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ABSTRACT PALAVRAS-CHAVE : Raciocinio Espacial Qualitativo, Vis&o
Cognitiva

This paper investigates the automatic induction of spatial

tention from the visual observation of objects manipulateif

on a table top. In this work, space is represented in terms INTRODUCTION

anovel qbserver-object re_:latlve reference system, named L e development of a computer vision system capable of

cal Cardinal System, defined upon the local neighbourho

f obiect the table. W i its of - ecting its focus of attention towards what has been per-
ot objects on the table. We present results of applying NG a4 a5 most relevant in a dynamic scene, given the recent

proposed me_thodology_on five distinct scenarios inVOIVinﬂistory of observations, is of essential importance in prde
the construction of spatial patterns of coloured blocks. to reduce the computational cost involved in image process-
KEYWORDS: Qualitative Spatial Reasoning, Cognitive Vi-INg- However, as pointed out in (Tsotsos, 2001), the sub-
sion ject of task-directed attentive processing has been a theme
largely neglected in computer vision and image understand-
ing. Authors have been making strong assumptions about
attention in order to develop other issues in computer misio
ssumptions such as: a one-to-one correspondence between
ures in adjacent frames (Siskind, 1995); or theriori

RESUMO

A proposta deste artigo € investigar a indugao automatica
foco de atencéo a partir da manipulagéo de objetos sobre u inition of regions of interest in the images that are man-

mesa. Neste trabalho espago é representado em termo%gﬁy given as inputs to the vision systems (Bobick, 1997).

uma nova proposta de um sistema de referéncias relativo’g\\qew authors have proposed models for predicting where
observador e aos objetos. Este sistema de referénciascha{ga

: . . - o search for corresponding regions from image to im-
se Sistema Cardinal Local e € definido sobre a \~/|Z|nhan% e (Shanahan, 2002)(Dickmanns, 1992)(Baluja and Pomer-
local ‘?'OS objetos namesa. Resultados da.aphca_(;ao da m% wu, 1997). However, the problem of how such expectancy
dologia proposta sao aPresen_tados a partir de cinco cenaliPodels could themselves be automatically learned from the
envolvendo a construgao de pilhas de blocos. visual observation of tasks has only recently being addrkss

Artigo submetido em 10/12/2007 (Tsotsos et al., 2005)(Khadhouri and Demiris, 2005).
la. Revisdo em 28/02/2008
2a. Revisao em 09/05/2008 The present paper investigates the development of a

Aceito sob recomendacéo do Editor Associado

Prof. Anna Helena Reali Costa knowledge-based system capable of automatically inducing
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the focus of attention from the visual observation of taskkocal Cardinal System is introduced in Section 2. The do-

being performed on a domain. We tested the methodologyain objects are represented by a set of spatial relations in

proposed on five distinct scenarios whereby the system wasduced in Section 3. The symbolic learning system used

capable to infer a different, and appropriate, attentioshme for learning spatial attention in this domain is presented i

anism for each of the given tasks. These results suggest ti&s#ction 4. Section 5 discusses some results and Section 6

the research reported here is eligible to be applied onilegrn concludes this paper. Throughout this paper we use the Pro-

suitable attention mechanisms from the observation of vailiog syntax whereby variables are upper-case letters and con

ous distinct situations in a dynamic world. In contrast te thstants, lower-case.

work described in (Tsotsos et al., 2005) and (Khadhouri and

Demiris, 2005), which take a biologically inspired perspecs | OCAL CARDINAL SYSTEM

tive, the present work experiments inducing attention feom

symbolic perspective, whereby it is possible to make ekplicye assume a domain populated by 2D perspective projec-

issues about spatial knowledge representation. tions from 3D convex objects, placed on a table top, observed

Having its emphasis on inducing knowledge from visual obt-)y.a video camera. For the burposes of th'?’ papert_he domain
objects are simply referred to abjects In this domain, ob-

servation, this work falls under the umbrella of cognitive v . : : .
) : . s ects are located according to observer-object relatamés
sion whose main purpose is to develop computer vision S))s-

tems capable of extracting knowledge about the environm Of reference, named Local Cardinal Systems (LCS). Figure

ent, . . - . .
observed, and infer new information from this knowledgei1 depicts three .LCS defined with respect to the viewpoint of

o . . the reader of this paper.
Within cognitive vision systems the research reported here

