree x x x PFC. 239 Senegalia polyphylla (DC.) Britton & Rose NE not endemic tree x x x x x x in loco S. tenuifolia (L.)Britton & Rose NE not endemic shrub, liana x x in loco Lamiaceae Amasonia lasiocaulos Mart. & Schauer ex Schauer* NE not endemic shrub x x Ribeiro, R.S. 219 Vitex polygama Cham. NE endemic tree x x x Da Silva, D.R. 132 Loganiaceae Strychnos araguaensis Krukoff & Barneby NE not endemic liana x x Nascimento, J. 32 Lythraceae Physocalymma scaberrimum Pohl LC not endemic tree x x PFC. 289 Malpighiaceae Banisteriopsis megaphylla (A.Juss.) B.Gates NE endemic liana x x x Da Silva, D.R. 143 B. stellaris (Griseb.) B.Gates NE endemic liana x x x Sasaki 1936 Diplopterys lutea (Griseb.) W.R.Anderson & C.C.Davis NE not endemic liana x x PFC. 466 Janusia janusioides (A.Juss.) W.R.Anderson* NE not endemic liana x x Da Silva, D.R. 193 Malvaceae Ceiba samauma (Mart.) K.Schum. NE not endemic tree x x x Da Silva, D.R. 153 C. speciosa (A.St.-Hil.) Ravenna NE not endemic tree x x x Henicka, G.S. 32 Eriotheca globosa (Aubl.) A.Robyns NE not endemic tree x x x x Sasaki, D. 2465 Helicteres brevispira At.St.-Hil. NE not endemic shrub x x x Koch, A.K. 849 H. muscosa Mart. NE endemic shrub x x x Da Silva, D.R. 922 H. pentandra L. NE not endemic shrub x x x x Da Silva, D.R. 194 Luehea candicans Mart. & Zucc. LC not endemic tree x x x Da Silva, D.R. 124 Mollia lepidota Spruce ex Benth. NE not endemic tree x x x Da Silva, D.R. 139 Pachira paraensis (Ducke) W.S.Alverson NE not endemic tree x x x x x Da Silva, D.R. 190 Peltaea sp. shrub x x x x Da Silva, D.R. 171 Pseudobombax longiflorum (Mart.) A.Robyns NE not endemic tree x x x x x Da Silva, D.R. 189 P. tomentosum (Mart.) A.Robyns* LC not endemic tree x x Da Silva, D.R. 185 Theobroma speciosum Willd. ex Spreng. NE not endemic tree x x x x Da Silva, D.R. 98 Marcgraviaceae Norantea guianensis Aubl. NE not endemic tree, shrub, liana x x x x Da Silva, D.R. 116 Melastomataceae Ernestia sp. shrub x x Da Silva, D.R. 150 Mouriri apiranga Spruce ex Triana NE not endemic tree x x x x x x Gallo, S.C. 188 Tibouchina barbigera (Naudin) Baill. NE not endemic tree x x x x Da Silva, D.R. 162 Meliaceae Cedrela odorata L. VU not endemic tree x x x x Gallo, S.C. 185 Menispermaceae Odontocarya cf. tamoides (DC.) Miers NE not endemic liana x x Morfotipo 55 Moraceae Ficus amazonica (Miq.) Miq. LC not endemic tree x x x Da Silva, D.R. 94 Ficus obtusifolia Kunth NE not endemic tree, hemiepiphyte x x x Sasaki, D. 2028 Ficus schumacheri (Liebm.) Griseb.* DD not endemic tree, hemiepiphyte x x Da Silva, D.R. 167 Ficus sp. tree, hemiepiphyte x x Indivíduo 5 Myristicaceae Compsoneura ulei Warb. NE not endemic tree x x x x x x Sasaki, D. 1225 Iryanthera juruensis Warb. NE not endemic tree x x x x x Nascimento, J. 36 Myrtaceae Campomanesia grandiflora (Aubl.) Sagot* NE not endemic tree x x Gallo, S.C. 29 Eugenia aurata O.Berg LC endemic tree x x x Gallo, S.C. 100 E. dysenterica (Mart.) DC.* NE endemic tree x x Da Silva, D.R. 129 E. flavescens DC. NE not endemic tree; shrub x x x Da Silva, D.R. 121 E. stictopetala Mart. ex DC. NE not endemic tree x x x Da Silva, D.R. 131 Eugenia sp. tree x x Indivíduo 1035 Myrcia rufipes DC. NE endemic tree; shrub x x x x x Da Silva, D.R. 97 Ochnaceae Ouratea sp. tree x x Da Silva, D.R. 100 Opiliaceae Agonandra brasiliensis Miers ex Benth. & Hook.f. NE not endemic tree x x Indivíduo 994 Polygalaceae Bredemeyera floribunda Willd. NE not endemic liana x x x x Da Silva, D.R. 187 B. lucida (Benth.) Klotzsch ex Hassk. NE endemic liana x x x x Ribeiro, R.S. 135 Securidaca diversifolia (L.) S.F.Blake NE not endemic liana x x x x x Ribeiro, R.S. 134 Rhamnaceae Gouania colurnifolia Reissek* NE not endemic liana x x Da Silva, D.R. 177 Rubiaceae Bertiera guianensis Aubl. NE not endemic tree, shrub x x x x x Da Silva, D.R. 130 Cordiera sessilis (Vell.) Kuntze NE not endemic tree x x x x x Zappi, D.C. 1445 Coutarea hexandra (Jacq.) K.Schum. NE not endemic tree x x x x x x Da Silva, D.R. 140 Dialypetalanthus fuscescens Kuhlm. NE not endemic tree x x x x x Da Silva, D.R. 127 Guettarda spruceana Müll.Arg.* NE not endemic tree x x x Sasaki, D. 1850 Randia armata (Sw.) DC. NE not endemic tree, shrub x x x x x x Gallo, S.C. 24 Rudgea crassiloba (Benth.) B.L.Rob. NE not endemic tree x x Indivíduo 134 Simira rubescens (Benth.) Bremek. ex Steyerm. NE not endemic tree x x x x x Sasaki, D. 1607 Rutaceae Ertela trifolia (L.) Kuntze NE not endemic shrub x x x Sasaki, D. 1535 Esenbeckia pilocarpoides Kunth LC not endemic tree, shrub x x x x Sasaki, D. 1218 Metrodorea flavida K.Krause NE not endemic tree x x x x x x in loco Zanthoxylum rhoifolium Lam. NE not endemic tree x x x x Sasaki, D. 1216 Salicaceae Casearia gossypiosperma Briq. LC not endemic tree x x x PFC. 261 C. pitumba Sleumer NE not endemic tree x x Indivíduo 151 Sapindaceae Allophylus racemosus Sw. NE not endemic shrub x x x Ribeiro, R.S. 223 Trigoniaceae Trigonia laevis Aubl.