Acessibilidade / Reportar erro

Rhizobial diversity in shrub-tree legume-based silvopastoral systems

ABSTRACT

Silvopastoral systems based on tree legumes intercropped with forage grasses can harbor a high diversity of rhizobia, and these bacteria are good indicators of soil quality in several management systems. The objective of this work was to evaluate the morphophysiological, genetic and symbiotic diversity of cowpea [Vigna unguiculata (L.) Walp] rhizobia from soils under silvopastoral systems based on shrub-tree legumes. The experiment was performed in a randomized block design with three treatments and three replications, consisting of signalgrass (Urochloa decumbens Stapf.) intercropped with sabia (Mimosa caesalpiniaefolia); signalgrass intercropped with gliricidia (Gliricidia sepium) and single signalgrass. The samples were collected in the legume row (0 meter) and 4 and 8 meters away. Later, cowpea was used as a trap plant to capture the rhizobia. All strains were phenotypically characterized, authenticated, and genetically identified. Phenotypical characterization of the 431 isolates showed high diversity forming 69 groups at 100% similarity, of which 60 were able to nodulate cowpea during the authentication, and 36 presented relative efficiency superior or equal to the recommended bacteria for the crop. Most of the sequenced strains belonged to Bradyrhizobium (67%) and Methylobacterium (9%). Leifsonia (9%), Cohnella (6%), Rhizobium (3%), Burkholderia (3%), and Paenibacillus (3%) were also represented. Soils under silvopastoral systems harbor efficient rhizobia populations in cowpea with a high genetic diversity, which can be recommended for agronomic efficiency assays.

Key words
Methylobacterium ; Gliricidia sepium ; pasture; Mimosa caesalpiniaefolia ; Vigna unguiculata

Introduction

Silvopastoral systems integrate livestock, forage and shrub or tree species, with several economic benefits (Apolinário et al. 20151 Apolinário, V. X., Dubeux Jr., J. C., Lira, M. A., Ferreira, R. L., Mello, A. C., Santos, M. V., Sampaio, E. V. S. B. and Muir, J. P. (2015). Tree legumes provide marketable wood and add nitrogen in warm‐climate silvopasture systems. Agronomy Journal, 107, 1915-1921. https://doi.org/10.2134/agronj14.0624
https://doi.org/10.2134/agronj14.0624...
). If the arboreal component includes legumes, they also promote an increase on soil fertility including nutrient input, mainly from nitrogen, into deep soil layers (Apolinário et al. 20151 Apolinário, V. X., Dubeux Jr., J. C., Lira, M. A., Ferreira, R. L., Mello, A. C., Santos, M. V., Sampaio, E. V. S. B. and Muir, J. P. (2015). Tree legumes provide marketable wood and add nitrogen in warm‐climate silvopasture systems. Agronomy Journal, 107, 1915-1921. https://doi.org/10.2134/agronj14.0624
https://doi.org/10.2134/agronj14.0624...
) with significant effects up to 1 m depth (Lira Junior et al. 2020b24 Lira Junior, M. A., Fracetto, F. J. C., Silva Ferreira, J., Silva, M. B. and Fracetto, G. G. M. (2020b). Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena, 189, 104508. https://doi.org/10.1016/j.catena.2020.104508
https://doi.org/10.1016/j.catena.2020.10...
). This is particularly important since a large part of tropical subhumid pastures, typically based on pure grasses and not fertilized with N, are submitted to various stages of degradation with major environmental impacts (Lima et al. 201822 Lima, H. N. B., Dubeux Jr., J. C. B., Santos, M. V. F., Mello, A. C. L., Lira, M. A. and Cunha, M. V. (2018). Soil attributes of a silvopastoral system in Pernambuco Forest Zone. Tropical Grasslands-Forrajes Tropicales, 6, 15-25. https://doi.org/10.17138/tgft(6)15-25
https://doi.org/10.17138/tgft(6)15-25...
).

Gliricidia (Gliricidia sepium (Jacq.) Steud.) and sabia (Mimosa caesalpiniifolia Benth.) are tropical shrub-tree legumes that benefit grass pastures (Apolinário et al. 20151 Apolinário, V. X., Dubeux Jr., J. C., Lira, M. A., Ferreira, R. L., Mello, A. C., Santos, M. V., Sampaio, E. V. S. B. and Muir, J. P. (2015). Tree legumes provide marketable wood and add nitrogen in warm‐climate silvopasture systems. Agronomy Journal, 107, 1915-1921. https://doi.org/10.2134/agronj14.0624
https://doi.org/10.2134/agronj14.0624...
) and provide nutritive support to ruminants. These legumes have fast growth, high regeneration capacity, drought resistance (Mendes et al. 201328 Mendes, M. M. C., Chaves, L. F. C., Pontes Neto, T. P., Silva, J. A. A. and Figueiredo, M. V. B. (2013). Crescimento e sobrevivência de mudas de sabiá (Mimosa caesalpiniaefolia Benth.) inoculadas com micro-organismos simbiontes em condições de campo. Ciência Florestal, 23, 309-320. https://doi.org/10.5902/198050989277
https://doi.org/10.5902/198050989277...
; Paula et al. 201532 Paula, P. D., Campello, E. F. C., Guerra, J. G. M., Santos, G. A. and Resende, A. S. D. (2015). Decomposição das podas das leguminosas arbóreas Gliricidia sepium e Acacia angustissima em um sistema agroflorestal. Ciência Florestal, 25, 791-800. https://doi.org/10.5902/1980509819696
https://doi.org/10.5902/1980509819696...
) and fix nitrogen when in symbiosis with diazotrophic microorganisms (Martins, J. C. R. et al. 201526 Martins, J. C. R., Freitas, A. D. S., Menezes, R. S. C. and Sampaio, E. V. S. B. (2015). Nitrogen symbiotically fixed by cowpea and gliricidia in traditional and agroforestry systems under semiarid conditions. Pesquisa Agropecuária Brasileira, 50, 178-184. https://doi.org/10.1590/S0100-204X2015000200010
https://doi.org/10.1590/S0100-204X201500...
; Martins, P. G. S. et al. 201527 Martins, P. G. S., Lira Junior, M. A., Fracetto, G. G. M., Silva, M. L. R. B., Vincentin, R. P. and Lyra, M. C. C. P. (2015). Mimosa caesalpiniifolia rhizobial isolates from different origins of the Brazilian Northeast. Archives of Microbiology, 197, 459-469. https://doi.org/10.1007/s00203-014-1078-8
https://doi.org/10.1007/s00203-014-1078-...
) at around 200 kg N.ha-1 yr-1 (Apolinário et al. 20151 Apolinário, V. X., Dubeux Jr., J. C., Lira, M. A., Ferreira, R. L., Mello, A. C., Santos, M. V., Sampaio, E. V. S. B. and Muir, J. P. (2015). Tree legumes provide marketable wood and add nitrogen in warm‐climate silvopasture systems. Agronomy Journal, 107, 1915-1921. https://doi.org/10.2134/agronj14.0624
https://doi.org/10.2134/agronj14.0624...
).

