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ABSTRACT

This paper investigates the automatic induction of spatialat-
tention from the visual observation of objects manipulated
on a table top. In this work, space is represented in terms of
a novel observer-object relative reference system, named Lo-
cal Cardinal System, defined upon the local neighbourhood
of objects on the table. We present results of applying the
proposed methodology on five distinct scenarios involving
the construction of spatial patterns of coloured blocks.

KEYWORDS: Qualitative Spatial Reasoning, Cognitive Vi-
sion

RESUMO

A proposta deste artigo é investigar a indução automática do
foco de atenção a partir da manipulação de objetos sobre uma
mesa. Neste trabalho espaço é representado em termos de
uma nova proposta de um sistema de referências relativo ao
observador e aos objetos. Este sistema de referências chama-
se Sistema Cardinal Local e é definido sobre a vizinhança
local dos objetos na mesa. Resultados da aplicação da meto-
dologia proposta são apresentados a partir de cinco cenários
envolvendo a construção de pilhas de blocos.
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1 INTRODUCTION

The development of a computer vision system capable of
directing its focus of attention towards what has been per-
ceived as most relevant in a dynamic scene, given the recent
history of observations, is of essential importance in order
to reduce the computational cost involved in image process-
ing. However, as pointed out in (Tsotsos, 2001), the sub-
ject of task-directed attentive processing has been a theme
largely neglected in computer vision and image understand-
ing. Authors have been making strong assumptions about
attention in order to develop other issues in computer vision,
assumptions such as: a one-to-one correspondence between
figures in adjacent frames (Siskind, 1995); or thea priori
definition of regions of interest in the images that are man-
ually given as inputs to the vision systems (Bobick, 1997).
A few authors have proposed models for predicting where
to search for corresponding regions from image to im-
age (Shanahan, 2002)(Dickmanns, 1992)(Baluja and Pomer-
leau, 1997). However, the problem of how such expectancy
models could themselves be automatically learned from the
visual observation of tasks has only recently being addressed
(Tsotsos et al., 2005)(Khadhouri and Demiris, 2005).

The present paper investigates the development of a
knowledge-based system capable of automatically inducing
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the focus of attention from the visual observation of tasks
being performed on a domain. We tested the methodology
proposed on five distinct scenarios whereby the system was
capable to infer a different, and appropriate, attention mech-
anism for each of the given tasks. These results suggest that
the research reported here is eligible to be applied on learning
suitable attention mechanisms from the observation of vari-
ous distinct situations in a dynamic world. In contrast to the
work described in (Tsotsos et al., 2005) and (Khadhouri and
Demiris, 2005), which take a biologically inspired perspec-
tive, the present work experiments inducing attention froma
symbolic perspective, whereby it is possible to make explicit
issues about spatial knowledge representation.

Having its emphasis on inducing knowledge from visual ob-
servation, this work falls under the umbrella of cognitive vi-
sion whose main purpose is to develop computer vision sys-
tems capable of extracting knowledge about the environment
observed, and infer new information from this knowledge.
Within cognitive vision systems the research reported here
follows the framework presented in (Needham et al., 2005)
where a cognitive vision system capable of learning proto-
cols from the visual information of dynamic scenes is pro-
posed. In fact, the present paper is an extension of the work
reported in (Magee et al., 2005); however, in that work we
were interested in the autonomous learning of rules to control
a vision system simulating saccadic eye movements, whereas
here we concentrate on the process of learning spatial atten-
tion per se, providing a more complete set of experiments on
this subject.

The present work assumes the observation of patterns in
space formed by coloured blocks that are stacked by an agent
in such a way to create repetitive sequences of colours. These
patterns are input to an inductive logic programming (ILP)
system (Mitchell, 1997) that is used to generate amodel of
expectancyabout what should be the next object to be moved
and in which position it should be placed. This provides
the basis for a spatial attention mechanism with which an
autonomous agent can predict the location and the nature
of an event that is about to occur given the observed pat-
tern. Therefore, the resulting model of spatial expectancy
is learned from the observation of agents acting in the ex-
ternal world. Underlying the development of this project is
our long term goal to induce spatial relations from observing
the commonsense world, an issue that has so far only been
glimpsed at in the literature (Kaelbling et al., 2001)(Cha and
Gero, 1998).

In order to represent the domain objects, this paper defines an
observer-object relative reference system namedLocal Car-
dinal System(LCS), whereby each new block that is moved
in the observed situation is located according to a cardinal
reference frame defined by the nearest object to this block.