* NE not endemic liana x x x x Da Silva, D.R. 157 T. nivea Cambess. NE not endemic liana x x x x Ribeiro, R.S. 136 Urticaceae Cecropia sciadophylla Mart. NE not endemic tree x x x x in loco Urera baccifera (L.) Gaudich. ex Wedd. NE not endemic shrub x x x x in loco Vitaceae Cissus duarteana Cambess. NE endemic subwoody vine x x x x x Da Silva, D.R. 147 C. erosa Rich. NE not endemic liana x x x x x Da Silva, D.R. 142 C. tinctoria Mart.* NE not endemic liana x x Da Silva, D.R. 176 Vochysiaceae Callisthene fasciculata Mart. NE not endemic tree x x x Da Silva, D.R. 133 Qualea dinizii Ducke* NE unkown tree x x Da Silva, D.R. 192 The largest representativeness of Fabaceae is expected because it is one of the most diverse families in inventories from Brazil and the Amazon (BFG 2015). Furthermore, in several studies conducted in the Cerrado (e.g., Campos et al. 2006; Walter & Guarino 2006; Ferreira-Júnior et al. 2008) and in the Cerrado-Amazon transition (e.g., Ivanauskas et al. 2004; Haidar et al. 2013), Fabaceae is also highlighted as one of the richest in species, denoting the high establishment capacity of this family in the most varied types of environments. A study evaluating the soils of the area studied here will possibly confirm the idea that nitrogen fixation capacity is a good strategy for legume maintenance in areas whose soil has low fertility conditions, such as slopes and tops of hills. However, not all legume species have this capability. When we consider the classic classification of Fabaceae into three subfamilies, species of the Papilionoideae subfamily have higher nodulation potential, whereas in Mimosoideae species nitrogen fixation is common and Caesalpinioideae is more uncommon (Colleta 2010; Macedo 2010). Among the 20 species of Fabaceae recorded in the investigated area, 10 belong to the Papilionoideae subfamily. Therefore, at least 50% of Fabaceae can be potential nitrogen-fixing potentials whether we consider the classic classification as well as the new classification (LPWG 2017) that divides legumes into six subfamilies. On the other hand, the scarcity of studies conducted on deciduous forests associated with rocky outcrops hampers comparisons with more similar areas. Indeed, there is a poverty of data from rocky outcrops in Brazilian Amazon as a whole (Silva 2016). One of the few studies in this regard, which was not conducted in Amazon or Cerrado-Amazon transition, but in the core area of Cerrado, found the same pattern of high floristic relevance of Fabaceae (Felfili et al. 2007). In other locations in South America (e.g. the inselbergs of the Guyanes and of Venezuela), in a rank of 10 families, respectively, the most representative were Cyperaceae, Poaceae, Bromeliaceae, Rubiaceae, Melastomataceae, Orchidaceae, Fabaceae, Apocynaceae, Euphorbiaceae and Myrtaceae (Barthlott & Porembski 2000). However, this comparison is generalized, because the authors do not define whether such ranking refers to savannas or deciduous forests associated with rocky environments. However, Fabaceae is the seventh family in this rank and the first three families are monocotyledons, represented essentially by herbaceous plants, a group that was not addressed in our study. The genera with the greatest species richness in the studied area were Eugenia L. (Myrtaceae), with five species, and Aspidosperma Mart. & Zucc. (Apocynaceae) and Ficus L. (Moraceae), with four species each. These three genera are among the most important of their respective families, with wide distribution and high diversity in the Neotropical region, being Ficus and Eugenia pantropical ones (TROPICOS 2017). In Brazil, 387 species of Eugenia have been reported, of which 302 are endemic (BFG, 2015). However, as taxonomic treatments are finalized, there is a growing tendency for information to be updated by the Flora do Brasil 2020 project. Currently, 386 species (299 endemic) are reported for Eugenia, with the highest concentration found in the Atlantic Forest (257) and the Amazon (92) (Flora do Brasil 2020 em construção, 2019). For Aspidosperma, there are 67 species (31 endemic), while 85 (23 endemic) are reported for the Ficus genus, both with higher concentrations in the Amazon (37 