Soil microbial diversity can be affected by soil management and plant cover (Barros et al. 20184 Barros, F. M. R., Fracetto, G. G. M., Fracetto, F. J. C., Mendes Júnior, J. P., Araújo, V. L. V. P. and Lira Junior, M. A. (2018). Silvopastoral systems drive the nitrogen-cycling bacterial community in soil. Ciência e Agrotecnologia, 42, 281-290. https://doi.org/10.1590/1413-70542018423031117
https://doi.org/10.1590/1413-70542018423...
), and the silvopastoral system based on shrub tree legumes determines the structure of the total bacterial and the nitrogen-cycle bacteria communities, as shown by Barros et al. (2021)3 Barros, F. M. R., Fracetto, F. J. C., Lira Junior, M. A., Bertini, S. C. B. and Fracetto, G. G. M. (2021). Spatial and seasonal responses of diazotrophs and ammonium-oxidizing bacteria to legume-based silvopastoral systems. Applied Soil Ecology, 158, 103797. https://doi.org/10.1016/j.apsoil.2020.103797
https://doi.org/10.1016/j.apsoil.2020.10...
. Soils under agriculture and agroforestry may harbor a high rhizobia genetic diversity due to increased nitrogen demand, stimulating the rhizobial population (Guimarães et al. 201212 Guimarães, A. A., Jaramillo, P. M. D., Nóbrega, R. S. A., Florentino, L. A., Silva, K. B. and Moreira, F. M. S. (2012). Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Applied and Environmental Microbiology, 78, 6726-6733. https://doi.org/10.1128/AEM.01303-12
https://doi.org/10.1128/AEM.01303-12...
), and this biodiversity may be both a means to evaluate management system impacts (Lima et al. 200921 Lima, A. S., Nóbrega, R. S. A., Barberi, A., Silva, K., Ferreira, D. F. and Moreira, F. M. S. (2009). Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant and Soil, 319, 127-145. https://doi.org/10.1007/s11104-008-9855-2
https://doi.org/10.1007/s11104-008-9855-...
) and a source of efficient rhizobial strains for use in inoculant production (Uzoh and Babalola 201838 Uzoh, I. M. and Babalola, O. O. (2018). Rhizosphere biodiversity as a premise for application in bio-economy. Agriculture, Ecosystems & Environment, 265, 524-534. https://doi.org/10.1016/j.agee.2018.07.003
https://doi.org/10.1016/j.agee.2018.07.0...
).

The effects of silvopastoral systems on rhizobial diversity have not been published up to now, to the best of our knowledge, although general effects of land use systems and changes on rhizobial diversity are widely known (Berza et al. 20215 Berza, B., Sekar, J., Ramalingam, P. V., Pagano, M. C. and Assefa, F. (2021). Genetically and functionally diverse symbiotic and non-symbiotic native bacteria colonized root nodules of Erythrina brucei growing in different land use types in Ethiopia. Rhizosphere, 17, 100301. https://doi.org/10.1016/j.rhisph.2020.100301
https://doi.org/10.1016/j.rhisph.2020.10...
; Gnangui et al. 202110 Gnangui, S. L. E., Fossou, R. K., Ebou, A., Amon, C. E. R., Koua, D. K., Kouadjo, C. G. Z., Cowan, D. A. and Zézé, A. (2021). The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d’Ivoire. Microorganisms, 9, 1842. https://doi.org/10.3390/microorganisms9091842
https://doi.org/10.3390/microorganisms90...
; Souza and Procópio 202136 Souza, L. C. and Procópio, L. (2021). The profile of the soil microbiota in the Cerrado is influenced by land use. Applied Microbiology and Biotechnology, 105, 4791-4803. https://doi.org/10.1007/s00253-021-11377-w
https://doi.org/10.1007/s00253-021-11377...
; Wang et al. 202142 Wang, C., Zheng, M. M., Chen, J. and Shen, R. F. (2021). Land-use change has a greater effect on soil diazotrophic community structure than the plant rhizosphere in acidic ferralsols in southern China. Plant and Soil, 462, 445-458. https://doi.org/10.1007/s11104-021-04883-3
https://doi.org/10.1007/s11104-021-04883...
). This rhizobial diversity can be studied by either culture independent methods or by culture dependent ones, in this case typically using trap species. The selection of the trap species is a central point, due to the well-known specificity between legume and rhizobia.

While tropical legumes are generally considered promiscuous (Lira Junior et al. 201525 Lira Junior, M. A., Nascimento, L. R. S. and Fracetto, G. G. M. (2015). Legume-rhizobia signal exchange: promiscuity and environmental effects. Frontiers in Microbiology, 6, 945. https://doi.org/10.3389/fmicb.2015.00945
https://doi.org/10.3389/fmicb.2015.00945...
), cowpea [Vigna unguiculata (L.) Walp] is particularly so, and nodulates with a large rhizobial range to varying degrees of efficiency (Ndungu et al. 201830 Ndungu, S. M., Messmer, M. M., Ziegler, D., Gamper, H. A., Mészáros, É., Thuita, M., Vanlauwe, B., Frossard, E. and Thonar, C. (2018). Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems & Environment, 261, 161-171. https://doi.org/10.1016/j.agee.2017.12.014
https://doi.org/10.1016/j.agee.2017.12.0...
), including both alpha and beta rhizobia (Castro et al. 20177 Castro, J. L., Souza, M. G., Rufini, M., Guimarães, A. A., Rodrigues, T. L. and Moreira, F. M. S. (2017). Diversity and efficiency of rhizobia communities from iron mining areas using cowpea as a trap plant. Revista Brasileira de Ciência do Solo, 41, e0160525. https://doi.org/10.1590/18069657rbcs20160525
https://doi.org/10.1590/18069657rbcs2016...
; Lardi et al. 201718 Lardi, M., Campos, S. B., Purtschert, G., Eberl, L. and Pessi, G. (2017). Competition experiments for legume infection identify Burkholderia phymatum as a highly competitive -rhizobium. Frontiers in Microbiology, 8, 1527. https://doi.org/10.3389/fmicb.2017.01527; Muindi et al. 202129 Muindi, M. M., Muthini, M., Njeru, E. M. and Maingi, J. (2021). Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon, 7, e06867. https://doi.org/10.1016/j.heliyon.2021.e06867
https://doi.org/10.1016/j.heliyon.2021.e...
), so it is frequently used as a trap plant species when one of the goals is to obtain the largest cross section possible of rhizobial biodiversity with a single legume species (Jaramillo et al. 201316 Jaramillo, P. M. D., Guimarães, A. A., Florentino, L. A., Silva, K. B., Nóbrega, R. S. A. and Moreira, F. M. S. (2013). Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon. Scientia Agricola, 70, 397-404. https://doi.org/10.1590/S0103-90162013000600004
https://doi.org/10.1590/S0103-9016201300...
).

The objective of this work was to determine phenotypical, genetic, and symbiotic diversity of cowpea [Vigna unguiculata (L.) Walp] rhizobia as an indicator of overall rhizobial diversity and silvopastoral systems effects upon it.