Local Cardinal System is introduced in Section 2. The do-
main objects are represented by a set of spatial relations in-
troduced in Section 3. The symbolic learning system used
for learning spatial attention in this domain is presented in
Section 4. Section 5 discusses some results and Section 6
concludes this paper. Throughout this paper we use the Pro-
log syntax whereby variables are upper-case letters and con-
stants, lower-case.

2 LOCAL CARDINAL SYSTEM

We assume a domain populated by 2D perspective projec-
tions from 3D convex objects, placed on a table top, observed
by a video camera. For the purposes of this paper the domain
objects are simply referred to asobjects. In this domain, ob-
jects are located according to observer-object relative frames
of reference, named Local Cardinal Systems (LCS). Figure
1 depicts three LCS defined with respect to the viewpoint of
the reader of this paper.

Local Cardinal Systems work in the following way. Each ob-
ject that is placed on the table defines its own cardinal refer-
ence frame which is used to locate other objects that lie in its
local neighbourhood; i.e., each object is located with respect
to the LCS of its nearest neighbour (or neighbours if it is
the case that more than one neighbour dist the same amount
to the object they are locating). The cardinal directions of
each LCS are bounded by the extreme points of the refer-
ent object’s boundaries and are dependent on the observer’s
viewpoint. For instance, the north and south regions of an ob-
ject are bounded by two parallel lines, each of them passing
through the left and right extreme points of this object and
directed vertically with respect to the observer’s viewpoint.
In other words, the boundaries of the north (south) direction
of a LCS will always be orthogonal to the gaze direction of
an observer looking at the object, with a negative (positive)
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Figure 1: Local Cardinal Systems.
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vector cross product with respect to this direction (cf. Fig-
ure 1). Analogously, the west and east regions of a LCS are
bounded by two parallel lines (each of them passing through
the top and bottom extreme points of the referent object) that
are perpendicular to the lines defining the north and south
regions. The northeast, southeast, northwest and southwest
directions are defined accordingly.

Local Cardinal Systems assume also the followingprece-
dence constraint: an object is only described within the ref-
erence frame of another if the former is placedafterthe latter.
For instance, objects already placed on the table are not de-
scribed in the reference frames of newly placed ones. Thus,
this constraint implies an implicit notion of temporal prece-
dence in the way the objects are represented within LCS.
This implicit temporal ordering could be used in future work
to facilitate temporal reasoning within Local Cardinal Sys-
tems.

The assumptions of local-neighbourhood descriptions and
precedence constraint facilitates an efficient qualitative de-
scription of the location of objects in space. In other words,
locating one object (o) in the local neighbourhood ofn oth-
ers, respecting a precedence constraint, implies a running-
time (and space) complexity ofO(n) in the worst case,
wherebyo is placed on the centre point of a circle of n ob-
jects. Another consequence of these assumptions is that lo-
cal cardinal systems define an intransitive, asymmetric and
irreflexive relation of location.

In order to exemplify how objects are located within Local
Cardinal Systems, consider that in the situation depicted in
Figure 1 Objecto3 was placed on the table after Objecto2,
and that the latter was placed after Objecto1. Thus, accord-
ing to our definition of LCS,o3 is located on the north east of
o2; however, the location of the latter cannot be related with
respect to the former due to the precedence constraint. More-
over,o2 is on the north east ofo1, buto3cannot be described
within the LCS ofo1sinceo1 is not the nearest object too3.

In order to avoid ambiguous descriptions when an object falls
on the threshold lines between cardinal regions, we assume
that an object is only described within a particular cardinal
region of a LCS ifmostof its occupancy region overlaps with
that cardinal region. If a threshold line divides the object
in halves, we assume that the northern-most or the western-
most cardinal region dominates the object’s location; we also
assume that northern dominates western regions.

It is worth noting the similarity between Local Cardinal
System and the double-cross calculus proposed in (Freksa,
1992)(Scivos and Nebel, 2001), whereby the qualitative in-
formation available for an observer in a 2D situation is
expressed in terms of a set of 15 location relations ob-
tained from the combination of front-back and left-right di-

chotomies. The double-cross calculus, however, is defined
on the location of points and does not assume a precedence
constraint as the LCS does. This constraint should imply that
reasoning with LCS is computationally simpler than reason-
ing with the double-cross calculus since not all of the com-
positions between the double-cross relations are permitted in
LCS. The investigation of the algorithmic properties of LCS,
and how it relates to the double-cross calculus, however, is
left for future work.