and 55 species, respectively) (Flora do Brasil 2020 em construção 2019). Aspidosperma (Salis et al. 2004) and Eugenia (Ivanauskas et al. 1999) are also among the species-richest ones. From this study we added 18 taxa (1.3%) to Flora do Cristalino, which now totals 1,383 species (Zappi et al. 2011). Our sampling was concentrated in a Deciduous Seasonal Forest, a forest formation that corresponds to less than 5% of the total area of Cristalino. This was one of the least sampled phytophysiognomies (80 species) from the inventories of the Cristalino Flora Program (Sasaki et al. 2010, Zappi et al. 2011). Among the 18 species added to Flora do Cristalino, seven are trees, four are shrubs, five are lianas and two species were recorded with life-form variation, namely, Bauhinia cf. brevipes registered as tree and shrub, and Galactia striata, registered as shrub and subwoody vine. Croton hadrianii and Pseudobombax tomentosum had their identifications complemented from the collections made during our study. These two species were collected from previous inventories, but were deposited in HERBAM at a generic level. Other species that we highlight in the present survey are Campomanesia grandiflora and Eugenia dysenterica, both belonging to the family Myrtaceae. The species C. grandiflora comprises a new registry for the State of Mato Grosso, whose distribution in Brazil was restricted to the states of the Northern Region, Bahia and Maranhão (Sobral et al. 2015). Eugenia dysenterica is a new record for the Amazon, whose distribution is confirmed in the most varied savannah and forest formations in Brazil and Bolivia, but in Brazil its occurrence is only cited for the Cerrado, Caatinga and Atlantic Forest Domains (Sobral et al. 2015). These plant species found in a specific locality surrounded by various sections of another ecosystem are called “relictual” (Ab’Sáber 2003). In this study we compiled 65 tree species (including four hemiepiphytes: Clusia weddelliana (Clusiaceae), Ficus obtusifolia, Ficus cf. schumacheri and Ficus sp. (Moraceae)), 18 shrubs (including the hemiepiphyte Clusia panapanari), 29 lianas (including the subwoody vines) and two palm species. In addition, four species were recorded as shrubs and lianas: Marsdenia cf. macrophylla (Apocynaceae), Manihot tristis (Euphorbiaceae), Dalbergia gracilis and Senegalia tenuifolia (Fabaceae); seven as trees and shrubs: Kielmeyera regalis (Calophyllaceae), Erythroxylum anguifugum (Erythroxylaceae), Eugenia flavescens and Myrcia rufipes (Myrtaceae), Bertiera guianensis and Randia armata (Rubiaceae) and Esenbeckia pilocarpoides (Rutaceae). The species Machaerium amplum (Fabaceae) and Norantea guianensis (Marcgraviaceae) were found as trees, shrubs and lianas. The variability of life forms of these species represents their competitive strategies and high adaptability to the conditions imposed by the environment (Via et al. 1995). Considering these authors, we believe that the isolation, allied to the pedological characteristic and the regional climatic seasonality, are factors that favor the plasticity of the species life form in the studied area. Among the 126 species compiled in this study, 66 were unique to the Deciduous Seasonal Forest, 50 were shared with neighboring phytophysiognomies and nine species were recorded only in neighboring phytophysiognomies (Table 1). However, we emphasize that there may be an influence of the intensified sampling effort on the area of rocky outcrops studied here. Moreover, during the elaboration of Flora do Cristalino, the collections intensified in the areas of Rainforest, while smaller sampling effort was allocated for the outcrop areas (e.g., Zappi et al. 2011). Nevertheless, the authors showed differences in species diversity between these areas. Regarding the conservation status and endemism of the species we obtained from the CNCFlora (2019) and Flora do Brasil 2020 databases under construction (2019), respectively, the following information could be assessed: 1 - In the Cristalino region there are two species classified in the ‘Vulnerable’ threat category and 12 species classified in the category of ‘Least Concern’, two species as ‘Deficient Data’ and the others were not evaluated (see Table 1). 