MATERIALS AND METHODS

Experimental area and design

Silvopastoral systems were established in 2011 at the experimental field of Instituto Agronômico de Pernambuco (IPA), Itambé, Pernambuco state, Brazil (7°25’S; 35°6’W, 190 m above average sea level), and the study station soil is classified as Ultisol Red-Yellow, according to Jacomine et al. (1973)15 Jacomine, P. K., Cavalcanti, A. C., Burgos, N., Pessoa, S. C. P. and Silveira, C. O. (1973). Levantamento exploratório-reconhecimento de solos do estado de Pernambuco. Embrapa Solos-Séries Anteriores. Available at: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/331168. Accessed on: Jul. 3, 2017.
http://www.infoteca.cnptia.embrapa.br/in...
. The climate is AS’ in the Köppen classification (i.e., hot and humid), with average rainfall and annual temperature of 1,300 mm.year-1 and 24 ºC, respectively. The area was continuously grazed by crossbred bovines (Holstein-Frísia-Zebu), with grazing density variable according to the objectives of animal experiments carried out in the area (Santos et al. 202035 Santos, A. M. G., Dubeux Junior, J. C. B., Santos, M. V. F., Lira, M. A., Apolinário, V. X. O., Costa, S. B. M., Coêlho, D. L., Peixôto, T. V. F. R. and Santos, E. R. S. (2020). Animal performance in grass monoculture or silvopastures using tree legumes. Agroforestry Systems, 94, 615-626. https://doi.org/10.1007/s10457-019-00431-2
https://doi.org/10.1007/s10457-019-00431...
).

This experiment was conducted in a randomized block design with three treatments and three replications, in nine plots of 1 ha each (43.5 × 230 m), consisting of signalgrass (Urochloa decumbens Stapf.) intercropped with sabia (Mimosa caesalpiniaefolia) (B + S); signalgrass intercropped with gliricidia (Gliricidia sepium) (B + G) and single signalgrass (B). Legumes were planted in 14 double rows, spaced 15 × 1 × 0.5 m, with signalgrass in the rows among each double row.

Soil samples were collected in June 2016 to a 20-cm depth. Each intercropped plot was divided into three transects along, which samples were collected at a 0, 4 and 8-meter distance from the legume double row, to prepare a composite sample for each distance and each plot. Three samples were randomly collected in B treatment to form a composite soil sample at the same depth, totaling 21 samples. Soil chemical characterization is presented in Table 1.

Table 1
Soil chemical characteristics of the silvopastoral system in Itambé, Pernambuco, Brazil, 2016.

Rhizobia capture using cowpea as the trap species and morphophysiological characterization

Cowpea seeds (cultivar IPA-206) were superficially disinfected using 70% alcohol for 30 s, then submerged in 2.5% sodium hypochlorite and cleaned with ultrapure water. All seeds were placed in trays to germinate and incubated for two days at room temperature. Seedlings were moved to sterile 350-mL bottles filled with Hoagland solution without N (Hoagland and Arnon, 195014 Hoagland, D. R. and Arnon, D. I. (1950). The water-culture method for growing plants without soil. 2. ed. Circular 347. California: California Agricultural Experiment Station.) at 1/4 strength with two 1.8-cm wide germitest paper tapes placed inside each bottle. Each seedling was inoculated with 1 mL of each decimal serial dilution from 10-1 to 10-9 from a soil sample in a sterile saline solution of 0.85% NaCl.

A completely randomized block design in triplicate was used, with two positive controls inoculated with strains BR 3267 (Bradyrhizobium yuanmingense) or BR 3262 (Bradyrhizobium pachyrhizi) (Leite et al. 201819 Leite, J., Passos, S. R., Simões-Araújo, J. L., Rumjanek, N. G., Xavier, G. R. and Zilli, J. E. (2018). Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian Journal of Microbiology, 49, 703-713. https://doi.org/10.1016/j.bjm.2017.01.007
https://doi.org/10.1016/j.bjm.2017.01.00...
) recommended for cowpea (Brasil 20116[Brasil]. 2011. Instrução Normativa SDA nº 13, de 24 de março de 2011. Aprova as normas sobre especificações, garantias, registro, embalagem e rotulagem dos inoculantes destinados à agricultura, bem como as relações dos micro-organismos autorizados e recomendados para produção de inoculantes no Brasil, na forma dos Anexos I, II e III, desta Instrução Normativa. Diário Oficial da União, Brasília, Seção 1, p. 3.), and two uninoculated controls, one without nitrogen and one with mineral N (52.5 mg.L-1), totaling 513 experimental units. Both positive control strains are currently recommended for commercial rhizobial inoculant production, and according to Brazilian regulations, the usage of two or more strains for a given legume is recommended to increase inoculant effectiveness. After 35 days of inoculation, the plants were collected, the presence or absence of nodules was observed, and the rhizobia community density was estimated by the most probable number (Woomer et al. 199443 Woomer, P. L. (1994). Most probable number counts. In P. W. Weaver, J. S. Angle and P. S. Bottomely (Ed). Methods of soil analysis (p. 59-79). Wisconsin: Soil Science Society of American Book.).

Later, nodules were detached, counted, and stored in silica gel tubes, with 20 nodules from each sample randomly selected for isolation. The nodules were superficially disinfected in 70% ethyl alcohol for 30 s, and subsequently in 2.5% sodium hypochlorite for 5 min, followed by 10 washes in sterile distilled water (Vincent 197040 Vincent, J. M. (1970). A manual for the practical study of root nodule bacteria. Oxford: Black well Scientific Publications. (IBP Handbook, 15.)). Nodules were macerated in Petri dishes with yeast-mannitol-agar (YMA) culture medium (Vincent 197040 Vincent, J. M. (1970). A manual for the practical study of root nodule bacteria. Oxford: Black well Scientific Publications. (IBP Handbook, 15.)), with Congo red (0.25% in 0.2 N KOH). The plates were incubated at room temperature, and, after bacterial growth, successive streaking was carried out until obtaining pure colonies.

Pure isolates were phenotypically characterized based on development of colonies (fast: up to three days; intermediate: four or five days; slow: six to 10 days; and very slow: more than 10 days); media pH change (acid, neutral, and alkaline); mucus amount (little, moderate or abundant); size (< 1, 1 to 2 and > 2 mm) and color of the colonies (yellow, white, pink, and cream). A binary matrix was created from the cultural characteristics, and the isolates were grouped by the unweighted pair group analysis (UPGMA) method using PAST 3.18 (Hammer et al. 200113 Hammer, Ø., Harper, D. A. and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed on: Jul. 3, 2017.
http://palaeo-electronica.org/2001_1/pas...
). For the diversity estimate, Shannon, Weaver diversity index (H), Simpson dominance index, and the Pielou equitability index (J) were also calculated using PAST 3.18 (Hammer et al. 200113 Hammer, Ø., Harper, D. A. and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm. Accessed on: Jul. 3, 2017.
http://palaeo-electronica.org/2001_1/pas...
).