3 FROM CONTINUOUS DATA TO SYM-
BOLIC RELATIONS

For the experiments reported below we assume the vision
setup composed of a video camera observing a table top
where blocks are being stacked. Figure 2 shows a picture of
this setup, and also depicts a schema of the system modules.

This work assumes that the data obtained by a vision system
is turned into a symbolic description of states of the objects
observed on the table top. This is used in turn as input data
for the Inductive Logic Programming (ILP) module.

To turn video streams into symbolic information, the vision
system uses motion as the cue to select interesting portionsof
the image stream, this amounts to the early attention module
in Figure 2. Based on a generic blob tracker (Magee, 2004),
this mechanism works on the principle of multi-modal back-
ground modelling and foreground pixel grouping. Thus, the
bounding box, centroid location and pixel segmentation are
extracted from any moving object in the scene in each frame
of the video sequence. This mechanism then identifies key
scenes where there is qualitatively no motion for a number
of frames, which are preceded by a number of frames con-
taining significant motion. For each object in the selected
frames, its colour is represented as one of the 11 basic Berlin-

Figure 2: A scheme of the setup.
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Kay colours (Berlin and Kay, 1969), initiating thecolour de-
scription modulein Figure 2. In this procedure the modal
colour of foreground pixels associated with the object is ex-
tracted by building a histogram in Hue-Saturation space. The
bin with the highest frequency is considered to be the modal
bin. The modal colour is determined by selecting the exam-
ple from this bin with the closest intensity to the mean inten-
sity for this object. This is converted to a perceptual colour
using the Consensus-Colour Conversion of Munsell colour
space (CCCM) used in (Gilbert and Bowden, 2005). In the
sequence, the positions of new objects in each selected scene
are described in terms of Local Cardinal Systems introduced
in Section 2.

The perceptual colour detection and the description of ob-
jects in terms of LCS completes the computer vision pro-
cessing as schematised in Figure 2. This system facilitates
the following representation:

• For each salient object, its existence and properties are
represented by:

– object(o1).

– rel(property, o1, colour4), meaning that the object
o1 has the propertycolour4.

• The displacement of one object to a particular position
with respect to the local frame of reference of another
object is then represented as:

– rel(move, o2, ne, o1), meaning that the objecto2
was moved to a position northeast (ne) of o1

assuming the symbolswhiteandblackfor the colours of
objects in Figure 1, and the symbolne representing the
direction northeast. Thus, the vision system presented
above would describe the situation depicted in Figure 1
by the set of statements shown in Figure 3 below, for
instance.

obj(o1).
rel(property, o1, white).
obj(o2).
rel(property, o2, black).
rel(move, o2, ne, o1).
obj(o3).
rel(property, o3, white).
rel(move, o3, ne, o2).

Figure 3: Symbolic description of Figure 1.

Sets of statements such as these are input to an inductive
logic programming system that generates a model for spa-
tial attention to the particular situation observed. This issue
is discussed in the next section.

4 SYMBOLIC LEARNING USING ILP

In previous works (Santos and Shanahan, 2002; Santos and
Shanahan, 2003; Santos, 2007; dos Santos et al., 2008) we
have concentrated on developing systems capable of gener-
ating explanations for computer vision data using abductive
reasoning. Abduction was proposed by Charles Peirce asthe
inference that rules the first stage of scientific inquiries and
of any interpretive process(Peirce, 1958), i.e., the process
of suggesting hypotheses to explain a given phenomenon. In
Peirce’s terms, an explanation of a phenomenon supplies a
proposition which, if it had been known to be true before
the phenomenon presented itself, would have rendered that
phenomenon predictable. In this sense, abductive reason-
ing can be understood as the inverse of deductive reasoning,
since abductive inference goes from data (observations) to
explanatory hypotheses, while deduction provides the con-
sequences of assumed facts. A third inference method,in-
duction is proposed in (Peirce, 1958) to cope with the gen-
eralisation of facts. Therefore, the process of scientific in-
quiry, according to Peirce, is composed by three stages. First,
abduction proposes explanations of observations, the conse-
quences (or predictions) of these hypotheses are traced out
by deduction which are, then, compared to results of exper-
iments by induction. The hypothesis underlying the present
work is whether this procedure could be applied to visual per-
ception. In this context, the purpose of the present paper is
the investigation of how inductive inference could be used to
learn an agent’s focus of attention. The integration of these
various inference patterns into a single intelligent system is
left for future work.