follows the framework presented in (Needham et al., 2009)ocal Cardinal Systems work in the following way. Each ob-
where a cognitive vision system capable of learning protGect that is placed on the table defines its own cardinal refer
cols from the visual information of dynamic scenes is prognce frame which is used to locate other objects that lisin it
posed. In fact, the present paper is an extension of the Wog¢a| neighbourhoogi.e., each object is located with respect
reported in (Magee et al., 2005); however, in that work Wy the LCS of its nearest neighbour (or neighbours if it is
were interested in the autonomous learning of rules to 0bntrihe case that more than one neighbour dist the same amount
a vision system simulating saccadic eye movements, wherggsihe object they are locating). The cardinal directions of
here we concentrate on the process of learning spatial-att%rhch LCS are bounded by the extreme points of the refer-
tion per s providing a more complete set of experiments 0nt object's boundaries and are dependent on the observer's
this subject. viewpoint. For instance, the north and south regions of an ob

ject are bounded by two parallel lines, each of them passing

The present work assumes the observation of patterns |n . : . .
space formed by coloured blocks that are stacked by an agctelﬁrtOUQh the left and right extreme points of this object and

) o ir vertically with r h rver’s vi i
in such a way to create repetitive sequences of colours.eTheis ected vertically with respect to the observer's viewfto

. . . . . n other words, the boundaries of the north (south) directio
patterns are input to an inductive logic programming (ILP : T
system (Mitchell, 1997) that is used to generat@@del of faLCsS wil alwgys be orthogonal tp the gaze_dlrecno_n_ of
expectancybout what should be the next object to be moved" observer looking at the object, with a negative (positive
and in which position it should be placed. This provides
the basis for a spatial attention mechanism with which an C
autonomous agent can predict the location and the nature Lo
of an event that is about to occur given the observed pat- LN
tern. Therefore, the resulting model of spatial expectancy IR R EEEE s REEEE
is learned from the observation of agents acting in the ex- oo ‘O ! £
ternal world. Underlying the development of this project is C b
our long term goal to induce spatial relations from obsegvin A R w @E 77777
the commonsense world, an issue that has so far only been N e T T
glimpsed at in the literature (Kaelbling et al., 2001)(Chda ~ -----—---—--- —
Gero, 1998).

In order to represent the domain objects, this paper defimes a !
observer-object relative reference system natrmzhl Car- :
dinal SystenfLCS), whereby each new block that is moved

in the observed situation is located according to a cardinal

reference frame defined by the nearest object to this block. Figure 1: Local Cardinal Systems.
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vector cross product with respect to this direction (cf.-Figchotomies. The double-cross calculus, however, is defined
ure 1). Analogously, the west and east regions of a LCS aom the location of points and does not assume a precedence
bounded by two parallel lines (each of them passing througionstraint as the LCS does. This constraint should imply tha
the top and bottom extreme points of the referent object) theeasoning with LCS is computationally simpler than reason-
are perpendicular to the lines defining the north and southg with the double-cross calculus since not all of the com-
regions. The northeast, southeast, northwest and southwpssitions between the double-cross relations are pewhitte
directions are defined accordingly. LCS. The investigation of the algorithmic properties of LCS

) ) and how it relates to the double-cross calculus, however, is
Local Cardinal Systems assume also the followmigce- |eft for future work.

dence constraintan object is only described within the ref-
erence frame of another if the former is plaedtgrthe latter.

For instance, objects already placed on the table are not d%- FROM CONTINUOUS DATA TO SYM-
scribed in the reference frames of newly placed ones. Thus, BOLIC RELATIONS

this constraint implies an implicit notion of temporal peec ) .
dence in the way the objects are represented within LCEO the experiments reported below we assume the vision

This implicit temporal ordering could be used in future workS€tUP composed of a video camera observing a table top
to facilitate temporal reasoning within Local Cardinal Sys‘Where blocks are being stacked. Figure 2 shows a picture of
tems. this setup, and also depicts a schema of the system modules.

The assumptions of local-neighbourhood descriptions and

precedence constraint facilitates an efficient qualieatie- This work assumes that the data obtained by a vision system

lscrlpt.tlon of thebl_ocatpn tc;: olbjeclts n sr?sce.hln c()jtzfer ;’;’]Ordsfs turned into a symbolic description of states of the olgject
ocating one objectd) in the local neighbourhoo O~ shserved on the table top. This is used in turn as input data

ers, respecting a precedence constraint, implies a ruaning o Inductive Logic Programming (ILP) module.
time (and space) complexity aP(n) in the worst case,

wherebyo is placed on the centre point of a circle of n 0b-To turn video streams into symbolic information, the vision
jects. Another consequence of these assumptions is that &stem uses motion as the cue to select interesting podfons
cal cardinal systems define an intransitive, asymmetric affe image stream, this amounts to the early attention module
irreflexive relation of location. in Figure 2. Based on a generic blob tracker (Magee, 2004),
fhis mechanism works on the principle of multi-modal back-
round modelling and foreground pixel grouping. Thus, the
ounding box, centroid location and pixel segmentation are
extracted from any moving object in the scene in each frame
of the video sequence. This mechanism then identifies key
cenes where there is qualitatively no motion for a number
f frames, which are preceded by a number of frames con-
Sining significant motion. For each object in the selected
frames, its colour is represented as one of the 11 basiaBerli

In order to exemplify how objects are located within Local
Cardinal Systems, consider that in the situation depiated
Figure 1 Objecb3 was placed on the table after Obje&
and that the latter was placed after Objett Thus, accord-
ing to our definition of LCSp3is located on the north east of
02; however, the location of the latter cannot be related wit
respect to the former due to the precedence constraint.-MoE
over,02is on the north east afl, buto3 cannot be described
within the LCS ofolsinceolis not the nearest object t3.