Strain authentication and symbiotic efficiency

A randomly selected representative from each of the phenotypical groups at 100% similarity was used for authentication under greenhouse conditions, as well as the same controls of the first phase, although the non-inoculated control with mineral nitrogen received the equivalent to 50 kg.ha-1 N. The experiment consisted of 73 treatments in a completely randomized block design in triplicate, totaling 219 experimental units.

The planting was carried out in 200-mL disposable cups filled with a sand: vermiculite 2:1 (v:v) mix autoclaved. Three IPA-26 cultivar cowpea seeds were sown per cup, and later the plants were thinned to one plant per cup. The bacteria were grown under orbital shaking at 150 rpm for three days for fast growing and five days for slow growing strains. Inoculation was three days after planting using 2 mL of YMA medium per seed. Every three days, 30 mL of N-free Hoagland nutrient solution was applied. Irrigation was performed with sterile distilled water whenever necessary.

The plants were harvested 35 days after inoculation, and shoot dry mass (SDM), root dry mass (RDM), nodules number (NN) and nodule dry mass (NDM) were determined. Relative efficiency (RE) was calculated by shoot dry mass from inoculated treatments and shoot dry mass of the N-supplied control ratio. The mean values were organized by the Scott-Knott test at 5% probability, using the Sisvar 5.6 statistical program (Ferreira 20119 Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-1042. https://doi.org/10.1590/S1413-70542011000600001
https://doi.org/10.1590/S1413-7054201100...
).

Genetic diversity of the 16S rRNA gene

From the authentication experiment, the isolates with relative efficiency not different or higher than the recommended strains were selected for characterization of genetic diversity by total bacteria gene sequencing.

During the extraction of the genomic bacterial DNA (bead beating method), a little part of the bacterial colony was introduced in TE buffer solution, and cell lysis was carried out in 10% sodium dodecyl sulfate solution (SDS). The compound was stirred with phenol:chloroform and centrifuged at 12,000 rpm to obtain a supernatant, which was also centrifuged in the presence of isopropanol. The pellet formed was washed with ethanol, centrifuged, and then eluted in 50 µL of sterile water and stored at -20°C. The DNA obtained was visualized on a 1% electrophoresis agarose gel (Araújo et al. 20202 Araújo, V. L. V. P., Lira Junior, M. A., Souza Júnior, V. S., Araújo Filho, J. C., Fracetto, F. J. C., Andreote, F. D., Pereira, A. P. A., Mendes Júnior, J. P., Barros, F. M. R. and Fracetto, G. G. M. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564
https://doi.org/10.1016/j.micres.2020.12...
).

The primers used during the amplification of the 16S rRNA gene were 27F (5’-AGAGTTTGACCTGGCTCAG-3’) and 1492R (5’-GGTTACCTTGTTACGACTT-3’) (Lane 199117 Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow (Eds.). Nucleic acid techniques in bacterial systematics (p. 115-147). West Sussex: John Wiley and Sons.). Amplification was performed in a solution containing 2 µL of DNA, 2.5 µL buffer of polymerase chain reaction (PCR) 10x, 1.5 mM of MgCl2, 0.2 mM of dNTP, 0.4 mM of each primer, 1 U of Taq DNA polymerase and ultrapure water to a final volume of 50 µL. The entire amplification process was as follows: denaturation at 94°C for 5 min, 35 cycles of denaturation (94°C for 40 s), annealing (55°C for 40 s), extension (72°C for 1.5 min), and a final extension of 72°C, for 7 min. Then, the PCR products were sent to the Macrogen Laboratory in Korea. The 16S rRNA sequences identified were compared to those obtained within the EzBioCloud 16S-based ID (Yoon et al. 201744 Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613. https://doi.org/10.1099/ijsem.0.001755
https://doi.org/10.1099/ijsem.0.001755...
). A Neighbor-Joining phylogenetic tree was constructed using the Kimura 2-parameter method to compare the obtained 16S rRNA sequences with those from type strains strived from the EzBioCloud service (https://www.ezbiocloud.net/identify), by the MEGA 11 program (Tamura et al. 202137 Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022-3027. https://doi.org/10.1093/molbev/msab120
https://doi.org/10.1093/molbev/msab120...
), applying a bootstrap with a minimum of 1,000 replications.

RESULTS AND DISCUSSION

Rhizobial communities’ density ranged from 5.7 × 104 to 1.5 × 106 cell.g soil-1 without significant effect of intercropping or distance from the legume row.

We isolated 431 isolates, of which 35% showed rapid growth, 33% intermediate, 21% slow and 10% very slow; while 11% of the isolates alkalized the culture medium, 53% did not change the pH and 36% acidified the medium. Regarding colony color, cream (60%), yellow (24%), white (14%), pink (1%) and colorless (0.9%) bacteria were obtained. There was a predominance of bacteria capable of producing little to moderate mucus (44 and 32%) (Fig. 1). There was no significant effect of the silvopastoral system on the diversity (mean H = 2.3), dominance (mean D = 0.8) or equitability (mean J = 0.9) of the rhizobia.

Figure 1
Morphophysiological features of bacteria isolated in YMA culture medium under silvopastoral system soils in Itambé, Pernambuco, Brazil.

It was expected that the silvopastoral systems, based on shrub-tree legumes, would increase the density and diversity of rhizobia in relation to single signalgrass. In addition, it was expected that rhizobia diversity would be greater on the legume range soils (0 m) and it would decrease at an 8-m distance from the legume range. However, no significant differences were observed in the density and diversity of rhizobia, whose values were similar to those found in other studies (Lima et al. 200921 Lima, A. S., Nóbrega, R. S. A., Barberi, A., Silva, K., Ferreira, D. F. and Moreira, F. M. S. (2009). Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant and Soil, 319, 127-145. https://doi.org/10.1007/s11104-008-9855-2
https://doi.org/10.1007/s11104-008-9855-...
; Castro et al. 20177 Castro, J. L., Souza, M. G., Rufini, M., Guimarães, A. A., Rodrigues, T. L. and Moreira, F. M. S. (2017). Diversity and efficiency of rhizobia communities from iron mining areas using cowpea as a trap plant. Revista Brasileira de Ciência do Solo, 41, e0160525. https://doi.org/10.1590/18069657rbcs20160525
https://doi.org/10.1590/18069657rbcs2016...
).