2 - In the Cristalino region there are 17 species classified as endemic in Brazil, three species whose endemism is unknown and the others are not endemic. The occurrence of endemic and threatened species confirms the importance of the protected areas (State Park Cristalino and four private reserves) in the Cristalino region, especially taking into account the rapid deforestation rate associated with slow development, and dissemination of studies on biological diversity in the South Amazon region. Final considerations The species increment results for Flora do Cristalino, with some being new records for Mato Grosso and others composing new records for the Amazon, as well as the presence of endemic and threatened species, reinforce the need for investigations of these outcrops that occur forming a corridor of rocky outcrop vegetation islands amid the rainforests from the South Amazon border. This corridor of rocky vegetation, covering the northern region of Mato Grosso and the southern portion of Pará, may be determinant for a broader distribution of some species, such as those with anemochoric dispersion. Ethics The authors declare that they have complied with the guidelines established by the ethics principles. In this sense, there is no sort of plagiarism, double submissions, already published articles and possible frauds in research. Data availability Data obtained in field collections are deposited in ‘Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado - SISGEN’ from Brazilian Government and are also in process of incorporation into ‘speciesLink’ database. Acknowledgments This study was partially funded by CAPES (COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR, Brazilian Ministry of Education), Finance Code 001. We also thank FAPEMAT - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MATO GROSSO, which funded the Research Project “Distribuição e diversidade de espécies vegetais na transição Cerrado-Amazônia” - Edital Universal 005/2015 (Processo 224333/2015), to which this study was linked, and FUNDAÇÃO ECOLÓGICA CRISTALINO, for logistic support and authorization to the field work. References AB’SÁBER, A.N. 2003. Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê editorial, São Paulo. AB’SÁBER A.N. 2003 Os domínios de natureza no Brasil: potencialidades paisagísticas Ateliê editorial São Paulo ALVARES, C.A.; STAPE, J.L.; SENTELHAS, P.C.; GONÇALVES, J.L.M. & SPAROVER, G. 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22 (6): 711-728. ALVARES C.A. STAPE J.L. SENTELHAS P.C. GONÇALVES J.L.M. SPAROVER G. 2013 Köppen’s climate classification map for Brazil Meteorol. Z. 22 6 711 728 APG IV. The Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181 (1): 1-20. APG IV The Angiosperm Phylogeny Group 2016 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV Bot. J. Linn. Soc. 181 1 1 20 BARTHLOTT, W. & POREMBSKI, S. 2000. Vascular Plants on Inselbergs: Systematic Overview. In: Inselbergs: biotic diversity of isolated rocky outcrops in tropical and temperate regions. Volume 146 (S. POREMBSKI & W. BARTHLOTT, eds.). Ecological Studies, Springer-Verlag, Berlin, Cap. 7, 103-115. BARTHLOTT W. POREMBSKI S. 2000 Vascular Plants on Inselbergs: Systematic Overview Inselbergs: biotic diversity of isolated rocky outcrops in tropical and temperate regions 146 POREMBSKI S. BARTHLOTT W. Ecological Studies, Springer-Verlag Berlin Cap. 7 103 115 BENITES, V.M.; CAIAFA, A.N.; MENDONÇA, E.S.; SCHAEFER, C.E. & KER, J.C. 2003. Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço. Floresta e Ambiente, 10 (1): 76-85. BENITES V.M. CAIAFA A.N. MENDONÇA E.S. SCHAEFER C.E. KER J.C. 2003 Solos e vegetação nos complexos rupestres de altitude da Mantiqueira e do Espinhaço Floresta e Ambiente 10 1 76 85 BFG - The Brazil Flora Group. 2015. Growing knowledge: an overview of Seed Plant diversity in Brazil. Rodriguésia, 66 (4): 1085-1113. BFG - The Brazil Flora Group 2015 Growing knowledge: an overview of Seed Plant diversity in Brazil Rodriguésia 66 4 1085 1113 CAIAFA, A.N. & SILVA, A.F. 2005. Composição florística e espectro biológico de um campo de altitude no Parque Estadual da Serra do Brigadeiro, Minas Gerais - Brasil. Rodriguésia, 56 (87): 163-173. CAIAFA A.N. SILVA A.F. 2005 Composição florística e espectro biológico de um campo de altitude no Parque Estadual da Serra do Brigadeiro, Minas Gerais - Brasil Rodriguésia 56 87 163 173 CAMPOS, E.P.; DUARTE, T.G.; NERI, A.V.; SILVA, A.F.; MEIRA-NETO, J.A.A. & VALENTE, G.E. 2006. Composição florística de um trecho de cerradão e cerrado sensu stricto e sua relação com o solo na Floresta Nacional (FLONA) de Paraopeba, MG, Brasil. Rev. Árvore, 30 (3): 471-479. CAMPOS E.P. DUARTE T.G. NERI A.V. SILVA A.F. MEIRA-NETO J.A.A. VALENTE G.E. 2006 Composição florística de um trecho de cerradão e cerrado sensu stricto e sua relação com o solo na Floresta Nacional (FLONA) de Paraopeba, MG, Brasil Rev. Árvore 30 3 471 479 COLLETA, L.D. 2010. Estudo da fixação biológica de nitrogênio em leguminosas (família Fabaceae) arbóreas tropicais através do enriquecimento isotópico do 15N. 2010. 