The aim of inductive learning in this work is two fold. First,
it is to obtain a set of rules for deciding which block to move,
and where to move it, according to the pattern of objects ob-
served. A second motivation is to use these rules to guide a
visual agent’s focus of attention. Thus, we may wish to say:

• move blocko16to a spatial position;

• move a block with propertycolour4to a spatial position;

• move any block to a spatial position;

• create an expectancy about which position a particular
object is likely to be placed.

In the present paper, spatial attention is learned using
the inductive logic programming system named Progol
(Muggleton and Firth, 2001)(Muggleton, 1995)(Muggleton,
1996), which generates a logic program that generalises a
set of positive-only examples. Progol’s capability of induc-
ing rules from datasets containing solely positive examples is
the feature that makes it suitable for the task of learning rules
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from passive observations, where negative examples are not
available.

The expectancy model that guides the focus of attention is
obtained by Progol as follows. The task is to induce a
logic programH , which combined with a set of statements
obj(Obj) and rel(property, Obj, Colour) (such as those
included in Figure 3), composing a background theoryB,
entails the observations of motion of objects on the table
top, represented by a set of atomsrel(move, Obji, Posi-
tion, Objj) (the set of examplesE). Formally, givenE and
B the task of induction is to findH such that:

B, H |= E.

Taking for instance the situation described in Figure 3 as
input to Progol, and including mode declarations that limit
the search to rules withrel(move, A, N, B) as head and any
number ofrel(property, A, Colour) in their bodies, Progol
induced Rules (1) and (2) below. These rules represent that
any object A should be moved to a position northeast of any
object B if A is white and B is black(cf. Rule (1)); and,
conversely, thatany object A should be moved to a position
northeast of any object B if A is black and B is white(cf. Rule
(2)). This pair of rules compose an expectancy model for the
scene observed.

rel(move, A, ne, B) : − (1)

rel(property, A, white), rel(property, B, black).

rel(move, A, ne, B) : − (2)

rel(property, A, black), rel(property, B, white).

More precisely, Progol is given a knowledge base containing
a sequence of formulae such as that presented in Figure 3
(descriptions of the visual data) and the mode declarations
shown in Formulae (3) and (4) below.

: −modeh(rel(#reltype, +obj, #loc, +obj)) (3)

: −modeb(rel(#reltype,−obj, #property)) (4)

In Formulae (3) and (4)modeh andmodeb force Progol to
find Horn clauses havingrel(#reltype, +obj, #loc, +obj)
in the head andrel(#reltype,−obj, #prop) in the body (re-
spectively), whereasreltype is a variable forproperty or
move, loc is a direction of the LCS andobj is a variable for
an object. The symbols#, − and+ sets Progol to search,
respectively, for a constant, an output and an input variable
for the variable type to which it is attached.

From these mode declarations, Progol generates initially the
following most specific clause (for brevity we abbreviate the
termproperty by prop in the formulae below):

rel(move, A, ne, B) : −
rel(prop, A, white), rel(prop, B, black),

rel(prop, C, white), rel(prop, D, black),
rel(prop, E, black), rel(prop, F, white),
rel(prop, G, black), rel(prop, H, white),
rel(prop, I, black), rel(prop, J, black),
rel(prop, K, white), rel(prop, L, black),
rel(prop, M, white), rel(prop, N, black),
rel(prop, O, black), rel(prop, P, white),
rel(prop, Q, black), rel(prop, R, white),
rel(prop, S, black), rel(prop, T, black).

which is reduced to the rule:

rel(move, A, ne, B) : − (5)

rel(prop, A, white), rel(prop, B, black).

by just reducing redundancies. The system then generates all
possible generalisations of this rule as shown below.

rel(move, A, ne, B).

rel(move, A, ne, B) : −rel(prop, A, white).

rel(move, A, ne, B) : −rel(prop, C, white).

rel(move, A, ne, B) : −rel(prop, B, black).

rel(move, A, ne, B) : −rel(prop, C, black).

rel(move, A, ne, B) : −rel(prop, A, white),

rel(prop, B, black).

rel(move, A, ne, B) : −rel(prop, A, white),

rel(prop, C, black).

rel(move, A, ne, B) : −rel(prop, C, white),

rel(prop, B, black).

rel(move, A, ne, B) : −rel(prop, C, white),

rel(prop, D, black).

These generalisations are evaluated by their coverage on the
entire example set (cf. (Muggleton and Firth, 2001)) and the
best evaluated rules are output. In the present case these are
the Rules (1) and (2) above.

