
ABSTRACT: Some forage species, such as pangolão grass (Digitaria eriantha Steud. cv. Survenola), are resilient in tropical semiarid 

regions. A possible reason for this is the presence of endophytic and rhizospheric microorganisms. Thus, this study evaluated the diversity of 

associative bacteria in pangolão grass. Bacteria associated with the roots, culm, leaves, and rhizospheric soil were isolated and characterized 

in three municipalities of Pernambuco, Brazil. An initial phenotypic characterization was followed by a genotypic assessment by based 

repetitive extragenic palindromic-polymerase chain reaction (BOX-PCR) and partial sequencing of the 16S rRNA gene. We obtained 325 

phenotypically-characterized isolates grouped into 243 strains with 100% similarity by BOX-PCR. The most diverse sampling environment 

was Araripina, and all factors affected bacterial diversity. There were 135 groups with 90% similarity, that were represented by a single strain 

each for sequencing. Among the sequenced strains, 118 showed 96.84–99.9% similarity with previously described strains, whereas 17 could 

not be identified. The following 18 genera were identified from three phyla, five classes, seven orders, and 13 families: Achromobacter, 

Agrobacterium, Bacillus, Burkholderia, Curtobacterium, Enterobacter, Herbaspirillum, Kosakonia, Ochrobactrum, Paenibacillus, Pantoea, 

Priestia, Pseudomonas, Rhizobium, Serratia, Shinella, Stenotrophomonas, and Variovorax. The diversity of endophytic and rhizospheric 

bacteria may contribute to the resilience of pangolão, as various strains of these genera have been described as plant growth promoters. 

This is the first evaluation of pangolão bacterial diversity under tropical semiarid conditions. Since several of the genera include strains 

known to promote plant growth, we propose further research to evaluate this on crops. 
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INTRODUCTION

Brazilian livestock production is mainly based on pastures, either native or cultivated. Certain species located in these 
pastures, such as Digitaria eriantha Steud. cv. Survenola, known as pangolão grass, are tolerant to water deficit and low soil 
fertility (Navarro et al. 2005). 

A possible coping mechanism for these conditions is the presence of endophytic microorganisms, that assist in plant 
growth and development and induce resistance to biotic and abiotic stresses, such as through phytostimulation, biofertilization, 
or biocontrol (Afzal et al. 2019).

Endophytic bacteria are found in the majority of plant species (Afzal et al. 2019), and many endophytes have been 
detected in association with a wide range of grasses with variable diversity (Lu et al. 2021). Unfortunately, no data were 
found in literature on endophytic bacteria from Digitaria species, and little information is available on these bacteria in 
tropical semiarid conditions.
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Endophytic and rhizospheric bacterial diversity depends on several factors such as plant species, host plant tissue, and 
environmental conditions. High endophytic bacterial diversity has been found in wild rice roots (Chen et al. 2019), Brachiaria 
grasses (Mutai et al. 2017), and on the seashore paspalum adapted to warm saline environments in tropical areas (Liu et al. 
2021), whereas high diversity was also found for both indole acetic acid-producing and phosphate-solubilizing bacteria in 
sugarcane (Teheran-Sierra et al. 2021).

This high diversity, coupled with the heterologous inoculation of bacteria isolated from one species into another, suggests 
the evaluation of the diversity of endophytic bacteria in stress-tolerant plants. For example, a strain of Pseudomonas sp. isolated 
from the roots of the desert-inhabiting legume Alhagi sparsifolia promoted drought resistance when inoculated into wheat 
(Zhang et al. 2020). Similarly, Bacillus isolated from Cereus jamacaru, a Brazilian native cactus, has been shown to induce 
drought resistance in several crops (Kavamura et al. 2013). Brazilian Azospirillum inoculants, which are entirely based on 
strains isolated from maize, are currently recommended for maize, wheat, rice, and Brachiaria, and used as co-inoculants 
for soybean, cowpea, and the common bean (Brasil 2011, Galindo et al. 2020). 