It is known that rhizobia in the soil respond quickly to changes in land use (Ormeño-Orrillo et al. 201231 Ormeño-Orrillo, E., Rogel-Hernández, M. A., Lloret, L., López-López, A., Martínez, J., Barois, I. and Martínez-Romero, E. (2012). Change in land use alters the diversity and composition of Bradyrhizobium communities and led to the introduction of Rhizobium etli into the tropical rain forest of Los Tuxtlas (Mexico). Microbial Ecology, 63, 822-834. https://doi.org/10.1007/s00248-011-9974-9
https://doi.org/10.1007/s00248-011-9974-...
). Hence, we assumed that five years of system implementation were sufficient to influence the soil rhizobia community. In addition, other research in the same experimental field and sampling year had already demonstrated that there was a significant increase in the abundance, spatial and temporal heterogeneity of diazotrophic microorganisms and ammonium-oxidizing bacteria (Barros et al. 20184 Barros, F. M. R., Fracetto, G. G. M., Fracetto, F. J. C., Mendes Júnior, J. P., Araújo, V. L. V. P. and Lira Junior, M. A. (2018). Silvopastoral systems drive the nitrogen-cycling bacterial community in soil. Ciência e Agrotecnologia, 42, 281-290. https://doi.org/10.1590/1413-70542018423031117
https://doi.org/10.1590/1413-70542018423...
; 20213 Barros, F. M. R., Fracetto, F. J. C., Lira Junior, M. A., Bertini, S. C. B. and Fracetto, G. G. M. (2021). Spatial and seasonal responses of diazotrophs and ammonium-oxidizing bacteria to legume-based silvopastoral systems. Applied Soil Ecology, 158, 103797. https://doi.org/10.1016/j.apsoil.2020.103797
https://doi.org/10.1016/j.apsoil.2020.10...
), in the chemical attributes of the soil (Lima et al. 201822 Lima, H. N. B., Dubeux Jr., J. C. B., Santos, M. V. F., Mello, A. C. L., Lira, M. A. and Cunha, M. V. (2018). Soil attributes of a silvopastoral system in Pernambuco Forest Zone. Tropical Grasslands-Forrajes Tropicales, 6, 15-25. https://doi.org/10.17138/tgft(6)15-25
https://doi.org/10.17138/tgft(6)15-25...
), in soil C and N stocks (Lira Junior et al. 2020b24 Lira Junior, M. A., Fracetto, F. J. C., Silva Ferreira, J., Silva, M. B. and Fracetto, G. G. M. (2020b). Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena, 189, 104508. https://doi.org/10.1016/j.catena.2020.104508
https://doi.org/10.1016/j.catena.2020.10...
) and in soil organic matter quality (Lira Junior et al. 2020a23 Lira Junior, M. A., Fracetto, F. J. C., Ferreira, J. D. S., Silva, M. B. and Fracetto, G. G. M. (2020a). Legume silvopastoral systems enhance soil organic matter quality in a subhumid tropical environment. Soil Science Society of America Journal, 84, 1209-1218. https://doi.org/10.1002/saj2.20106
https://doi.org/10.1002/saj2.20106...
).

One possible reason for the lack of response observed for rhizobial diversity is the choice of cowpea as the trap plant, since it is able to nodulate with background rhizobial populations predating systems, and thus not differentiate the legume species. We must also consider that both studies of Barros et al. (2018)4 Barros, F. M. R., Fracetto, G. G. M., Fracetto, F. J. C., Mendes Júnior, J. P., Araújo, V. L. V. P. and Lira Junior, M. A. (2018). Silvopastoral systems drive the nitrogen-cycling bacterial community in soil. Ciência e Agrotecnologia, 42, 281-290. https://doi.org/10.1590/1413-70542018423031117
https://doi.org/10.1590/1413-70542018423...
and Barros et al. (2021)3 Barros, F. M. R., Fracetto, F. J. C., Lira Junior, M. A., Bertini, S. C. B. and Fracetto, G. G. M. (2021). Spatial and seasonal responses of diazotrophs and ammonium-oxidizing bacteria to legume-based silvopastoral systems. Applied Soil Ecology, 158, 103797. https://doi.org/10.1016/j.apsoil.2020.103797
https://doi.org/10.1016/j.apsoil.2020.10...
were based on culture independent methods, which tend to be more sensitive to environmental effects, though not feasible when evaluation of the rhizobial strains as to their efficiency is desired.

Isolates were grouped into 69 phenotypical groups at 100% similarity. Among the 69 isolates evaluated in the authentication and in the symbiotic efficiency experiments, 60 produced nodules and fixed nitrogen in cowpea (Table 2), confirming cowpea’s promiscuity (Guimarães et al. 201212 Guimarães, A. A., Jaramillo, P. M. D., Nóbrega, R. S. A., Florentino, L. A., Silva, K. B. and Moreira, F. M. S. (2012). Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Applied and Environmental Microbiology, 78, 6726-6733. https://doi.org/10.1128/AEM.01303-12
https://doi.org/10.1128/AEM.01303-12...
; Lira Junior et al. 201525 Lira Junior, M. A., Nascimento, L. R. S. and Fracetto, G. G. M. (2015). Legume-rhizobia signal exchange: promiscuity and environmental effects. Frontiers in Microbiology, 6, 945. https://doi.org/10.3389/fmicb.2015.00945
https://doi.org/10.3389/fmicb.2015.00945...
) and its efficiency as a trap plant for rhizobia capture. Cowpea is a promiscuous grain legume that is normally nodulated by Bradyrhizobium, which exhibits slow growing (Zhang et al. 201145 Zhang, S., Xie, F., Yang, J. and Li, Y. (2011). Phylogeny of bradyrhizobia from Chinese cowpea miscellany inferred from 16S rRNA, atpD, glnII, and 16S–23S intergenic spacer sequences. Canadian Journal of Microbiology, 57, 316-327. https://doi.org/10.1139/w11-008
https://doi.org/10.1139/w11-008...
). It is known that sabia is preferentially associated with Burkholderia (Martins, P. G. S. et al. 201526 Martins, J. C. R., Freitas, A. D. S., Menezes, R. S. C. and Sampaio, E. V. S. B. (2015). Nitrogen symbiotically fixed by cowpea and gliricidia in traditional and agroforestry systems under semiarid conditions. Pesquisa Agropecuária Brasileira, 50, 178-184. https://doi.org/10.1590/S0100-204X2015000200010
https://doi.org/10.1590/S0100-204X201500...
), a betaproteobacteria, and it is possible that cowpea was not effective in differentiating the silvopastoral system from single signalgrass due to its preference for association with Bradyrhizobium, an alphaproteobacteria. A possible alternative would be the use of other legumes as trap plants, such as sabia or gliricidia.

Table 2
Nodule number (NN), nodule dry mass (NDM), root dry mass (RDM), shoot dry mass (SDM), and relative efficiency (RE) of cowpea inoculated with rhizobia isolated from soils under silvopastoral system in Itambé, Pernambuco, Brazil.
Table 3
Identity of cowpea rhizobial isolates from silvopastoral system soil in Itambé, Pernambuco, Brazil, based on the most similar sequences in EzBioCloud.
Figure 2
Neighbor-Joining phylogenetic tree of 16S rRNA sequences (950 nucleotides) of cowpea rhizobial isolates from silvopastoral system soil in Itambé, Pernambuco, Brazil. Bootstrap values (1,000 replicates) are shown next to the branches. The evolutionary distances were computed using the Kimura 2-parameter method.