The model of expectancy represented by Rules (1) and (2)
tells us about which object is deemed to be placed on the ta-
ble (and where) with respect to another object already resting
on the table top. Expectancy in this context would be repre-
sented by a query such asrel(move, A, Position, b) read as
“which objectA should be moved to a positionPosition
with respect to a particular objectb ?”. If it is the case that
b is (for instance) a black object, the only possible instantia-
tion for the query variables that renders it true (given Rules
(1) and (2)) is the unification ofPosition with the constant
ne andA with a white object in the domain (from Rule (1)).
Consequently, if the body of the rules are interpreted as pre-
conditions to the application of the action represented in the
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Figure 4: The location of possible positions in which to place
an objectx given a spatial description, where ’d’ is a distance
value.

rule heads, the rules above could be used by an agent to actu-
ally move an object to a particular position, according to the
pattern observed.

In practice, in order to an agent use these learned guide-rules
for focus of attention, it needs to convert back from a sym-
bolic spatial description to a continuous pan-tilt angle de-
scription, this is done by choosing (for instance) the appro-
priate position that would place an objectx (see Figure 4)
at the cardinal position inferred by the learned rules and at
a distance that is equal to the distance between the nearest
objecto2 (that providedx a reference frame) and the object
that provided a frame of reference too2.

It is worth pointing out that Progol needed 20 (noise-free)
examples to learn the rules above. The quality of the learned
rules degraded gracefully with respect to a decrease in the
number of examples available.

The next section discusses some results obtained by running
Progol to induce spatial attention from five distinct spatial
arrangements of blocks.

5 EXPERIMENTS

In this section we discuss the results of applying the frame-
work proposed above to generate rules for spatial attention
from the observation of five distinct scenarios, shown in Fig-
ure 5.

In the first experiment (Figure 5(a)) the ILP system was in-
put with data representing a stack of simply alternating white
and black blocks: a white block is always stacked on top of a
black block andvice-versa. The second experiment extends
the previous test by assuming two stacks of simply alternat-

(a) Exp. 1 (b) Exp. 2

(c) Exp. 3 (d) Exp. 4

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����

����
����
����
����

(e) Exp. 5

Figure 5: Experiments.

ing coloured blocks, instead of just one stack (Figure 5(b)),
the idea here is to verify whether the system could abstract
away the tag naming the stacks finding a single set of rules
for both piles of blocks. In contrast, in the third experiment
(Figure 5(c)) the system has to handle longer sequences of
coloured blocks, whereby two white blocks are always fol-
lowed by one black block (and on this block two white blocks
are stacked). The case shown in Figure 5(c) represents a
greater level of complexity when compared with the previ-
ous ones, as more rules are necessary in order to account
for the observed pattern. The fourth experiment increases
the complexity of the previous case by assuming two stacks
with distinct patterns: one stack has two white blocks fol-
lowed by one black, and the other has two black blocks fol-
lowed by one white (cf. Figure 5(d)). Therefore, in contrast
to the second experiment, we expect that the induced rules
make a distinction about which stack they refer to. The fifth
and final experiment was designed to test whether the system
could generate a set of rules representing that the most dis-
tinctive feature in the scenario was thedirection induced by
the block colours (and not the sequence of colours). In this
scenario, a block is always placed on top of white or grey
blocks, whereas it always goes to the east of a black block.
Figure 5(e) depicts three distinct stacks constructed accord-
ing to these constraints.
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Exp.1 - Simply alternating stack

From a dataset obtained by the vision system (described in
Section 3) observing situations such as that depicted in Fig-
ure 5(a), the system induced the following two rules:

rel(move, A, n, B) : − (6)

rel(property, A, white), rel(property, B, black).

rel(move, A, n, B) : − (7)

rel(property, A, black), rel(property, B, white).

which are, essentially, the rules used as an example in Section
3 above. For clarity, Rule (6) represents that “every block A
should be moved to the north of a block B if A is white and
B is black” and that “every block A should be moved to the
north of a block B if A is black and B is white” (Rule (7)).