In order to avoid ambiguous descriptions when an objed fall
on the threshold lines between cardinal regions, we assume
that an object is only described within a particular carbiina
region of a LCS ifmostof its occupancy region overlaps with

Vision System

Early attention

. . . i . mechani
that cardinal region. If a threshold line divides the object en i
in halves, we assume that the northern-most or the western- 4 ‘ )
. . . L . Colour description |
most cardinal region dominates the object’s location; se al ] .

assume that northern dominates western regions.
Perceptual colour

and spatial description
'
ILP for learning
spatial attention

It is worth noting the similarity between Local Cardinal
System and the double-cross calculus proposed in (Freksa,
1992)(Scivos and Nebel, 2001), whereby the qualitative in-
formation available for an observer in a 2D situation is
expressed in terms of a set of 15 location relations ob-
tained from the combination of front-back and left-right di Figure 2: A scheme of the setup.
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Kay colours (Berlin and Kay, 1969), initiating toelourde- 4 SYMBOLIC LEARNING USING ILP

scription modulen Figure 2. In this procedure the modal

colour of foreground pixels associated with the object is exn previous works (Santos and Shanahan, 2002; Santos and
tracted by building a histogram in Hue-Saturation space. THShanahan, 2003; Santos, 2007; dos Santos et al., 2008) we
bin with the highest frequency is considered to be the modApve concentrated on developing systems capable of gener-
bin. The modal colour is determined by selecting the exan®ting explanations for computer vision data using abdectiv
ple from this bin with the closest intensity to the mean inten@asoning. Abduction was proposed by Charles Peirtieeas
sity for this object. This is converted to a perceptual colounference that rules the first stage of scientific inquiriesia
using the Consensus-Colour Conversion of Munsell colo@f any interpretive proces@eirce, 1958), i.e., the process
space (CCCM) used in (Gilbert and Bowden, 2005). In thef suggesting hypotheses to explain a given phenomenon. In
sequence, the positions of new objects in each selected sc&girce’s terms, an explanation of a phenomenon supplies a

are described in terms of Local Cardinal Systems introducdoposition which, if it had been known to be true before
in Section 2. the phenomenon presented itself, would have rendered that

phenomenon predictable. In this sense, abductive reason-
The perceptual colour detection and the description of oliag can be understood as the inverse of deductive reasoning,
jects in terms of LCS completes the computer vision prasince abductive inference goes from data (observations) to
cessing as schematised in Figure 2. This system facilitategplanatory hypotheses, while deduction provides the con-
the following representation: sequences of assumed facts. A third inference metimed,

ductionis proposed in (Peirce, 1958) to cope with the gen-

e For each salient object, its existence and properties aggalisation of facts. Therefore, the process of scientific i

represented by: quiry, according to Peirce, is composed by three stagest, Fir
) abduction proposes explanations of observations, theseons
— object(0l). quences (or predictions) of these hypotheses are traced out
— rel(property, o1, colour4)meaning that the object by deduction which are, then, compared to results of exper-
ol has the propertgolour4 iments by induction. The hypothesis underlying the present

. . . ..._work is whether this procedure could be applied to visual per
* The displacement of one object to a particular posmorée tion. In this context, the purpose of the present paper is
with respect to the local frame of reference of anoth prion. ' burp b pap

L . She investigation of how inductive inference could be used t
object is then represented as: ) . ; .
learn an agent’s focus of attention. The integration oféhes
— rel(move, 02, ne, ol)neaning that the objec2  various inference patterns into a single intelligent sysie
was moved to a position northeasg) of 01 left for future work.

assuming the symboighiteandblackfor the colours of The aim of inductive learning in this work is two fold. First,
objects in Figure 1, and the symhwé representing the it is to obtain a set of rules for deciding which block to move,
direction northeast. Thus, the vision system presentethd where to move it, according to the pattern of objects ob-
above would describe the situation depicted in Figure derved. A second motivation is to use these rules to guide a
by the set of statements shown in Figure 3 below, fovisual agent’s focus of attention. Thus, we may wish to say:

instance.
obj(o1). e move blocko16to a spatial position;
rel(property, 01, white).
obj(02). e move a block with propertyolour4to a spatial position;
rel(property, 02, black). . -
rel(move, 02, ne, 01). e move any block to a spatial position;
obj(03).

e create an expectancy about which position a particular

rel(property, 03, white). object is likely to be placed.

rel(move, 03, ne, 02).