99f. Dissertação (Mestrado em Ciências). Universidade de São Paulo, Piracicaba. COLLETA L.D. Estudo da fixação biológica de nitrogênio em leguminosas (família Fabaceae) arbóreas tropicais através do enriquecimento isotópico do 15N 2010 99f Mestrado em Ciências Universidade de São Paulo Piracicaba COLINVAUX, P.A.; DE OLIVEIRA, P.E. & BUSH, M.B. 2000. Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses. Quaternary Sci. Rev. 19: 141-169. COLINVAUX P.A. DE OLIVEIRA P.E. BUSH M.B. 2000 Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses Quaternary Sci. Rev. 19 141 169 CONCEIÇÃO, A.A. & PIRANI, J.R. 2005. Delimitação de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composição florística e aspectos estruturais. Boletim de Botânica da Universidade de São Paulo, 23 (1): 85-111. CONCEIÇÃO A.A. PIRANI J.R. 2005 Delimitação de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composição florística e aspectos estruturais Boletim de Botânica da Universidade de São Paulo 23 1 85 111 FELFILI, J.M.; NASCIMENTO, A.R.T.; FAGG. C.W. & MEIRELLES, E.M. 2007. Floristic composition and community structure of a seasonally deciduous forest on limestone outcrops in Central Brazil. Revista Brasil. Bot. 30 (4): 611-621. FELFILI J.M. NASCIMENTO A.R.T. FAGG C.W. MEIRELLES E.M. 2007 Floristic composition and community structure of a seasonally deciduous forest on limestone outcrops in Central Brazil Revista Brasil. Bot. 30 4 611 621 FERNANDES, I. & BAPTISTA, L.R.M. 1988. Levantamento da flora vascular rupestre do Morro Sapucaia e Morro de Cabrito, Rio Grande do Sul. Acta Bot. Bras. 1 (2): 95-102. FERNANDES I. BAPTISTA L.R.M. 1988 Levantamento da flora vascular rupestre do Morro Sapucaia e Morro de Cabrito, Rio Grande do Sul Acta Bot. Bras. 1 2 95 102 FERREIRA-JÚNIOR, E.V.; SOARES, T.S.; COSTA, M.F.F. & SILVA, V.S.M. 2008. Composição, diversidade e similaridade florística de uma floresta tropical semidecídua submontana em Marcelândia - MT. Acta Amaz. 38 (4): 673-680. FERREIRA-JÚNIOR E.V. SOARES T.S. COSTA M.F.F. SILVA V.S.M. 2008 Composição, diversidade e similaridade florística de uma floresta tropical semidecídua submontana em Marcelândia - MT Acta Amaz. 38 4 673 680 FIDALGO, O. & BONONI, V.L.R. 1989. Técnicas de coleta, preservação e herborização de material botânico. Instituto de Botânica, São Paulo. FIDALGO O. BONONI V.L.R. 1989 Técnicas de coleta, preservação e herborização de material botânico Instituto de Botânica São Paulo FLORA DO BRASIL 2020 EM CONSTRUÇÃO. Jardim Botânico do Rio de Janeiro. Available at: <http://floradobrasil.jbrj.gov.br/>. Access on: 24 jul. 2019. FLORA DO BRASIL 2020 EM CONSTRUÇÃO Jardim Botânico do Rio de Janeiro Available at: http://floradobrasil.jbrj.gov.br/ 24 jul. 2019 GOLDENBERG, R.; BAUMGRATZ, J.F.A. & SOUZA, M.L.D.R. 2012. Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros. Rodriguésia, 63 (1): 145-161. GOLDENBERG R. BAUMGRATZ J.F.A. SOUZA M.L.D.R. 2012 Taxonomia de Melastomataceae no Brasil: retrospectiva, perspectivas e chave de identificação para os gêneros Rodriguésia 63 1 145 161 GONÇALVES, E.G. & LORENZI, H. 2011. Morfologia Vegetal: organografia e dicionário ilustrado de morfologia das plantas vasculares. 2 ed. Instituto Plantarum de Estudos da Flora, São Paulo. GONÇALVES E.G. LORENZI H. 2011 Morfologia Vegetal: organografia e dicionário ilustrado de morfologia das plantas vasculares 2 ed. Instituto Plantarum de Estudos da Flora São Paulo HAIDAR, R.F; FELFILI FAGG, J.M.; PINTO, J.R.R.; DIAS, R.R.; DAMASCENO, G.; SILVA, L.C.R. & FAGG, C.W. 2013. Florestas estacionais e áreas de ecótono no estado do Tocantins, Brasil: parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para conservação. Acta Amaz. 43 (3): 261-290. HAIDAR R.F FELFILI FAGG J.M. PINTO J.R.R. DIAS R.R. DAMASCENO G. SILVA L.C.R. FAGG C.W. 2013 Florestas estacionais e áreas de ecótono no estado do Tocantins, Brasil: parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para conservação Acta Amaz. 43 3 261 290 IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2001. Mapa de solos do Brasil. Ministério do Planejamento, Orçamento e Gestão, 1 mapa. Escala 1: 5.000.000. IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA 2001 Mapa de solos do Brasil. Ministério do Planejamento, Orçamento e Gestão, 1 mapa. Escala 1: 5.000.000 ______. 2006. Mapa de unidades de relevo do Brasil. 