The data from which the rules above were generated was ob-
tained in seven sections, representing the observation of the
construction of seven simply alternating stacks composed of
four blocks each. We used blocks coloured in blue or green
in order to obtain great accuracy from the colour classifica-
tion module1. The seven data sets were merged into a single
one to provide enough data redundancies so that an appropri-
ate model could be generalised. Thus, the appropriate rules
for the focus of attention were induced from 28 data items
obtained from the vision system. Along with Rules (6) and
(7) above, Progol also singled out in its answer set two rules:
rel(move, p1, nw, p0) andrel(move, p2, w, p0), wherep0,
p1 andp2 are particular grounded instances of objects in the
training data (contrasting with the variablesA, B represent-
ing ungrounded variables for objects in Rules (6) and (7)).
These two atomic rules represent noise in the training data,
where the relative positions of the objectsp0, p1 andp2 in
a stack have been mis-described by the tracking module, not
agreeing therefore with the generalised Rules (6) and (7). It
is worth noting that, in this case, the noisy rules were specific
instances of the relationrel/4 for particular constants of the
domain, therefore, the large majority of the domain objects
will be handled by Rules (6) and (7) which are precise de-
scriptions of the domain observed. This exemplifies Progol’s
robustness to noise in the vision data from simple scenarios
(Needham et al., 2005)(Santos et al., 2004).

Exp.2 - Two stacks simply alternating

In this experiment the training set input to Progol describes
the observation of two stacks of simply alternating coloured
blocks, conform depicted in Figure 5(b). Each of these stacks

1In this text we used white instead of blue and black in the place of green
in order to make the figures clear in black&white printouts.

was represented by the symbolst1 andt2. Thus, the predi-
cates representing the motion events in the dataset for Exp.2
had their argument extended to include the symbol specify-
ing which stack a particular block is placed on. In practice,
in the data file for Exp.2 the motion event was represented by

rel(move, τ, < blocki >, < direction >, < blockj >),

whereτ is eithert1 or t2.

Analogously to Exp.1, the system obtained Rules (8) and (9)
which appropriately represent the pattern of the motion event
observed from the data set representing the two stacks in Fig-
ure 5(b). In these rules the system correctly abstracted as ir-
relevant the fact about the existence of two distinct stacks,
as the pattern of blocks in both stacks was exactly the same.
This fact is represented by the variableA in the rules below.

rel(move, A, B, n, C) : − (8)

rel(property, B, white), rel(property, C, black).

rel(move, A, B, n, C) : − (9)

rel(property, B, black), rel(property, C, white).

Exp.3 - Single stack, longer repetition se-
quence

In the third experiment (Figure 5(c)) we want to verify
whether an appropriate expectancy model can be induced
from the observation of a stack of two white blocks followed
by one black block. The results obtained are Formulae (10)–
(13) below.

rel(move, A, n, B) : − (10)

rel(move, B, n, C), rel(property, A, black),

rel(property, B, white), rel(property, C, white).

rel(move, A, n, B) : − (11)

rel(move, B, n, C), rel(property, A, white),

rel(property, B, black).

rel(move, A, n, B) : − (12)

rel(move, B, n, C), rel(property, A, white),

rel(property, C, black), rel(move, C, n, A).

rel(move, A, n, B) : − (13)

rel(move, B, n, A), rel(property, A, white).

The first rule found by Progol (Rule (10)) captures the main
structure of the stack, i.e., a black block is always placed
to the north of two white blocks. Rule (10) can be read as
“every blockA is moved to the north of any blockB if A is
black,B is white and there is a white blockC that is placed
on the north ofB”.

Rule (11) represents the fact that on the north of a black block
always comes a white block. Progol also induced within this
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rule that black objectsB lie on the north of some objectC,
but the property of the latter was not specified. The lack
of information about the property ofC is probably due to
the fact that the number of black objects on the dataset is
half the number of white objects. Therefore, any inductive
hypotheses including this property was probably deemed as
statistically irrelevant by the ILP system.

Progol also found two formulae representing some sort of
“Escherian” stack (Formulae (12) and (13)), which repre-
sents that an object is placed to the north of another if the
latter is also placed to the north of the former. This is prob-
ably due to the fact that Progol tries to generalise rules that
explain each of the examples in the dataset, and not finite
subsets of it. In contrast, in the present experiment, the im-
portant pattern occurs in sequences of three examples.

Formulae (10)–(13) were obtained from synthetic data repre-
senting a single stack of 56 blocks, fewer examples did not
include enough redundancies to allow the induction of the
above rules.