Figure 3: Symbolic description of Figure 1. In the present paper, spatial attention is learned using
the inductive logic programming system named Progol
(Muggleton and Firth, 2001)(Muggleton, 1995)(Muggleton,
Sets of statements such as these are input to an inducth@96), which generates a logic program that generalises a
logic programming system that generates a model for spsaet of positive-only examples. Progol’s capability of iceu
tial attention to the particular situation observed. TBuie ing rules from datasets containing solely positive examjsle
is discussed in the next section. the feature that makes it suitable for the task of learnihegru
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from passive observations, where negative examples are notel(prop, C, white), rel(prop, D, black),
available. rel(prop, E, black), rel(prop, F, white),
rel(prop, G, black), rel(prop, H, white),
The expectancy model that guides the focus of attention is,.c;(prop, I, black), rel(prop, J, black),
obtained by Progol as follows. The task is to induce a ,.cj(prop, K, white), rel(prop, L, black),
logic program/7, which combined with a set of statements .¢;(pyop, M, white), rel(prop, N, black),
0bj(0bj) and rel(property, Obj, Colour) (such as those rel(prop, O, black), rel(prop, P, white),
included in Figure 3), composing a background theBry  ,.ci(prop, Q, black), rel(prop, R, white),

entails the observations of motion of objects on the table
top, represented by a set of atomd (move, Obj;, Posi-
tion, Obj;) (the set of exampleE). Formally, givenE and  which is reduced to the rule:
B the task of induction is to find/ such that:

rel(prop, S, black), rel(prop, T, black).

rel(move, A,ne, B) : — (5)

B,HE=EFE.
H = rel(prop, A, white), rel(prop, B, black).
Taking for instance the situation described in Figure 3 asy just reducing redundancies. The system then generates al

input to Progol, and including mode declarations that limipossible generalisations of this rule as shown below.
the search to rules witkel(move, A, N, B) as head and any

number ofrel (property, A, Colour) in their bodies, Progol r¢i(move, A, ne, B).

mduceq Rules (1) and (2) below. Thes.e. rules represent thraérl(move,A,ne,B) . _rel(prop, A, white).
any object A should be moved to a position northeast of any
object B if A is white and B is blacfcf. Rule (1)); and, rel(move, A, ne, B)

conversely, thaany object A should be moved to a positiorrel (move, A, ne, B) : —rel(prop, B, black)
northeast of any object B if Ais black and B is wiiteé Rule ¢l (move, A, ne, B) : —rel(prop, C, black).
(2)). This pair of rules compose an expectancy model for thgel( )+ —rel(prop, A, white)
scene observed. R '

: —rel(prop, C,white)

move, A,ne, B

rel(prop, B, black).

rel(move, A, ne, B) : — @) rel(move, A,ne, B) : —rel(prop, A, white),
rel(property, A, white), rel(property, B, black). rel(prop, C, black).
rel(move, A, ne, B) : — 2 rel(move, A, ne, B) : —rel(prop, C, white),

rel(property, A, black), rel(property, B, white). rel(prop, B, black).

More precisely, Progol is given a knowledge base containingel(move, A, ne, B) : —rel(prop, C, white),

a sequence of formulae such as that presented in Figure 3 rel(prop, D, black).
(descriptions of the visual data) and the mode declarations

shown in Formulae (3) and (4) below.

. —modeh(rel(#£reltype, +obj, #loc, +obj)) ©) Thgse generalisations are evaluated by t_heir coverageson th
, entire example set (cf. (Muggleton and Firth, 2001)) and the
+ —modeb(rel(#reltype, —obj, #fproperty)) (4 pest evaluated rules are output. In the present case these ar
In Formulae (3) and (4nodeh andmodeb force Progol to  the Rules (1) and (2) above.
find Horn clauses havingel (#reltype, +obj, #loc, +0bj)
in the head andel (#reltype, —obj, #prop) in the body (re-
spectively), whereaseltype is a variable forproperty or

The model of expectancy represented by Rules (1) and (2)
tells us about which object is deemed to be placed on the ta-
move, loc is a direction of the LCS anabj is a variable for ble (and where) with respect t(.) an(_)ther object alreadyngsti
. on the table top. Expectancy in this context would be repre-
an object. The symbolg, — and+ sets Progol to search, h o
respectively, for a constant, an output and an input vaeiabfenFed by.a query such asi(move, 4, Posmo.n.’ b) read as
: f which object A should be moved to a positioRosition

for the variable type to which itis attached. with respect to a particular objebt?”. If it is the case that