Besides Bradyrhizobium sp., strains were also identified as Rhizobium and Burkholderia genera, which have already been reported to nodulate cowpea in different soil types and management systems, such as São Francisco Valley soils (Leite et al. 200920 Leite, J., Seido, S. L., Passos, S. R., Xavier, G. R., Rumjanek, N. G. and Martins, L. M. V. (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Revista Brasileira de Ciência do Solo, 33, 1215-1226. https://doi.org/10.1590/S0100-06832009000500015
https://doi.org/10.1590/S0100-0683200900...
), Amazonian soils under different land use systems (Guimarães et al. 201212 Guimarães, A. A., Jaramillo, P. M. D., Nóbrega, R. S. A., Florentino, L. A., Silva, K. B. and Moreira, F. M. S. (2012). Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Applied and Environmental Microbiology, 78, 6726-6733. https://doi.org/10.1128/AEM.01303-12
https://doi.org/10.1128/AEM.01303-12...
), and rehabilitated soils revegetated with grasses (Castro et al. 20177 Castro, J. L., Souza, M. G., Rufini, M., Guimarães, A. A., Rodrigues, T. L. and Moreira, F. M. S. (2017). Diversity and efficiency of rhizobia communities from iron mining areas using cowpea as a trap plant. Revista Brasileira de Ciência do Solo, 41, e0160525. https://doi.org/10.1590/18069657rbcs20160525
https://doi.org/10.1590/18069657rbcs2016...
), confirming the wide symbiotic compatibility spectrum of cowpea.

Three strains were identified as Methylobacterium, and this genus belongs to Methylobacteriaceae, a large Rhizobiales family. Methylobacterium nodulans, unlike other members of the genus, can induce nodule formation and fix atmospheric nitrogen in Crotalaria and Lotononis (Green and Ardley 201811 Green, P. N. and Ardley, J. K. (2018). Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. International Journal of Systematic and Evolutionary Microbiology, 68, 2727-2748. https://doi.org/10.1099/ijsem.0.002856
https://doi.org/10.1099/ijsem.0.002856...
). Previously, Leite et al. (2009)20 Leite, J., Seido, S. L., Passos, S. R., Xavier, G. R., Rumjanek, N. G. and Martins, L. M. V. (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Revista Brasileira de Ciência do Solo, 33, 1215-1226. https://doi.org/10.1590/S0100-06832009000500015
https://doi.org/10.1590/S0100-0683200900...
found only one isolate in cowpea in soils of the São Francisco River Valley that had low similarity (36%) with strain BR 2006 of Methylobacterium nodulans.

Other genera identified were Leifsonia, Cohnella and Paenibacillus (Table 3). These bacteria are components of the nodule microbiome and can penetrate nodules through the infection cord, and the function of these bacteria is not fully known yet. Some non-rhizobial endophytic bacteria include plant growth promoting rhizobacteria, which can produce indole acetic acid, solubilize phosphate, siderophores producing, and it may exhibit pathogen antagonist activity (Velázquez et al. 201739 Velázquez, E., Carro, L., Flores-Félix, J. D., Martínez-Hidalgo, P., Menéndez, E., Ramírez-Bahena, M. H., Mulas, R., González-Andrés, F., Martínez-Molina, E. and Peix, A. (2017). The legume nodule microbiome: a source of plant growth-promoting bacteria. In V. Kumar, M. Kumar, S. Sharma and R. Prasad (Eds). Probiotics and plant health (p. 41-70). Singapore: Springer. https://doi.org/10.1007/978-981-10-3473-2_3
https://doi.org/10.1007/978-981-10-3473-...
). The non-rhizobial endophytic bacteria identified in the present work should be characterized as to possible plant growth promotion mechanisms, because they can be used for new inoculants development.

CONCLUSION

Legume-based silvopastoral systems did not influence cowpea rhizobial population density and diversity, after five years of system implementation.

Silvopastoral system soils harbor populations of rhizobia efficient in biological nitrogen fixation in cowpea, which can be recommended for agronomic efficiency assays.

Cowpea nodulated with a high diversity of nitrogen-fixing bacterial genotypes obtained from silvopastoral systems soils. Most of the identified genotypes belong to different species of Bradyrhizobium.

This is the first report of Methylobacterium strains with high similarity to M. radiotolerans and M. longum nodulating cowpea in Brazil.

ACKNOWLEDGMENTS

The authors are indebted to Instituto Agronômico de Pernambuco for allowing us the use of the research area.