We also experimented on this scenario with a set of data ob-
tained from the vision system described in Section 3. In this
case, due to the limited camera view, the data provided to
Progol was a combined set containing ten datasets, each of
which composed by five-block stacks. Therefore, there were
no connection between the top block of one stack and the
bottom block of a following stack in the dataset, this implies
a 20% loss of information in contrast to the synthetic dataset.
Moreover, the vision system mis-described 10% of the colour
or position of blocks in the data. The rules obtained in this
case are Formulae (14)–(16) below. Even in this noisy situa-
tion, the system was capable of inferring Rule (14), which is
analogous to Rule (11) above. However, the other two rules
induced are not true with respect to the domain observed and
Rule (14) alone does not provide a correct notion of the fo-
cus of attention within this domain. The problem here is that,
due to limited information and noise in the data, the system
needs a much greater number of examples to induce appro-
priate rules. The task of obtaining such a large dataset is
not only tedious, but also jeopardises the use of the proposed
system in more realistic scenarios. Possible avenues to cope
with this issue are within our current research interests, and
are discussed in the sequence.

rel(move, A, n, B) : − (14)

rel(property, A, white), rel(property, B, black).

rel(move, A, n, B) : − (15)

rel(property, A, white), rel(move, A, n, C),

rel(move, C, n, A).

rel(move, A, n, B) : − (16)

rel(move, B, n, A), rel(property, A, black).

In the following scenarios we only discuss the results ob-
tained from synthetic data. The experiments with real data
suffer from the same problem as reported in this subsection.

Exp.4 - Two stacks, longer repetition se-
quence

In this experiment the task is to induce two different patterns
of colours from two distinct stacks (as shown in Figure 5(d)).
The first is constructed using one black block after every se-
quence of two white blocks; while the second stack is the
negative copy of the first, constructed with two black blocks
followed by one white block. Rule (17) implies that every
white block is placed on top of another white block in stack
t1. Rules (18) and (19) encode the structure of stackt1 that
was not captured by Rule (17); i.e., that black blocks are
stacked on top of white blocks (Rule (18)) and that, to the
north of black blocks, white blocks are stacked (Rule (19)).
Rules analogous to (17) – (19) were also induced for stack
t2, with their bodies representing the appropriate pattern of
colours in this stack, as shown in Rules (20)–(22).

rel(move, t1, A, n, B) : − (17)

rel(property, A, white), rel(property, B, white).

rel(move, t1, A, n, B) : − (18)

rel(property, A, black), rel(property, B, white).

rel(move, t1, A, n, B) : − (19)

rel(property, A, white), rel(property, B, black).

rel(move, t2, A, n, B) : − (20)

rel(property, A, black), rel(property, B, black).

rel(move, t2, A, n, B) : − (21)

rel(property, A, white), rel(property, B, black).

rel(move, t2, A, n, B) : − (22)

rel(property, A, black), rel(property, B, white).

Formulae (17) – (19) are important facts about the domain
observed. However, the rules obtained do not provide all
the constraints regarding the structure of the stacks observed.
More specifically, if Rules (17)–(19) were to be followed
by an agent whose task is to reproduce the construction of
the stacks observed, a stack composed of white blocks (with
or without the occurrence of occasional single black blocks)
would satisfy the agent’s knowledge about the domain ob-
served.

Even providing an underconstrained model of the observed
situations, the rules above provide an appropriate model of
spatial attention in this domain as, recalling that Progol out-
puts the rules in decreasing order of statistical significance,
it is apposite to make an initial hypothesis about the domain
that to the north of every white block in Stackt1 comes an-
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other white block, according to Rule (17) (the first rule output
by the system). The cases where this rule is not satisfied, i.e.
the cases when ablackblock is stacked ont1 for instance, are
represented by Rules (18) and (19) covering, thus, the pattern
of colours in this domain.

Exp.5 - Change of direction

Figure 5(e) depicts the fifth experiment whose goal is to
induce rules from spatial arrangements of three coloured
blocks (black, white and grey) where black blocks in a stack
force the next block in the sequence to be placed on its east
side. Also, whenever any other block occurs, the next block
is placed on the north of it.

In this experiment, the system induced Rules (23), (24) and
(25) that appropriately capture the structure of the observed
domain. Rule (23) represents the fact that any blockA goes
to the east of any black blockB. Rules (24) and (25) express
that any blockA is moved to the north of any block that is
either white or grey.

rel(move, A, e, B) : − rel(property, B, black). (23)

rel(move, A, n, B) : − rel(property, B, white). (24)

rel(move, A, n, B) : − rel(property, B, grey). (25)

Therefore, whenever a black boxB is observed, Rule (23)
can be used to predict that an objectA should be moved to
the east ofB. Similarly, Rules (24) and (25) allows an agent
to predict that any objectA should be moved to the north of
an objectB if the latter is either white or grey.