From these mode declarations, Progol generates initiadly t? IS (for instance) a black object, the only possible insenti
following most specific clause (for brevity we abbreviate th tion for the query variables that renders it true (given Bule

termproperty by prop in the formulae below): (1) and (2)) is the unification aPosition with the constant
ne and A with a white object in the domain (from Rule (1)).
rel(move, A,ne, B) : — Consequently, if the body of the rules are interpreted as pre
rel(prop, A, white), rel(prop, B, black), conditions to the application of the action representedién t
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(b) Exp. 2

Figure 4: The location of possible positions in which to plac P ol
an objectr given a spatial description, where 'd’ is a distance () Exp. 3 (d) Exp. 4
value.

rule heads, the rules above could be used by an agent to actu-
ally move an object to a particular position, according ® th
pattern observed.

(e) Exp. 5

In practice, in order to an agent use these learned gui@s-rul
for focus of attention, it needs to convert back from a sym- Figure 5: Experiments.
bolic spatial description to a continuous pan-tilt angle de
scription, this is done by choosing (for instance) the appro
priate position that would place an object(see Figure 4)
at the cardinal posmon inferred l_:)y the learned rules and ?r%& coloured blocks, instead of just one stack (Figure 5(b))
a distance that is equal to the distance between the neargst . ) .

. . .~ the idea here is to verify whether the system could abstract
objecto, (that providedr a reference frame) and the object . _— .

. away the tag naming the stacks finding a single set of rules

that provided a frame of referenceds.

for both piles of blocks. In contrast, in the third experirhen

It is worth pointing out that Progol needed 20 (noise-freffigure 5(c)) the system has to handle longer sequences of
examples to learn the rules above. The quality of the learn&gloured blocks, whereby two white blocks are always fol-

rules degraded gracefully with respect to a decrease in tiWed by one black block (and on this block two white blocks
number of examples available. are stacked). The case shown in Figure 5(c) represents a

greater level of complexity when compared with the previ-
The next section discusses some results obtained by runnimgs ones, as more rules are necessary in order to account
Progol to induce spatial attention from five distinct spatiafor the observed pattern. The fourth experiment increases

arrangements of blocks. the complexity of the previous case by assuming two stacks
with distinct patterns: one stack has two white blocks fol-
5 EXPERIMENTS lowed by one black, and the other has two black blocks fol-

lowed by one white (cf. Figure 5(d)). Therefore, in contrast

In this section we discuss the results of applying the framé0 the second experiment, we expect that the induced rules
work proposed above to generate rules for spatial attentionake a distinction about which stack they refer to. The fifth

from the observation of five distinct scenarios, shown in Figand final experiment was designed to test whether the system
ure 5. could generate a set of rules representing that the most dis-

tinctive feature in the scenario was ttigectioninduced by
In the first experiment (Figure 5(a)) the ILP system was inthe block colours (and not the sequence of colours). In this
put with data representing a stack of simply alternatingevhi scenario, a block is always placed on top of white or grey
and black blocks: a white block is always stacked on top ofblocks, whereas it always goes to the east of a black block.
black block andvice-versa The second experiment extendsFigure 5(e) depicts three distinct stacks constructedrdeco
the previous test by assuming two stacks of simply alternatig to these constraints.
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Exp.1 - Simply alternating stack was represented by the symbejsandt,. Thus, the predi-
cates representing the motion events in the dataset forExp.
From a dataset obtained by the vision system (describedfad their argument extended to include the symbol specify-
Section 3) observing situations such as that depicted in Fighg which stack a particular block is placed on. In practice,
ure 5(a), the system induced the following two rules: in the data file for Exp.2 the motion event was represented by

rel(move, T, < block; >, < direction >, < block; >),

rel(move, A,n, B) : — (6) Wherer is eithert; ori,.
rel(property, A, white),rel(property, B, black). Analogously to Exp.1, the system obtained Rules (8) and (9)
rel(move, A,n, B) : — (7) which appropriately represent the pattern of the motiomeve

observed from the data set representing the two stacks+n Fig
ure 5(b). In these rules the system correctly abstracted as i
relevant the fact about the existence of two distinct stacks
which are, essentially, the rules used as an example indBectias the pattern of blocks in both stacks was exactly the same.
3 above. For clarity, Rule (6) represents that “every block Ahis fact is represented by the variablen the rules below.
should be moved to the north of a block B if A is white and

rel(property, A, black), rel(property, B, white).