Thus, this study aimed to isolate, characterize, select, and identify endophytic bacteria in different parts of pangolão 
grass and rhizospheric soil and verify the associated bacterial diversity.

MATERIAL AND METHODS

Sampling was conducted in three municipalities of Pernambuco, Brazil, covering climates ranging from hot dry semiarid 
(Araripina) to hot tropical with winter rains (Gravatá and Nazaré da Mata, with lower average rainfall in the former), classified 
as BSh and As according to Köppen-Geiger’s classification (CONDEPE/FIDEM, 2016) (Fig. 1). Gravatá and Nazaré da Mata 
pangolão pastures were on private properties and approximately 6 and 11 years old, with unknown fertilization practices. 
In Araripina, the samples were collected at the Experimental Station of Pernambuco Agronomic Institute and were at least 
30 years old, with unknown fertilization during this time. After the first sampling in this field, part of the area was limed 
by the research station, allowing observation of the effects of liming on endophytic bacterial diversity.

At each sampling (Table 1), 20 plants were randomly collected from the field, grouped, and separated into leaves, culms, 
roots, and rhizospheric soil, followed by bagging and refrigeration until further analysis. All samplings were conducted in 
the rainy seasons for Gravatá and Nazaré da Mata, while Araripina was sampled during both the rainy and dry seasons. A 
single field was used for each location, except for Araripina, in which samples were collected in both limed and non-limed 
fields during the rainy season. In each site in Araripina, soil was collected, dried at 60 °C, sieved through a 2 mm mesh, and 
subjected to textural and chemical characterization based on Brazilian standard protocols (Teixeira et al. 2017).

Figure 1. Sampling areas location in relation to Pernambuco state and the Brazilian northeast.
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Leaves and colm were disinfected by washing in water, drying, swabbing in 70% ethanol, and rinsing in distilled 
autoclaved water. The roots were washed in water, cut into 10 cm pieces, immersed in 70% ethanol for 30 s, followed by 
2.5% sodium hypochlorite, and washed five times with distilled autoclaved water. All plant samples were subsequently 
blended in autoclaved saline solution at a 10-1 dilution, followed by serial dilution from 10-3 to 10-7 in triplicate, also using 
autoclaved saline solution (Döbereiner et al. 1995).

At each dilution, samples were inoculated into penicillin flasks with semi-selective N-free semi-solid NFB culture media 
(Döbereiner et al. 1995), while in Araripina JNFB (Baldani et al. 1986) and JMV (Baldani et al. 1996) were also used. In 
all cases, the flasks were incubated at 28 °C for at least 48 h, after which samples from any dilution with visible growth 
were plated onto Petri dishes with yeast malt agar (YMA) media and bromothymol blue (Vincent 1970) and characterized 
by pH change (acidic, neutral, or alkaline), mucous production (absent or present), colony color (pink, yellow, cream or 
cream and yellow), opacity (opaque or translucent), form (circular or irregular), perimeter (full or irregular), and surface 
(smooth or irregular) (Silva et al. 2012). 

 
Table 1. Sampling areas of pangolão grass (Digitaria eriantha cv. Survenola) in three municipalities of Pernambuco, Brazil.
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All isolates were inoculated in 5 mL of trypticase soy broth (TSB) medium and shaken at 180 rpm for 72 h at 28 °C 
for DNA extraction (Lyra et al. 2019). Then, 2 mL of the bacterial suspension was centrifuged at 7,500 rpm for 3 min, the 
supernatant was discarded, and the pellet formed was used for DNA extraction using the MiniPrep Kit (Axygen), according 
to the manufacturer’s recommendations. DNA integrity was analyzed by electrophoresis on a 0.8% agarose gel for 30 min 
in 0.5 × tris/borato/EDTA (TBE) buffer at 100 V, after being stained with SybrGold (Thermo Fisher Scientific). The 100 bp 
Plus DNA Ladder (Thermo Fisher Scientific) was used as a molecular standard, followed by DNA quantification using the 
NanoDrop 2000c (Thermo Fisher Scientific), standardization of the concentration to 20–30 ng∙μL-1, and storage at -20 °C.