Discussion

The experiments discussed above indicate that the frame-
work presented in this paper, which incorporates a novel
qualitative reference system (Local Cardinal System) and in-
ductive logic programming for learning spatial attention,pro-
vides appropriate models to hypothesise about where a syn-
thetic agent should expect a particular object to be moved to,
according to patterns observed in space. We investigated this
framework conducting both, experiments on synthetic data
and experiments on real data provided by a computer vision
system.

From the experiments on synthetic data we verified that our
framework was capable of inducing appropriate rules for spa-
tial attention from a variety of (increasingly more complex)
scenarios. We then conducted some experiments using data
obtained directly from a video camera. In these cases the
colour and position classification module of the vision sys-
tem obtained an accuracy rate of 90%. The limited view
of the video camera implies that only stacks with a small

number of objects (generally with at most five blocks) can
be observed. From such data, Progol was capable of learn-
ing analogous rules to those generalised from synthetic data
with respect to the experiments involving colour patterns
that could be described by two rules. For more complex
patterns, the physical limitations of the vision system adds
an extra level of complexity to the induction of rules from
the domain. Consequently, a much greater number of ex-
amples (generally exponentially more) are needed in these
cases than in synthetic descriptions of these domains. Pos-
sible solutions to this gap between the application of our
proposed framework on synthetic and real domains are two
fold. First, we need to improve the vision system by the
use a pan-tilt camera widening the observer’s field of view.
This would allow the observation of arbitrary long patterns
of coloured blocks. The colour and position classification
modules should also be enhanced in order to provide cleaner
data. Second, we should invest in more powerful inductive
machinery that are not only capable of generalising from
datasets, but also to hypothesise on possible (not necessar-
ily generalising) hypotheses, either in an abductive fashion
(Tamaddoni-Nezhada et al., 2006) or by descriptive mecha-
nisms (Colton, 2002)(Santos et al., 2006). These should be
fruitful venues for future work.

The expectancy models obtained by the inductive logic pro-
cedure described in this paper basically represent the spatial
pattern of stack construction, giving no information about
the time rate of the construction or about the ordering in
which the stacks are built (in the case of scenarios with
several stacks, such as those shown in Figures 5(b), 5(d)
and 5(e)).We can say that the expectancy model learned,
in the case of multiple stacks, assumes that the all stacks
have the same probability of being the next to be modified.
Research on learning probabilistic formulae that could pro-
vide an answer to this issue is well under way (Bennett and
Magee, 2007).

We defined Local Cardinal Systems as convenient tools for
describing the scenarios used throughout this paper. How-
ever, we believe that the investigation of LCS justifies a work
by itself as they provide a rich (and efficient) formalism for
locating objects in space from a commonsense representation
perspective. Moreover, the implicit temporal dependency
represented by the precedence constraint imposed on LCS
(cf. Section 2) should be explored in further investigations
in order to allow time-dependent rules to be induced, a chal-
lenging task for ILP systems (Needham et al., 2005).

6 CONCLUSION

This paper investigates the inductive learning of spatial at-
tention from the visual observation of tasks being executed
in the world. In this work we use data from a vision sys-
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tem, with a colour classification module, that provides a de-
scription of the observed scenes in terms of a novel cardi-
nal reference system, named Local Cardinal System (LCS).
In LCS each object that is moved to a location in the world
defines its own cardinal reference frame which is used to lo-
cate other objects that are further moved to its local neigh-
bourhood. The cardinal directions of local cardinal systems
are defined according to the direction of the observer’s gaze.
Therefore, LCS is both observer and object relative. More-
over, LCS assumes a precedence constraint forcing objects
already resting at particular locations not to be describedin
the reference frame of newly placed ones. This provides a
simple and efficient way of representing the location of ob-
jects in space from a commonsense perspective. Data from
the vision system, represented in terms of LCS, are input to
the inductive logic programming system Progol whose task
is to induce (for each observed spatial situations) rules rep-
resenting expectancy models. These models include the lo-
cation and the property of the next object to be moved in the
observed domain. Therefore, an artificial agent could use the
induced rules to either guide its gaze to the point in space
where the next important event in the scene is expected to
happen, or to actually execute actions whose effects would
obey the protocols in the situation observed.

From the results discussed in this paper, and according to the
previous success on integrating computer vision with induc-
tive logic programming (Needham et al., 2005), we are very
confident that the framework proposed in this paper provides
a powerful tool for learning spatial attention from various
distinct domains. How to scale the methodology presented in
this work for learning visual attention from the observation
of arbitrary tasks in the world is a challenging open issue for
future research.
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