B is black” and that “every block A should be moved to theel(move, A, B,n, C) : — (8)
north of a block B if A is black and B is white” (Rule (7)). rel(property, B, white), rel(property, C, black).
rel(move, A, B,n,C) : — (9)

The data from which the rules above were generated was ob-

tained in seven sections, representing the observatidmeof t "¢/ (property, B, black), rel(property, C, white).
construction of seven simply alternating stacks compo$ed o

four blocks each. We used blocks coloured in blue or greefxp.3 - Single stack, longer repetition se-

in order to obtain great accuracy from the colour classificaquence

tion modulé. The seven data sets were merged into a single

one to provide enough data redundancies so that an appropi-the third experiment (Figure 5(c)) we want to verify
ate model could be generalised. Thus, the appropriate rulghether an appropriate expectancy model can be induced
for the focus of attention were induced from 28 data itemgom the observation of a stack of two white blocks followed

obtained from the vision system. Along with Rules (6) anghy one black block. The results obtained are Formulae (10)—
(7) above, Progol also singled out in its answer set two ruleg]3) below.

rel(move, pl, nw, p0) andrel(move, p2, w, p0), wherep0,

pl andp2 are particular grounded instances of objects in therel(move, A;n, B) : — (10)
training data (contrasting with the variablds B represent- rel(move, B,n, C), rel(property, A, black),
ing ungrounded variables for objects in Rules (6) and (7)). rel(property, B, white), rel(property, C, white).

These two atomic ruIe;_represent noi_se in the training data%el(move, An, B):— (11)
where the relative positions of the objegts p1 andp2 in

a stack have been mis-described by the tracking module, not rel(move, B,n, C), rel(property, A, white),
agreeing therefore with the generalised Rules (6) and (7). | rel(property, B, black).

is worth noting that, in this case, the noisy rules were $geci ¢/ (;move, A, n, B) : — (12)
instances of the relatiorel /4 for particular constants of the
domain, therefore, the large majority of the domain objects
will be handled by Rules (6) and (7) which are precise de- rel(property, C,black), rel(move, C,n, A).
scriptions of the domain observed. This exemplifies Pregol’ rel(move, A,n, B) : — (13)
robustness to noise in the vision data from simple scenarios  ;.c(move, B, n, A), rel(property, A, white).
(Needham et al., 2005)(Santos et al., 2004).

rel(move, B,n,C), rel(property, A, white),

The first rule found by Progol (Rule (10)) captures the main
structure of the stack, i.e., a black block is always placed
to the north of two white blocks. Rule (10) can be read as

“every block A is moved to the north of any block if A is

In this experiment the training set input to Progol desaibeblack B is white and there is a white blogX that is placed
the observation of two stacks of simply alternating coldureon thé north of”

blocks, conform depicted in Figure 5(b). Each of these stack

Exp.2 - Two stacks simply alternating

Ln this text we used white instead of blue and black in theept#green  RUIE (11) represent_s the fact that on the nc_)rth ofa blf.:IC|.«b|0_C
in order to make the figures clear in bldewnhite printouts. always comes a white block. Progol also induced within this
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rule that black object® lie on the north of some obje¢t, In the following scenarios we only discuss the results ob-
but the property of the latter was not specified. The lactained from synthetic data. The experiments with real data
of information about the property af' is probably due to suffer from the same problem as reported in this subsection.
the fact that the number of black objects on the dataset is

half the number of Whitg objects. Therefore, any inductivEXpA - Two stacks, longer repetition se-
hypotheses including this property was probably deemed as

statistically irrelevant by the ILP system. guence

Progol also found two formulae representing some sort ¢ff this experiment the task is to induce two different paser

“Escherian” stack (Formulae (12) and (13)), which repre(—)f colours from two distinct stacks (as shown in Figure 5(d))

sents that an object is placed to the north of another if thE€ firstis constructed using one black block after every se-

latter is also placed to the north of the former. This is propduence of two white blocks; while the second stack is the
ably due to the fact that Progol tries to generalise rules the9ative copy of the first, constructed with two black blocks

explain each of the examples in the dataset, and not finitgllowed by one white block. Rule (17) implies that every

subsets of it. In contrast, in the present experiment, the inf/ité block is placed on top of another white block in stack
portant pattern occurs in sequences of three examples. 1+ Rules (18) and (19) encode the structure of stadkhat
was not captured by Rule (17); i.e., that black blocks are
Formulae (10)—(13) were obtained from synthetic data reprstacked on top of white blocks (Rule (18)) and that, to the
senting a single stack of 56 blocks, fewer examples did nawrth of black blocks, white blocks are stacked (Rule (19)).
include enough redundancies to allow the induction of thRules analogous to (17) — (19) were also induced for stack
above rules. t2, with their bodies representing the appropriate pattern of

colours in this stack, as shown in Rules (20)—(22).
We also experimented on this scenario with a set of data ob-

tained from the vision system described in Section 3. In thigel (move, t1, A,n, B) : — 17)
case, due to the limited camera view, the data provided to rel(property, A, white), rel(property, B, white).
Progol was a combined set containing ten datasets, eachrg[(move t1,A,n,B): — (18)

which composed by five-block stacks. Therefore, there were

no connection between the top block of one stack and the rel(property, A, black), rel(property, B, white).