A based repetitive extragenic palindromic-polymerase chain reaction (BOX-PCR) was performed using the BOX A1R 
(5’-CTACGGCAAGGCGACGCTGACG-3’) primer (Versalovic et al. 1994). The amplification reaction was performed in 
a final volume of 10 μL containing 1 μL of template DNA (20–30 ng∙μL-1), 2 µM of primer, 0.3 mM of dNTPs, 1 μL of buffer 
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10 ×, 5 mM MgCl2, 1.5 U Taq polymerase platinum, and Milli-Q water to complete the reaction. Amplification conditions 
were adjusted from Freitas et al. (2007) as follows: initial denaturation at 95 °C for 9 min, 30 cycles of denaturation  
(1 min at 94 °C), annealing (1 min at 55 °C), extension (5 min at 72 °C), and a final extension cycle at 72 °C for 10 min. All 
reactions were performed using an Applied Biosystems 2720 thermocycler (Applied Biosystems). The amplified fragments 
were separated by electrophoresis, containing 0.5 × TBE buffer at 100 V, for 180 min on 1.2% agarose gels stained with 
SybrGold (Thermo Fisher Scientific).

Dendrograms of the sample areas and plant parts, individually and jointly, were constructed using Geljv2 (Heras et al. 
2015) with the Jaccard coefficient and UPGMA algorithm. Groups with 100% similarity were considered as distinct strains 
and evaluated using the Shannon-Weaver’s diversity (Shannon and Weaver 1949), Pielou’s uniformity (Pielou 1959), Simpson’s 
diversity and dominance (Simpson 1949) and Margalef ’s richness (Margalef 1956) indexes.

DNA from a representative strain of each BOX-PCR group with 90% similarity was amplified with 16S rRNA universal 
primers 27F (5’AGAGTTTGATCMTGGCTCAG-3’) and 1492R (5’TACGGTTAACCTT GTTACGACTT-3’) (Weisburg  
et al. 1991). The amplification reaction with a final volume of 50 μL consisted of 2 μL DNA (20–30 ng∙μL-1), 1.5 μL MgCl2 
(50 mM), 5 μL 10 × PCR buffer, 1 μL dNTPs (10 mM), 2 μL of each primer (10 µM), 0.6 μL of Taq DNA polymerase  
(5 U∙µL-1) and Milli-Q water to complete the reaction. The amplification reaction conditions were as follows: initial denaturation at  
94 °C for 3 min, 30 cycles of denaturation (94 °C for 45 seconds), annealing (56 °C for 30 seconds), extension (72 °C for  
2 min), and a final extension at 72 °C for 7 min. The amplified products were evaluated in 0.5 × TBE buffer at 100 V  
for 90 min on 1% agarose gel stained with SybrGold (Thermo Fisher Scientific) and visualized under ultraviolet light in an 
LPIX-HE photo documenter (Loccus, Brazil). The reactions were performed using a 2720 thermocycler (Applied Biosystems), 
followed by purification and sequencing by Macrogen (South Korea).

The sequences were compared to the type strains in the National Center for Biotechnology Information (NCBI) database. 
To determine the molecular identity, each strain was individually subjected to a similarity analysis using the MEGABLAST 
algorithm (highly similar sequences) or BLASTn algorithm (similar sequences). The same sequences were then analyzed 
for the percentage of molecular identity using the CLUSTAL W multiple progression method (Thompson et al. 1994) with 
the MEGA7.1 program (Kumar et al. 2018). The Juke-Cantor neighbor-join method was used to determine the similarity 
value and distance matrix and to build gene trees of the concatenated sequences for each isolate (Kumar et al. 2018). The 
significance of branching within trees was assessed by bootstrap analysis of 1,000 computer generated replicates. Sequences 
that did not show high similarity were not included in the phylogenetic tree.

RESULTS AND DISCUSSION

Using the semi-specific culture media, 325 isolates were obtained, which restricted the endophyte population that could 
be isolated (Hernández-Pacheco et al. 2021). 