2 ed. Ministério do Planejamento, Orçamento e Gestão, 1 mapa. Escala 1: 5.000.000. IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA 2006 Mapa de unidades de relevo do Brasil. 2 ed. Ministério do Planejamento, Orçamento e Gestão, 1 mapa. Escala 1: 5.000.000 ______. 2012. Manual técnico da vegetação brasileira. 2 ed. IBGE, Rio de Janeiro. IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA 2012 Manual técnico da vegetação brasileira. 2 ed. IBGE, Rio de Janeiro IVANAUSKAS, N.M., RODRIGUES, R.R. & NAVE, A.G. 1999. Fitossociologia de um trecho de floresta estacional semidecidual em Itatinga, São Paulo, Brasil. Scient. Forest., 56: 83-99. IVANAUSKAS N.M. RODRIGUES R.R. NAVE A.G. 1999 Fitossociologia de um trecho de floresta estacional semidecidual em Itatinga, São Paulo, Brasil Scient. Forest. 56 83 99 IVANAUSKAS, N.M.; MONTEIRO, R. & RODRIGUES, R.R. 2004. Estrutura de um trecho de floresta amazônica na Bacia do Alto Rio Xingu. Acta Amazon. 34 (2): 275-299. IVANAUSKAS N.M. MONTEIRO R. RODRIGUES R.R. 2004 Estrutura de um trecho de floresta amazônica na Bacia do Alto Rio Xingu Acta Amazon. 34 2 275 299 JUMPPONEM, A.; VÄRE, H.; MATTSON, K.G.; OHTONEN, R. & TRAPPE, J.M. 1999. Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain. J. Ecol. 87 (1): 98-105. JUMPPONEM A. VÄRE H. MATTSON K.G. OHTONEN R. TRAPPE J.M. 1999 Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain J. Ecol. 87 1 98 105 LPWG - The Legume Phylogeny Working Group. 2017. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon, 66 (1): 44-77. LPWG - The Legume Phylogeny Working Group 2017 A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny Taxon 66 1 44 77 MACEDO, F.L. 2010. Estimativa da fixação de N2 através da composição da seiva do xilema e técnicas de diluição de 15N em Anadenanthera falcata (Benth) Speg. (Leguminosae - Mimosoideae). 2010. 57p. Dissertação (Mestrado em Biodiversidade Vegetal e Meio Ambiente) - Instituto de Botânica da Secretaria de Estado do Meio Ambiente, São Paulo. MACEDO F.L. Estimativa da fixação de N2 através da composição da seiva do xilema e técnicas de diluição de 15N em Anadenanthera falcata (Benth) Speg. (Leguminosae - Mimosoideae) 2010 57p Mestrado em Biodiversidade Vegetal e Meio Ambiente Instituto de Botânica da Secretaria de Estado do Meio Ambiente São Paulo MARACAHIPES, L.; LENZA, E.; MARIMON, B.S.; OLIVEIRA, E.A.; PINTO, J.R.R. & MARIMON JUNIOR, B.H. 2011. Estrutura e composição florística da vegetação lenhosa em cerrado rupestre na transição Cerrado- Floresta Amazônica, Mato Grosso, Brasil. Biota Neotrop. 11 (1): 133-141. MARACAHIPES L. LENZA E. MARIMON B.S. OLIVEIRA E.A. PINTO J.R.R. MARIMON B.H. JUNIOR 2011 Estrutura e composição florística da vegetação lenhosa em cerrado rupestre na transição Cerrado- Floresta Amazônica, Mato Grosso, Brasil Biota Neotrop. 11 1 133 141 MATO GROSSO. 2001. Mapa Geológico do Estado de Mato Grosso. PRODEAGRO. Ministério da Integração Nacional, Mapa A001. Escala 1: 1.500.000. Available at: <http://www.dados.mt.gov.br/publicacoes/dsee/geologia/rt/DSEE GL RT 004 A001.pdf> Access on: 11 mai. 2016. MATO GROSSO 2001 Mapa Geológico do Estado de Mato Grosso. PRODEAGRO. Ministério da Integração Nacional, Mapa A001. Escala 1: 1.500.000 Available at: http://www.dados.mt.gov.br/publicacoes/dsee/geologia/rt/DSEE GL RT 004 A001.pdf 11 mai. 2016 MELO, J.A.M.; SOARES-LOPES, C.R.A.; RODRIGUES, L.; PEDROGA, J.A. & FERNANDES, J.M. 2014. Estrutura e composição florística de uma floresta tropical caducifólia sobre afloramento rochoso, Amazônia Meridional, Mato Grosso. Enciclopédia Biosfera, 10 (18): 1602-1618. MELO J.A.M. SOARES-LOPES C.R.A. RODRIGUES L. PEDROGA J.A. FERNANDES J.M. 2014 Estrutura e composição florística de uma floresta tropical caducifólia sobre afloramento rochoso, Amazônia Meridional, Mato Grosso Enciclopédia Biosfera 10 18 1602 1618 MESSIAS, M.C.T.B.; LEITE, M.G.P.; MEIRA-NETO, J.A.A. & KOZOVITS, A.R. 2012. Fitossociologia de campos rupestres quartzíticos e ferruginosos no quadrilátero ferrífero, Minas Gerais. Acta Bot. Bras. 26 (1): 230-242. MESSIAS M.C.T.B. LEITE M.G.P. MEIRA-NETO J.A.A. KOZOVITS A.R. 2012 Fitossociologia de campos rupestres quartzíticos e ferruginosos no quadrilátero ferrífero, Minas Gerais Acta Bot. Bras. 26 1 230 242 MOURA, I.O.; RIBEIRO, K.T. & TAKAHASI, A. 2011. Amostragem da Vegetação em Ambientes Rochosos. In: Fitossociologia no Brasil: Métodos e estudos de caso. Volume 1 (J.M. FELFILI; P.V. EISENLOHR; M.M.R.F. MELO; L.A. ANDRADE & J.A.A. MEIRA NETO, orgs.). Viçosa, MG: Ed. UFV, Cap. 9, 255-294. MOURA I.O. RIBEIRO K.T. TAKAHASI A. 2011 Amostragem da Vegetação em Ambientes