REFERENCES

  • 1
    Apolinário, V. X., Dubeux Jr., J. C., Lira, M. A., Ferreira, R. L., Mello, A. C., Santos, M. V., Sampaio, E. V. S. B. and Muir, J. P. (2015). Tree legumes provide marketable wood and add nitrogen in warm‐climate silvopasture systems. Agronomy Journal, 107, 1915-1921. https://doi.org/10.2134/agronj14.0624
    » https://doi.org/10.2134/agronj14.0624
  • 2
    Araújo, V. L. V. P., Lira Junior, M. A., Souza Júnior, V. S., Araújo Filho, J. C., Fracetto, F. J. C., Andreote, F. D., Pereira, A. P. A., Mendes Júnior, J. P., Barros, F. M. R. and Fracetto, G. G. M. (2020). Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress. Microbiological Research, 240, 126564. https://doi.org/10.1016/j.micres.2020.126564
    » https://doi.org/10.1016/j.micres.2020.126564
  • 3
    Barros, F. M. R., Fracetto, F. J. C., Lira Junior, M. A., Bertini, S. C. B. and Fracetto, G. G. M. (2021). Spatial and seasonal responses of diazotrophs and ammonium-oxidizing bacteria to legume-based silvopastoral systems. Applied Soil Ecology, 158, 103797. https://doi.org/10.1016/j.apsoil.2020.103797
    » https://doi.org/10.1016/j.apsoil.2020.103797
  • 4
    Barros, F. M. R., Fracetto, G. G. M., Fracetto, F. J. C., Mendes Júnior, J. P., Araújo, V. L. V. P. and Lira Junior, M. A. (2018). Silvopastoral systems drive the nitrogen-cycling bacterial community in soil. Ciência e Agrotecnologia, 42, 281-290. https://doi.org/10.1590/1413-70542018423031117
    » https://doi.org/10.1590/1413-70542018423031117
  • 5
    Berza, B., Sekar, J., Ramalingam, P. V., Pagano, M. C. and Assefa, F. (2021). Genetically and functionally diverse symbiotic and non-symbiotic native bacteria colonized root nodules of Erythrina brucei growing in different land use types in Ethiopia. Rhizosphere, 17, 100301. https://doi.org/10.1016/j.rhisph.2020.100301
    » https://doi.org/10.1016/j.rhisph.2020.100301
  • 6
    [Brasil]. 2011. Instrução Normativa SDA nº 13, de 24 de março de 2011. Aprova as normas sobre especificações, garantias, registro, embalagem e rotulagem dos inoculantes destinados à agricultura, bem como as relações dos micro-organismos autorizados e recomendados para produção de inoculantes no Brasil, na forma dos Anexos I, II e III, desta Instrução Normativa. Diário Oficial da União, Brasília, Seção 1, p. 3.
  • 7
    Castro, J. L., Souza, M. G., Rufini, M., Guimarães, A. A., Rodrigues, T. L. and Moreira, F. M. S. (2017). Diversity and efficiency of rhizobia communities from iron mining areas using cowpea as a trap plant. Revista Brasileira de Ciência do Solo, 41, e0160525. https://doi.org/10.1590/18069657rbcs20160525
    » https://doi.org/10.1590/18069657rbcs20160525
  • 8
    Costa, E. M., Carvalho, T. S., Guimarães, A. A., Leão, A. C. R., Cruz, L. M., Baura, V. A., Lebbe, L., Willems, A. and Moreira, F. M. S. (2019). Classification of the inoculant strain of cowpea UFLA03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici). Brazilian Journal of Microbiology, 50, 335-345. https://doi.org/10.1007/s42770-019-00045-x
    » https://doi.org/10.1007/s42770-019-00045-x
  • 9
    Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35, 1039-1042. https://doi.org/10.1590/S1413-70542011000600001
    » https://doi.org/10.1590/S1413-70542011000600001
  • 10
    Gnangui, S. L. E., Fossou, R. K., Ebou, A., Amon, C. E. R., Koua, D. K., Kouadjo, C. G. Z., Cowan, D. A. and Zézé, A. (2021). The Rhizobial Microbiome from the Tropical Savannah Zones in Northern Côte d’Ivoire. Microorganisms, 9, 1842. https://doi.org/10.3390/microorganisms9091842
    » https://doi.org/10.3390/microorganisms9091842
  • 11
    Green, P. N. and Ardley, J. K. (2018). Review of the genus Methylobacterium and closely related organisms: a proposal that some Methylobacterium species be reclassified into a new genus, Methylorubrum gen. nov. International Journal of Systematic and Evolutionary Microbiology, 68, 2727-2748. https://doi.org/10.1099/ijsem.0.002856
    » https://doi.org/10.1099/ijsem.0.002856
  • 12
    Guimarães, A. A., Jaramillo, P. M. D., Nóbrega, R. S. A., Florentino, L. A., Silva, K. B. and Moreira, F. M. S. (2012). Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. Applied and Environmental Microbiology, 78, 6726-6733. https://doi.org/10.1128/AEM.01303-12
    » https://doi.org/10.1128/AEM.01303-12
  • 13
    Hammer, Ø., Harper, D. A. and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm Accessed on: Jul. 3, 2017.
    » http://palaeo-electronica.org/2001_1/past/issue1_01.htm
  • 14
    Hoagland, D. R. and Arnon, D. I. (1950). The water-culture method for growing plants without soil. 2. ed. Circular 347. California: California Agricultural Experiment Station.
  • 15
    Jacomine, P. K., Cavalcanti, A. C., Burgos, N., Pessoa, S. C. P. and Silveira, C. O. (1973). Levantamento exploratório-reconhecimento de solos do estado de Pernambuco. Embrapa Solos-Séries Anteriores. Available at: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/331168 Accessed on: Jul. 3, 2017.
    » http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/331168
  • 16
    Jaramillo, P. M. D., Guimarães, A. A., Florentino, L. A., Silva, K. B., Nóbrega, R. S. A. and Moreira, F. M. S. (2013). Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon. Scientia Agricola, 70, 397-404. https://doi.org/10.1590/S0103-90162013000600004
    » https://doi.org/10.1590/S0103-90162013000600004
  • 17
    Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt and M. Goodfellow (Eds.). Nucleic acid techniques in bacterial systematics (p. 115-147). West Sussex: John Wiley and Sons.
  • 18
    Lardi, M., Campos, S. B., Purtschert, G., Eberl, L. and Pessi, G. (2017). Competition experiments for legume infection identify Burkholderia phymatum as a highly competitive -rhizobium. Frontiers in Microbiology, 8, 1527. https://doi.org/10.3389/fmicb.2017.01527
  • 19
    Leite, J., Passos, S. R., Simões-Araújo, J. L., Rumjanek, N. G., Xavier, G. R. and Zilli, J. E. (2018). Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian Journal of Microbiology, 49, 703-713. https://doi.org/10.1016/j.bjm.2017.01.007
    » https://doi.org/10.1016/j.bjm.2017.01.007
  • 20
    Leite, J., Seido, S. L., Passos, S. R., Xavier, G. R., Rumjanek, N. G. and Martins, L. M. V. (2009). Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Revista Brasileira de Ciência do Solo, 33, 1215-1226. https://doi.org/10.1590/S0100-06832009000500015
    » https://doi.org/10.1590/S0100-06832009000500015
  • 21
    Lima, A. S., Nóbrega, R. S. A., Barberi, A., Silva, K., Ferreira, D. F. and Moreira, F. M. S. (2009). Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant and Soil, 319, 127-145. https://doi.org/10.1007/s11104-008-9855-2
    » https://doi.org/10.1007/s11104-008-9855-2
  • 22
    Lima, H. N. B., Dubeux Jr., J. C. B., Santos, M. V. F., Mello, A. C. L., Lira, M. A. and Cunha, M. V. (2018). Soil attributes of a silvopastoral system in Pernambuco Forest Zone. Tropical Grasslands-Forrajes Tropicales, 6, 15-25. https://doi.org/10.17138/tgft(6)15-25
    » https://doi.org/10.17138/tgft(6)15-25
  • 23
    Lira Junior, M. A., Fracetto, F. J. C., Ferreira, J. D. S., Silva, M. B. and Fracetto, G. G. M. (2020a). Legume silvopastoral systems enhance soil organic matter quality in a subhumid tropical environment. Soil Science Society of America Journal, 84, 1209-1218. https://doi.org/10.1002/saj2.20106