Phenotypic characterization revealed that 80.3% of the isolates acidified, 3.7% alkalized, and 16% did not change the 
pH of the medium (Fig. 2 and Suppl. Table 1), which may be associated with the assimilation or production of organic 
acids and potentially aid in the solubilization of phosphates (Wang et al. 2020). Mucus production occurred with 72.3% 
of the isolates, which may indicate resistance to environmental stress (Khan and Singh 2021). Cream and yellow colony 
colors predominated with 45%, followed by cream (32%), yellow (21.2%), and pink (1.3%). As for the edge, shape, opacity, 
and surface, 88.9% were solid, 92.9% circular, 75.4% opaque, and 98.5% smooth, respectively (Fig. 2 and Suppl. Table 1).

Out of the 325 isolates, 315 amplified the BOX elements, forming bands from 228 to 1,736 bp, which identified 243 
strains (Table 2), 78% of which were isolated at a single time, which indicates high diversity. This high diversity was also 
observed when plant parts or sampling areas were compared through the diversity indexes (Table 2), while dominance, 
equability, and high Margalef ’s richness indexes confirmed that the strains were equally abundant, which usually indicates 
greater stability and resistance to environmental stresses (Zhao et al. 2022). Considering the overall environments, Araripina 
had the most isolates and higher Shannon’s (5.241), Simpson’s (0.99) and Margalef ’s (7.502) indexes, followed by Nazaré 
da Mata and Gravatá. The lower diversity and higher dominance indexes found at Gravatá (Table 2) are likely due to this 
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stand being the youngest (6 years compared to 11 in Nazaré da Mata and > 30 in Araripina), which is comparable to that 
observed in Lolium perenne plants, which showed higher endophytic bacterial diversity in older plants than in younger ones 
(Tannenbaum et al. 2020). Another possible reason for the greater diversity found in Araripina is the drier environment, 
which could be more inducive to bacterial diversity (Wei et al. 2020). 
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Figure 2. Percentage of bacterial isolates from pangolão grass (Digitaria eriantha cv. Suvernola) according to phenotypical characteristics.

Table 2. Number of isolates and strains and diversity indexes of Digitaria eriantha cv. Survenola bacteria from different sampling locations 
and isolation material, Pernambuco, Brazil.

  Isolation 
condition Isolates Strains Dominance

D
Simpson

1-D
Shannon

H’ Margalef Equitability
J’

Total 315 243 0.0049 0.9951 5.407 42.07 0.9845

Araripina 
rainy season, 

without liming
58 52 0.0208 0.9792 3.917 12.56 0.9913

Araripina rainy   
season, with 

liming
74 72 0.0142 0.9858 4.267 16.49 0.9976

  Araripina dry 
season 97 90 0.0116 0.9884 4.481 19.54 0.9958

Gravatá 24 22 0.0486 0.9514 3.063 6.79 0.9908

Nazaré da 
Mata 61 60 0.0169 0.9831 4.088 14.35 0.9985

Colm 97 81 0.0146 0.9854 4.325 17.49 0.9841

Leaves 82 66 0.0181 0.9819 4.100 14.52 0.9822

Roots 61 59 0.0158 0.9842 3.976 14.11 0.9751

Rhizospheric 
soil 72 68 0.0154 0.9846 4.199 15.67 0.9953

Considering only Araripina, higher diversity was found in the dry season than that in the rainy season, with and without 
liming. While liming effects in the rainy season are reasonable, the higher diversity during the dry season is uncommon (Xu 
et al. 2018, Ou et al. 2019, Firrincieli et al. 2020), but it may relate to the use of multiple culture media, allowing for a broader 
range of cultivable bacteria (Döbereiner et al. 1995, Jia et al. 2022). Comparing the different plant parts and rhizospheric 
soil, diversity decreased on the culm, rhizospheric soil, leaves, and root, in that order (Table 2), although rhizospheric soil 
presented the highest uniformity. Since the difference between these sources is relatively small, and higher uniformity was 
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found in the rhizospheric soil, the results likely do not strongly deviate from the usual pattern for bacterial diversity found 
in these sources (Liu et al. 2017, Huang 2018, Zhang et al. 2020, Wang et al. 2022). Bacterial diversity varies between plant 
parts in a species dependent manner, with the most diverse part of maize being the culm, millet the roots, and both the 
culm and roots being more diverse for rice (Patel and Archana 2017). This also occurred on a cultivar basis, with drought 
resistant and tolerant millet genotypes presenting different bacterial diversity patterns (Manjunatha et al. 2019). Therefore, 
it is important to evaluate bacterial diversity in different plant parts, despite repeated isolation of the same strain. 