bottom block of a following stack in the dataset, this imglie rel(move, t1, A,n, B) : — (19)
a 20% loss of information in contrast to the synthetic ddtase  rel(property, A, white), rel(property, B, black).
Moreover, the vision system mis-described 10% of the C0|°%l(move t2,A,n,B) : — (20)

or position of blocks in the data. The rules obtained in this

case are Formulae (14)—(16) below. Even in this noisy situa- rel(property, A, black), rel(property, B, black).

tion, the system was capable of inferring Rule (14), which igel(move, 12, A,n, B) : — (21)
analogous to Rule (11) above. However, the other two rules rel(property, A, white), rel(property, B, black).
induced are not true with respect to the domain observed apgl(move t2,A,n,B) : — (22)

Rule (14) alone does not provide a correct notion of the fo-
cus of attention within this domain. The problem here is,that
due to limited information and noise in the data, the system
needs a much greater number of examples to induce appF®rmulae (17) — (19) are important facts about the domain
priate rules. The task of obtaining such a large dataset idbserved. However, the rules obtained do not provide all
not only tedious, but also jeopardises the use of the prabostae constraints regarding the structure of the stacks weder
system in more realistic scenarios. Possible avenues ® cddore specifically, if Rules (17)—(19) were to be followed
with this issue are within our current research interestd, a by an agent whose task is to reproduce the construction of

rel(property, A, black), rel(property, B, white).

are discussed in the sequence. the stacks observed, a stack composed of white blocks (with
or without the occurrence of occasional single black blpcks
rel(move, A,n, B) : — (14) Wwould satisfy the agent’s knowledge about the domain ob-
rel(property, A, white), rel(property, B, black). served.
rel(move, A,n,B) : — (15) Even providing an underconstrained model of the observed
rel(property, A, white), rel(move, A, n, C), situations, the rules above provide an appropriate model of

spatial attention in this domain as, recalling that Progdt o

puts the rules in decreasing order of statistical signifiean

rel(move, A,n, B) : — (16) itis apposite to make an initial hypothesis about the domain
rel(move, B,n, A), rel(property, A, black). that to the north of every white block in Stack comes an-

rel(move, C,n, A).
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other white block, according to Rule (17) (the first rule aitp number of objects (generally with at most five blocks) can
by the system). The cases where this rule is not satisfied, itee observed. From such data, Progol was capable of learn-
the cases whenldackblock is stacked otil for instance, are ing analogous rules to those generalised from syntheta dat
represented by Rules (18) and (19) covering, thus, therpattevith respect to the experiments involving colour patterns
of colours in this domain. that could be described by two rules. For more complex
patterns, the physical limitations of the vision systemsadd
an extra level of complexity to the induction of rules from
the domain. Consequently, a much greater number of ex-

Figure 5(e) depicts the fifth experiment whose goal is t@mples (generally exponentially more) are needed in these
induce rules from spatial arrangements of three colour&@Ses than in synthetic descriptions of these domains. Pos-
blocks (black, white and grey) where black blocks in a stackiPle solutions to this gap between the application of our

force the next block in the sequence to be placed on its ed¥PPosed framework on synthetic and real domains are two

side. Also, whenever any other block occurs, the next blodR!d- First, we need to improve the vision system by the
is placed on the north of it. use a pan-tilt camera widening the observer’s field of view.

This would allow the observation of arbitrary long patterns
In this experiment, the system induced Rules (23), (24) araf coloured blocks. The colour and position classification
(25) that appropriately capture the structure of the olkeserv modules should also be enhanced in order to provide cleaner
domain. Rule (23) represents the fact that any bldajoes data. Second, we should invest in more powerful inductive
to the east of any black blodk. Rules (24) and (25) express machinery that are not only capable of generalising from
that any blockA is moved to the north of any block that is datasets, but also to hypothesise on possible (not neeessar
either white or grey. ily generalising) hypotheses, either in an abductive fashi

(Tamaddoni-Nezhada et al., 2006) or by descriptive mecha-

rel(move, A, e, B) : — rel(property, B,black). ~ (23) nisms (Colton, 2002)(Santos et al., 2006). These should be

rel(move, A, n, B) : — rel(property, B,white). ~ (24) fruitful venues for future work.

rel(move, A,n, B) : — rel(property, B, grey). (25)

Exp.5 - Change of direction

The expectancy models obtained by the inductive logic pro-
cedure described in this paper basically represent théabpat