    » https://doi.org/10.1002/saj2.20106
  • 24
    Lira Junior, M. A., Fracetto, F. J. C., Silva Ferreira, J., Silva, M. B. and Fracetto, G. G. M. (2020b). Legume-based silvopastoral systems drive C and N soil stocks in a subhumid tropical environment. Catena, 189, 104508. https://doi.org/10.1016/j.catena.2020.104508
    » https://doi.org/10.1016/j.catena.2020.104508
  • 25
    Lira Junior, M. A., Nascimento, L. R. S. and Fracetto, G. G. M. (2015). Legume-rhizobia signal exchange: promiscuity and environmental effects. Frontiers in Microbiology, 6, 945. https://doi.org/10.3389/fmicb.2015.00945
    » https://doi.org/10.3389/fmicb.2015.00945
  • 26
    Martins, J. C. R., Freitas, A. D. S., Menezes, R. S. C. and Sampaio, E. V. S. B. (2015). Nitrogen symbiotically fixed by cowpea and gliricidia in traditional and agroforestry systems under semiarid conditions. Pesquisa Agropecuária Brasileira, 50, 178-184. https://doi.org/10.1590/S0100-204X2015000200010
    » https://doi.org/10.1590/S0100-204X2015000200010
  • 27
    Martins, P. G. S., Lira Junior, M. A., Fracetto, G. G. M., Silva, M. L. R. B., Vincentin, R. P. and Lyra, M. C. C. P. (2015). Mimosa caesalpiniifolia rhizobial isolates from different origins of the Brazilian Northeast. Archives of Microbiology, 197, 459-469. https://doi.org/10.1007/s00203-014-1078-8
    » https://doi.org/10.1007/s00203-014-1078-8
  • 28
    Mendes, M. M. C., Chaves, L. F. C., Pontes Neto, T. P., Silva, J. A. A. and Figueiredo, M. V. B. (2013). Crescimento e sobrevivência de mudas de sabiá (Mimosa caesalpiniaefolia Benth.) inoculadas com micro-organismos simbiontes em condições de campo. Ciência Florestal, 23, 309-320. https://doi.org/10.5902/198050989277
    » https://doi.org/10.5902/198050989277
  • 29
    Muindi, M. M., Muthini, M., Njeru, E. M. and Maingi, J. (2021). Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon, 7, e06867. https://doi.org/10.1016/j.heliyon.2021.e06867
    » https://doi.org/10.1016/j.heliyon.2021.e06867
  • 30
    Ndungu, S. M., Messmer, M. M., Ziegler, D., Gamper, H. A., Mészáros, É., Thuita, M., Vanlauwe, B., Frossard, E. and Thonar, C. (2018). Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems & Environment, 261, 161-171. https://doi.org/10.1016/j.agee.2017.12.014
    » https://doi.org/10.1016/j.agee.2017.12.014
  • 31
    Ormeño-Orrillo, E., Rogel-Hernández, M. A., Lloret, L., López-López, A., Martínez, J., Barois, I. and Martínez-Romero, E. (2012). Change in land use alters the diversity and composition of Bradyrhizobium communities and led to the introduction of Rhizobium etli into the tropical rain forest of Los Tuxtlas (Mexico). Microbial Ecology, 63, 822-834. https://doi.org/10.1007/s00248-011-9974-9
    » https://doi.org/10.1007/s00248-011-9974-9
  • 32
    Paula, P. D., Campello, E. F. C., Guerra, J. G. M., Santos, G. A. and Resende, A. S. D. (2015). Decomposição das podas das leguminosas arbóreas Gliricidia sepium e Acacia angustissima em um sistema agroflorestal. Ciência Florestal, 25, 791-800. https://doi.org/10.5902/1980509819696
    » https://doi.org/10.5902/1980509819696
  • 33
    Pires, R. C., Reis Junior, F. B., Zilli, J. E., Fischer, D., Hofmann, A., James, E. K. and Simon, M. F. (2018). Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant and Soil, 423, 411-428. https://doi.org/10.1007/s11104-017-3521-5
    » https://doi.org/10.1007/s11104-017-3521-5
  • 34
    Rocha, B. C. F., Santos, E. O. S., Santos, J. G. D., Takako, A. K. and Castro, F. J. (2017). Land use and vegetation cover on native symbionts and interactions with cowpea. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, 116-121. https://doi.org/10.1590/1807-1929/agriambi.v21n2p116-121
    » https://doi.org/10.1590/1807-1929/agriambi.v21n2p116-121
  • 35
    Santos, A. M. G., Dubeux Junior, J. C. B., Santos, M. V. F., Lira, M. A., Apolinário, V. X. O., Costa, S. B. M., Coêlho, D. L., Peixôto, T. V. F. R. and Santos, E. R. S. (2020). Animal performance in grass monoculture or silvopastures using tree legumes. Agroforestry Systems, 94, 615-626. https://doi.org/10.1007/s10457-019-00431-2
    » https://doi.org/10.1007/s10457-019-00431-2
  • 36
    Souza, L. C. and Procópio, L. (2021). The profile of the soil microbiota in the Cerrado is influenced by land use. Applied Microbiology and Biotechnology, 105, 4791-4803. https://doi.org/10.1007/s00253-021-11377-w
    » https://doi.org/10.1007/s00253-021-11377-w
  • 37
    Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38, 3022-3027. https://doi.org/10.1093/molbev/msab120
    » https://doi.org/10.1093/molbev/msab120
  • 38
    Uzoh, I. M. and Babalola, O. O. (2018). Rhizosphere biodiversity as a premise for application in bio-economy. Agriculture, Ecosystems & Environment, 265, 524-534. https://doi.org/10.1016/j.agee.2018.07.003
    » https://doi.org/10.1016/j.agee.2018.07.003
  • 39
    Velázquez, E., Carro, L., Flores-Félix, J. D., Martínez-Hidalgo, P., Menéndez, E., Ramírez-Bahena, M. H., Mulas, R., González-Andrés, F., Martínez-Molina, E. and Peix, A. (2017). The legume nodule microbiome: a source of plant growth-promoting bacteria. In V. Kumar, M. Kumar, S. Sharma and R. Prasad (Eds). Probiotics and plant health (p. 41-70). Singapore: Springer. https://doi.org/10.1007/978-981-10-3473-2_3
    » https://doi.org/10.1007/978-981-10-3473-2_3
  • 40
    Vincent, J. M. (1970). A manual for the practical study of root nodule bacteria. Oxford: Black well Scientific Publications. (IBP Handbook, 15.)
  • 41
    Wakelin, S., Tillard, G., van Ham, R., Ballard, R., Farquharson, E., Gerard, E., Geurts, R., Brown, M., Ridgway, H. and O’Callaghan, M. (2018). High spatial variation in population size and symbiotic performance of Rhizobium leguminosarum bv. trifolii with white clover in New Zealand pasture soils. PLoS One, 13, e0192607. https://doi.org/10.1371/journal.pone.0192607
    » https://doi.org/10.1371/journal.pone.0192607
  • 42
    Wang, C., Zheng, M. M., Chen, J. and Shen, R. F. (2021). Land-use change has a greater effect on soil diazotrophic community structure than the plant rhizosphere in acidic ferralsols in southern China. Plant and Soil, 462, 445-458. https://doi.org/10.1007/s11104-021-04883-3
    » https://doi.org/10.1007/s11104-021-04883-3
  • 43
    Woomer, P. L. (1994). Most probable number counts. In P. W. Weaver, J. S. Angle and P. S. Bottomely (Ed). Methods of soil analysis (p. 59-79). Wisconsin: Soil Science Society of American Book.
  • 44
    Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613. https://doi.org/10.1099/ijsem.0.001755
    » https://doi.org/10.1099/ijsem.0.001755
  • 45
    Zhang, S., Xie, F., Yang, J. and Li, Y. (2011). Phylogeny of bradyrhizobia from Chinese cowpea miscellany inferred from 16S rRNA, atpD, glnII, and 16S–23S intergenic spacer sequences. Canadian Journal of Microbiology, 57, 316-327. https://doi.org/10.1139/w11-008
    » https://doi.org/10.1139/w11-008

Edited by

Section Editor: Hector Valenzuela

Publication Dates

  • Publication in this collection
    15 June 2022
  • Date of issue
    2022

History

  • Received
    03 Dec 2021
  • Accepted
    30 Mar 2022
Instituto Agronômico de Campinas Avenida Barão de Itapura, 1481, 13020-902, Tel.: +55 19 2137-0653, Fax: +55 19 2137-0666 - Campinas - SP - Brazil
E-mail: bragantia@iac.sp.gov.br