Among the 135 groups with 90% similarity, 118 were identified at the genus level (96.84–99.9% similarity), while 13 
(68–92.4% similarity) had insufficient similarity for taxonomic classification, and four strains showed no similarity with 
any genetic sequence in the GenBank database (Suppl. Table 2). 

Based on the List of Prokaryotic names with Standing in Nomenclature (LPSN), three phyla, five classes, seven orders, 
13 families, and 18 genera were identified (Table 3) (Parte et al. 2020). The main representative classes were γ-proteobacteria 
(Enterobacter, Kosakonia, Pantoea, Pseudomonas, Serratia, and Stenotrophomonas), and α-proteobacteria (Agrobacterium, 
Ochrobactrum, Rhizobium, and Shinella), with 58 and 28% respectively, all of which found in the three collection sites and all 
plant parts. β-proteobacteria were found in smaller amounts, with 11 strains and four genera (Achromobacter, Burkholderia, 
Herbaspirillum, and Variovorax). 

Proteobacteria domination found in pangolão grass has been previously described for widely divergent species, such as 
wheat (Robinson et al. 2016) and bamboo (Singh et al. 2021), which indicates a possible general pattern among endophytes.  

Table 3. Distribution of bacterial strains isolated from pangolão grass (Digitaria eriantha cv. Survenola) in Pernambuco, Brazil.

Phylum Class Order Family Genus Strains

Proteobacteria

α - proteobacteria
Rhizobiaceae

Shinella 1

Agrobacterium 3

Rhizobium 26

Brucellaceae Ochrobactrum 3

β - proteobacteria Burkholderiales

Oxalobacteraceae Herbaspirillum 1

Comamonadaceae
Variovorax 4

Achromobacter 3

Burkholderiaceae Burkholderia 3

γ - proteobacteria

Enterobacterales
Enterobacteriaceae

Enterobacter 10

Kosakonia 1

Pantoea 19

Yersiniaceae Serratia 1

Pseudomonadales Pseudomonadaceae Pseudomonas 15

Xanthomonadales Xanthomonadaceae Stenotrophomonas 23

Firmicutes Bacilli Bacillales

Bacillaceae Bacillus 1

Bacillaceae Priestia 1

Paenibacillaceae Paenibacillus 2

Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Curtobacterium 1

Unclassified bacteria 17

The genera found included several species described as plant growth promoters, such as Stenotrophomonas (Ramos et al. 
2011), Pseudomonas (Josephine CM and Thomas 2021), Enterobacter, Pantoea (Lu et al. 2021), Burkholderia, Herbaspirillum 
(Van Deynze et al. 2018), Rhizobium (Hahn et al. 2016, Silva et al. 2020), Bacillus, and Paenibacillus (Govindasamy et al. 
2010, Kavamura et al. 2013). A commercial product based on Bacillus strains has previously been licensed for use in maize 
to reduce drought effects, which was originally isolated from the native Brazilian cactus, Cereus jamacaru (Kavamura  
et al. 2013).
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The most abundant genera were Enterobacter, Pantoea, Pseudomonas, Rhizobium, and Stenotrophomonas, although 
Achromobacter, Bacillus, Burkholderia, Curtobacterium, Herbaspirillum, Kosakonia, Ochrobactrum, Paenibacillus, Serratia, 
Shinella, and Variovorax were also present, and these genera have been observed in other grass endophytic communities 
such as Brachiaria and maize (Mutai et al. 2017, Mashiane et al. 2018).