Therefore, whenever a black bdx is observed, Rule (23) Pattern of stack construction, giving no information about
can be used to predict that an objecshould be moved to the time rate of the construction or about the ordering in
the east of3. Similarly, Rules (24) and (25) allows an agemwhlch the stacks are built (in the case of_ scenarios with
to predict that any object should be moved to the north of Several stacks, such as those shown in Figures 5(b), 5(d)

an objectB if the latter is either white or grey. and 5(e)).We can say that the expectancy model learned,
in the case of multiple stacks, assumes that the all stacks

have the same probability of being the next to be modified.
Research on learning probabilistic formulae that could pro

The experiments discussed above indicate that the fra vide an answer to this issue is well under way (Bennett and

work presented in this paper, which incorporates a novel 29¢€: 2007).

qualitative reference system (Local Cardinal System) and iyve defined Local Cardinal Systems as convenient tools for
ductive logic programming for learning spatial attentipra- - describing the scenarios used throughout this paper. How-
vides appropriate models to hypothesise about where a Syyer, we believe that the investigation of LCS justifies akwor
thetic agent should expect a particular object to be moved tgy jtself as they provide a rich (and efficient) formalism for
according to patterns observed in space. We investigai®d tihcating objects in space from a commonsense represantatio
framework conducting both, experiments on synthetic da}?erspective. Moreover, the implicit temporal dependency
and experiments on real data provided by a computer VisiQBpresented by the precedence constraint imposed on LCS
system. (cf. Section 2) should be explored in further investigasion

. . e in order to allow time-dependent rules to be induced, a chal-
From the experiments on synthetic data we verified that Ol 0 task for ILP svstems (Needham et al., 2005)
framework was capable of inducing appropriate rules for spa ging Y " '
tial attention from a variety of (increasingly more complex
scenarios. We then conducted some experiments using daéta CONCLUSION

obtained directly from a video camera. In these cases the

colour and position classification module of the vision sysI Nis paper investigates the inductive learning of spatial a
tem obtained an accuracy rate of 90%. The limited viekention from the visual observation of tasks being executed
of the video camera implies that only stacks with a smail the world. In this work we use data from a vision sys-

Discussion
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tem, with a colour classification module, that provides a decha, M. and Gero, J. (1998). Shape pattern recognition us-
scription of the observed scenes in terms of a novel cardi- ing a computable shape pattern representatfrogc.

nal reference system, named Local Cardinal System (LCS). of Artificial Intelligence in DesignKluwer, Dordrecht,

In LCS each object that is moved to a location in the world Netherlands, pp. 169 — 188.

defines its own cardinal reference frame which is used to lo- .

cate other objects that are further moved to its local neigtz°!ton: S- (2002). Automated Theory Formation in Pure

bourhood. The cardinal directions of local cardinal system MathematicsSpringer.

are defined according to the direction of the observer's gazgickmanns, E. D. (1992). Expectation-based dynamic scene
Therefore, LCS is both observer and object relative. More-  ypderstandingn Blake and Yuille (eds)Active vision
over, LCS assumes a precedence constraint forcing objects T press, pp. 303-334.

already resting at particular locations not to be descrihed

the reference frame of newly placed ones. This providesds Santos, M., de Brito, R. C., Park, H.-H. and Santos, P.
simple and efficient way of representing the location of ob- ~ (2008). Logic-based interpretation of geometrically ob-
jects in space from a commonsense perspective. Data from servable changes occurring in dynamic sceAgglied

the vision system, represented in terms of LCS, are inputto  Intelligencel.

Fhe inductive logic programming sys?em .Progol whose taStlfreksa, C. (1992). Using orientation information for qtaali
is to induce (for each observed spatial situations) rulps re tive spatial reasoningheories and Methods of Spatial-

resenting expectancy models. These models include the lo- o :
cation and the property of the next object to be moved in the I,e\lrggo;?:rﬁlzaesr?&;ﬂgén Geographic Spadal. 629 of

observed domain. Therefore, an artificial agent could use th
induced rules to either guide its gaze to the point in spadgilbert, A. and Bowden, R. (2005). Incremental modelling
where the next important event in the scene is expected to  of the posterior distribution of objects for inter and intra
happen, or to actually execute actions whose effects would camera trackingProc. of BMVCO05 Vol. 1, pp. 419—
obey the protocols in the situation observed. 428.

From the results discussed in this paper, and accordingto taelbling, L., Oates, T., Hernandez, N. and Finney, S.
previous success on integrating computer vision with induc ~ (2001). Learning in worlds with objecté/orking Notes
tive logic programming (Needham et al., 2005), we are very  of the AAAI Stanford Spring Symposium on Learning
confident that the framework proposed in this paper provides ~ Grounded Representatiorsp. 31 — 36.

a powerful tool for learning spatial attention from variou
distinct domains. How to scale the methodology presented
this work for learning visual attention from the observatio
of arbitrary tasks in the world is a challenging open issue fo
future research.
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