Rochosos Fitossociologia no Brasil: Métodos e estudos de caso 1 FELFILI J.M. EISENLOHR P.V. MELO M.M.R.F. ANDRADE L.A. MEIRA J.A.A. NETO Viçosa, MG Ed. UFV Cap. 9 255 294 OLIVEIRA, M.I.U; FUNCH, L.S. & LANDRUM, L.R. 2012. Flora da Bahia: Campomanesia (Myrtaceae). Sitientibus série Ciências Biológicas, 12 (1): 91-107. OLIVEIRA M.I.U FUNCH L.S. LANDRUM L.R. 2012 Flora da Bahia: Campomanesia (Myrtaceae) Sitientibus série Ciências Biológicas 12 1 91 107 OLIVEIRA, R.B. & GODOY, S.A.P. 2007. Composição florística dos afloramentos rochosos do Morro do Forno, São Paulo. Biota Neotrop., 7 (2): 37-48. OLIVEIRA R.B. GODOY S.A.P. 2007 Composição florística dos afloramentos rochosos do Morro do Forno, São Paulo Biota Neotrop. 7 2 37 48 OLIVEIRA-FILHO, A.T. 2017. NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação. Universidade Federal de Minas Gerais. Available at: http://www.neotroptree.info. Access on: 07 Aug.2019 OLIVEIRA-FILHO A.T. 2017 NeoTropTree, Flora arbórea da Região Neotropical: Um banco de dados envolvendo biogeografia, diversidade e conservação Universidade Federal de Minas Gerais Available at: http://www.neotroptree.info 07 Aug.2019 PESSOA, M.J.G. 2014. Composição florística e estrutura da vegetação lenhosa de savanas sobre afloramentos rochosos na transição Cerrado Amazônia, MT. 2014. 58 f. Dissertação (Mestrado em Biodiversidade e Agroecossistemas Amazônicos), Universidade do Estado de Mato Grosso, Faculdade de Ciências Biológicas e Agrárias, Alta Floresta. PESSOA M.J.G. Composição florística e estrutura da vegetação lenhosa de savanas sobre afloramentos rochosos na transição Cerrado Amazônia, MT 2014 58 f Mestrado em Biodiversidade e Agroecossistemas Amazônicos Universidade do Estado de Mato Grosso, Faculdade de Ciências Biológicas e Agrárias Alta Floresta PHILLIPS, O.; BAKER, T.; FELDPAUSCH, T. & BRIENEN, R. 2016. RAINFOR: field manual for plot establishment and remeasurement. The Royal Society, Leeds, UK. PHILLIPS O. BAKER T. FELDPAUSCH T. BRIENEN R. 2016 RAINFOR: field manual for plot establishment and remeasurement The Royal Society Leeds, UK POREMBSKI, S.; SEINE, R. & BARTHLOTT, W. 1997. Inselberg vegetation and biodiversity of granite outcrops. Journal of the Royal Society of Western Australia. 80 (3): 193-199. POREMBSKI S. SEINE R. BARTHLOTT W. 1997 Inselberg vegetation and biodiversity of granite outcrops Journal of the Royal Society of Western Australia 80 3 193 199 POREMBSKI, S. & BARTHLOTT, W. (eds.) 2000. Inselbergs: biotic diversity of isolated rocky outcrops in tropical and temperate regions. Ecological Studies, Springer-Verlag, Berlin , v.146. POREMBSKI S. BARTHLOTT W. 2000 Inselbergs: biotic diversity of isolated rocky outcrops in tropical and temperate regions Ecological Studies, Springer-Verlag Berlin 146 POREMBSKI, S. 2007. Tropical inselbergs: habitat types, adaptives strategies and diversity strategies. Revista Brasil. Bot. 30 (4): 579-586. POREMBSKI S. 2007 Tropical inselbergs: habitat types, adaptives strategies and diversity strategies Revista Brasil. Bot. 30 4 579 586 SALIS, S.M.; SILVA, M.P.; MATTOS, P.P; SILVA, J.S.V.; POTT, V.J. & POTT, A. 2004. Fitossociologia de remanescentes de floresta estacional decidual em Corumbá, Estado do Mato Grosso do Sul, Brasil. Rev. Bras. Bot., 27 (4): 671-684. SALIS S.M. SILVA M.P. MATTOS P.P SILVA J.S.V. POTT V.J. POTT A. 2004 Fitossociologia de remanescentes de floresta estacional decidual em Corumbá, Estado do Mato Grosso do Sul, Brasil Rev. Bras. Bot. 27 4 671 684 SASAKI, D.; ZAPPI, D.; MILLIKEN, W.; HENICKA, G.S. & PIVA, J.H. 2010. Vegetação e Plantas do Cristalino: um manual. Royal Botanic Gardens, KEW / Fundação Ecológica Cristalino, Alta Floresta. SASAKI D. ZAPPI D. MILLIKEN W. HENICKA G.S. PIVA J.H. 2010 Vegetação e Plantas do Cristalino: um manual Royal Botanic Gardens, KEW / Fundação Ecológica Cristalino Alta Floresta SCARANO, F.R. 2002. Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Ann. Bot., 90 (4): 517-524. SCARANO F.R. 2002 Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest Ann. Bot. 90 4 517 524 ______. 2007. Rock outcrop vegetation in Brazil: a brief overview. Rev. Bras. Bot., 30 (4): 561-568. SCARANO F.R. 2007 Rock outcrop vegetation in Brazil: a brief overview Rev. Bras. Bot. 30 4 561 568 SILVA, J.B. 2016. Panorama sobre a vegetação em afloramentos rochosos no Brasil. Oecologia Australis, 20 (4): 451-463. SILVA J.B. 2016 Panorama sobre a vegetação em afloramentos rochosos no Brasil Oecologia Australis 20 4 451 463 SILVA, M.F.F.; SECCO, R.S. & LOBO, M.G.A. 1996. Aspectos ecológicos da vegetação rupestre da Serra dos Carajás, Estado do Pará, Brasil. Acta Amazon. 