Of the five most abundant genera, Rhizobium, Pantoea, Pseudomonas, and Stenotrophomonas were isolated from all 
locations (Fig. 3), whereas Enterobacter was not found in Nazaré da Mata, which might be a confirmation of the division 
of the endophytic community into systemic and transitory groups (Wani et al. 2015). These genera were isolated from all 
plant parts and the rhizospheric soil. 
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Figure 3. Number of bacterial genera from pangolão grass (Digitaria eriantha cv. Survenola) from Pernambuco, Brazil. Venn diagram represents 
the sharing of genera in (a) different locations and (B) plant parts. Proportion of isolates from each genus in (a) different locations and (b) 
plant parts. Proportion of isolates from each genus in (c) different locations and (d) plant parts.
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The phylogenetic tree grouped the genera into six large polyphyletic groups (Fig. 4), with most strains (69%) in GI, GIII, 
and GVI, with no overlap with the outgroup based on Escherichia coli. 

 

Figure 4. Neighbor-joining phylogenetic tree based on 16 S rRNA sequences from pangolão grass (Digitaria eriantha cv. Survenola) bacterial 
isolates from Pernambuco, Brazil.

The first group (GI) contained 32 strains in two subgroups. The first subgroup consisted of those similar to Rhizobium and 
Agrobacterium (25 strains, 98% similarity), Shinella (one strain, 100% similarity), Rhizobium (two strains, 58% similarity), Ochrobactrum 
(three strains, 99% similarity), while the second subgroup was not grouped with any genera. Five strains were included in GII, of 
which one was similar to Curtobacterium, two are similar to Paenibacillus, and the remaining two to Bacillus at 100% similarity.

GIII included 28 strains of Stenotrophomonas, and Pseudomonas split into two subgroups: one consisting of 22 strains 
with 70% similarity to these genera according to the bootstrap test to these genera, and the second one with the remaining 
six strains grouped with Stenotrophomonas at 57% similarity.

GIV contained the 11 Burkholderia, Variovorax, Herbaspirillum, and Achromobacter strains. Subgroup I matched three 
strains to Burkholderia at 100% similarity, while subgroup II matched four strains to Variovorax with 100% similarity, and 
the last four were grouped to Achromobacter and Herbaspirillum at 72% similarity.

GV related 11 strains to Pseudomonas (100% similarity). However, GVI connected 31 strains to Enterobacter, Kosakonia, 
Serratia, and Pantoea, with one strain in the subgroup showing 100% similarity to Kosakonia. In subgroup II, 10 strains 
were 54% similar to Enterobacter, one strain was 71% similar to Serratia, and 19 strains were similar to Pantoea.

This research is the first one to evaluate endophytic bacterial diversity on pangolão grass. These results indicate several 
factors, such as environmental conditions, plant parts, pasture age, season and liming, differently affect bacterial diversity. 
Since these bacteria were evaluated on a species well adapted to environmental stresses predicted to increase with global 
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climate change, several of the genera found are known to include species and strains known to promote plant growth and 
several other papers, indicating bacteria isolated from one plant species may promote plant growth on other species. We 
suggest further research evaluating these and similar strains as plant growth promoters for crops such as maize. 

CONCLUSION

Bacteria associated with Digitaria eriantha cv. Survenola are highly diverse, and this diversity varies according to 
environmental conditions, including plant compartment, pasture establishment time, season, and liming history. Proteobacteria 
were the most frequent bacteria associated with pangolão grass under all environmental conditions.

Although diversity was slightly higher in the culm, there were no major differences between plant parts and the 
rhizospheric soil, and diversity was higher in older pastures.

The diversity of endophytic and rhizospheric bacteria in pangolão grass may have promoted resilience, since many of the 
identified strains belong to genera known to promote plant growth. These strains should be further evaluated for growth 
promotion in this and other plant species.

Less studied drought tolerant grass genera, such as Digitaria, might be an interesting source of plant growth promoting 
bacteria for further studies, due to their endophytic bacteria diversity.
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