26 (1 2): 17-44. SILVA M.F.F. SECCO R.S. LOBO M.G.A. 1996 Aspectos ecológicos da vegetação rupestre da Serra dos Carajás, Estado do Pará, Brasil Acta Amazon. 26 1 2 17 44 SILVEIRA, F.A.O. et al. 2015. Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil, 403: 129-152. SILVEIRA F.A.O. 2015 Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority Plant Soil 403 129 152 SOBRAL, M.; PROENÇA, C.; SOUZA, M.; MAZINE, F. & LUCAS, E. 2015. Myrtaceae. In Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available at:http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB23996. Access on: 28 jul. 2017. SOBRAL M. PROENÇA C. SOUZA M. MAZINE F. LUCAS E. 2015 Myrtaceae Lista de Espécies da Flora do Brasil Jardim Botânico do Rio de Janeiro Available at:http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB23996 28 jul. 2017 SPEZIALE, K.L. & EZCURRA, C. 2014. Rock outcrops as potential biodiversity refugia under climate change in North Patagonia. Plant Ecol. Divers. 8 (3): 353-361. SPEZIALE K.L. EZCURRA C. 2014 Rock outcrops as potential biodiversity refugia under climate change in North Patagonia Plant Ecol. Divers. 8 3 353 361 TROPICOS. Tropicos.org. Missouri Botanical Garden. Available at: <http://www.tropicos.org>. Access on: 24 jul. 2017. TROPICOS Tropicos.org Missouri Botanical Garden Available at: http://www.tropicos.org 24 jul. 2017 VIA, S.; GOMULKIEWICZ, R.; DE JONG, G.; SCHEINER, S.M.; SCHILICHTING, C.D. & VAN TIENDEREN, P.H. 1995. Adaptive phenotypic plasticity: consensus and controversy. Tree, 10 (5): 212-217. VIA S. GOMULKIEWICZ R. DE JONG G. SCHEINER S.M. SCHILICHTING C.D. VAN TIENDEREN P.H. 1995 Adaptive phenotypic plasticity: consensus and controversy Tree 10 5 212 217 VIANA, P.L. & LOMBARDI, J.A. 2007. Florística e caracterização dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil. Rodriguésia, 58 (1): 159-177. VIANA P.L. LOMBARDI J.A. 2007 Florística e caracterização dos campos rupestres sobre canga na Serra da Calçada, Minas Gerais, Brasil Rodriguésia 58 1 159 177 VIANA, P.L. et al. 2016. Flora das cangas da Serra dos Carajás, Pará, Brasil: história, área de estudos e metodologia. Rodriguésia, 67 (5, especial): 1107-1124. VIANA P.L. 2016 Flora das cangas da Serra dos Carajás, Pará, Brasil: história, área de estudos e metodologia Rodriguésia 67 5, especial 1107 1124 WALTER, B.M.T. & GUARINO, E.S.G. 2006. Comparação do método de parcelas com o “levantamento rápido” para amostragem da vegetação arbórea do Cerrado sentido restrito. Acta Bot. Bras. 20 (2): 285-297. WALTER B.M.T. GUARINO E.S.G. 2006 Comparação do método de parcelas com o “levantamento rápido” para amostragem da vegetação arbórea do Cerrado sentido restrito Acta Bot. Bras. 20 2 285 297 WISER, S.K. 1998. Comparison of Southern Appalachian high elevation outcrop plant communities with their Northern Appalachian counterparts. J. Biogeogr. 25 (3): 501-513. WISER S.K. 1998 Comparison of Southern Appalachian high elevation outcrop plant communities with their Northern Appalachian counterparts J. Biogeogr. 25 3 501 513 ZAPPI, D.C.; SASAKI, D.; MILLIKEN, W.; IVA, J.; HENICKA, G.S.; BIGGS, N. & FRISBY, S. 2011. Plantas vasculares da região do Parque Estadual Cristalino, norte de Mato Grosso, Brasil. Acta Amazon. 41 (1): 29-38. ZAPPI D.C. SASAKI D. MILLIKEN W. IVA J. HENICKA G.S. BIGGS N. FRISBY S. 2011 Plantas vasculares da região do Parque Estadual Cristalino, norte de Mato Grosso, Brasil Acta Amazon. 41 1 29 38 ZAPPI, D.C.; MILLIKEN, W.; SOARES-LOPES, C.R.A.; LUCAS, E.; PIVA, J.H.; FRISBY, S.; BIGGS, N. & FORZZA, R.C. 2016. Xingu State Park vascular plant survey: filling the gaps. Braz. J. Bot. 39 (2): 751-778. ZAPPI D.C. MILLIKEN W. SOARES-LOPES C.R.A. LUCAS E. PIVA J.H. FRISBY S. BIGGS N. FORZZA R.C. 2016 Xingu State Park vascular plant survey: filling the gaps Braz. J. Bot. 39 2 751 778 ZAPPI, D.C.; MIGUEL, L.M.; SOBRADO, S.V. & SALAS, R.M. 2017. Flora das cangas Serra dos Carajás, Pará, Brasil: Rubiaceae. Rodriguésia, 68 (3, especial): 1091-1137. ZAPPI D.C. MIGUEL L.M. SOBRADO S.V. SALAS R.M. 2017 Flora das cangas Serra dos Carajás, Pará, Brasil: Rubiaceae Rodriguésia 68 3, especial 1091 1137
location_on
Instituto Virtual da Biodiversidade | BIOTA - FAPESP Departamento de Biologia Vegetal - Instituto de Biologia, UNICAMP CP 6109, 13083-970 - Campinas/SP, Tel.: (+55 19) 3521-6166, Fax: (+55 19) 3521-6168 - Campinas - SP - Brazil
E-mail: contato@biotaneotropica.org.br
rss_feed Stay informed of issues for this journal through your RSS reader
Accessibility / Report Error