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ABSTRACT

Aplicação de Técnicas de Controle Preditivo em Robô
Paralelo
Este trabalho apresenta a aplicação de técnicas de cont-
role preditivo para rastreamento de trajetórias de um robô
paralelo. A estratégia de controle preditivo generalizado
(GPC), que considera o modelo dinâmico linearizado, é us-
ada para melhorar a precisão de rastreamento das trajetórias.
O controlador preditivo generalizado é robustificado devido
ao ruído de medição e dinâmicas não modeladas utilizando
parametrização Youla. É realizada Uma simulação do robô
Orthoglide considerando as incertezas dos parâmetros ge-
ométricos e dinâmicos, ruído nos sensores e atritos para duas
trajetórias diferentes. Finalmente, o controlador GPC robus-
tificado e a técnica de Controle de Torque Computado (CTC)
são comparadas. Os resultados das simulações mostram que
o controlador GPC robustificado apresenta um melhor de-
sempenho para altas acelerações e também reduz o efeito do
ruído no sinal de controle do robô paralelo.
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ABSTRACT

This paper addresses the position tracking control applica-
tion of a parallel robot using predictive control techniques. A
Generalized Predictive Control strategy (GPC), which con-
siders the linear dynamic model, is used to enhance the track-
ing position accuracy. The robustification of GPC against
measurement noise and neglected dynamics using Youla pa-
rameterization is performed. A simulation of the orthoglide
robot considering uncertainties related to geometrical and
dynamic parameters, sensors noise and frictions is performed
on two different trajectories. Finally, it is compared the ro-
bustified GPC controller with the classical Computed Torque
Control (CTC). The robustified GPC controller shows a bet-
ter performance for high accelerations and it also reduces the
effect of the noise in the control signal of the parallel robot.

KEYWORDS: Parallel robot, Robot control, Generalized pre-
dictive control

1 INTRODUCTION

Parallel robots are based on closed-loop chain mechanisms,
thus parallel robots have a movable platform (tool or work-
piece gripper) joined to a fixed basis by two or more kine-
matic chains. The kinematic chains are structures composed
of passive articulations and links which allow the relative
motion between the movable platform and the fixed basis.
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Generally, the actuators are nearby or mounted on the fixed
basis deliver the mechanical power to the mechanism.

Due to their mechanical structure, they have some conceptual
advantages over serial robots, such as, higher stiffness, accu-
racy, payload-weight ratio and better dynamic performance.
However, they have more kinematic and dynamic complexi-
ties than serial robots.

According to their characteristics, the parallel robots have
been used widely in industrial applications such as ”pick and
place“ robots (Briot and Bonev, 2010), machine tools (Weck
and Staimer, 2002) and precision surgery robots (Wapler
et al., 2003) among others.

Although theoretically parallel robots have some potential
advantages, it is still difficult to take advantage of them
(Abdellatif and Heimann, 2010). To reach a high perfor-
mance in industrial applications, their dynamical potential
advantages should be exploited completely. Consequently,
it is essential to reduce the execution time and to increase
the accuracy in order to improve the productivity and quality
of manipulation and production processes that use parallel
robots (Pietsch et al., 2005).

Two factors affect the accuracy of parallel robots. First,
passive joints produce kinematic model errors due to clear-
ances and assembly defects (Wang and Masory, 1993). Sec-
ond, singularities within workspace volume produce a de-
creasing of the stiffness resulting in a lack of accuracy for
a given task, this problem has been addressed through path
planning (Dasgupta and Mruthyunjaya, 1998). Therefore,
parallel robots still need improvements in design, model-
ing and control in order to reach their theoretical capabilities
(Merlet, 2002). As seen, many works address modeling and
design; nevertheless, there are few works related to parallel
robot control.

Mainly two control approaches have been considered for par-
allel robots in literature: dynamic control, which is basedon
dynamic model of these robots (Paccot et al., 2009), (Wanga
et al., 2009); and adaptive control which adjusts the parame-
ters of the system or controller online (Pietsch et al., 2005).
Additionally, dynamic control techniques as CTC does not
deal very well with modeling errors. They create a pertur-
bation on the error behaviors which may lead to a lack of
stability and accuracy (Dombre and Khalil, 2010).

In the other hand, model based predictive control techniques
have been applied to parallel robots; Belda et al. (Belda
et al., 2003) designed a generalized predictive control law
(GPC) for path control of redundant parallel robots; Poignet
et al. (Vivas and Poignet, 2005) applied functional predictive
control based on the simplified dynamic model of H4 paral-
lel robot; Duchaine et al. (Duchaine et al., 2007) presenteda

predictive control law for position tracking and velocity con-
trol considering the dynamic of the robot. Nevertheless, itis
necessary to have robust control laws towards model uncer-
tainties such as measurement noise and parameter uncertain-
ties; in this way, an acceptable behavior of control actionsis
ensured with an improvement of the dynamic performance of
parallel robots.

In this paper, we use GPC to enhance the dynamic perfor-
mance of a parallel robot in the position tracking control.
Then we compare the GPC performance with the classical
robot controller: Computed Torque Control (CTC). First, the
dynamic equation of the robot is linearized in order to apply
the linear control laws. After that, based on the linear model,
we apply GPC and CTC control in each actuator of the paral-
lel robot. We robustify the GPC controller toward model un-
certainties via Youla parameterization. Finally, we perform
the simulation considering uncertainties related to geometric
and dynamic parameters, sensors noise and frictions of the
complete model of the Orthoglide parallel robot; thus, the
performance of CTC and robustified GPC controllers is eval-
uated in terms of tracking accuracy and control actions char-
acteristics using two different workspace trajectories. We
evaluate the behavior of tracking accuracy and disturbance
rejection in order to compare the controllers performance.

This paper is organized in five sections. In section 2, CTC
controller is presented. Section 3 sumarizes GPC design pro-
cedure and the robustification of GPC. Section 4 presents
the kinematic and dynamic model of the Orthoglide paral-
lel robot. In section 5, simulations are performed and results
are presented. Finally, we present the conclusion and further
work.

2 CONTROL OF PARALLEL KINEMATICS
MACHINES IN RST FORM

In this section, we present the Computed Torque Control
(CTC) of the parallel robots in the joint space. Finally, we
introduce the representation of the CTC in the RST form.

CTC is composed of two independent loops: an inner-loop
to linearize the non-linear dynamic of the robot and an outer
loop to track a desired trajectory. Thus, the non-linear dy-
namic equation of the robot is considered as follows:

Γ = A(q)q̈ + h(q, q̇) (1)

whereq, q̇ andq̈ are the joint space position, velocities and
accelerations trajectories;Γ is the torque or force in the ac-
tuators;A(q) the inertia matrix; andh(q, q̇) are the cen-
tripetal, Coriolis and gravitational vector.
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The robot equations may be linearized and decoupled by
non-linear feedback.̂A(q) andĥ(q, q̇) are respectively the
estimates ofA(q) and h(q, q̇). Assuming thatÂ(q) =

A(q) and ĥ(q, q̇) = h(q, q̇), the problem is reduced to a
n linear and decoupled double-integrators system, wheren
is the number of degrees of freedom of the robot (Khalil and
Dombre, 1999).

q̈ = w (2)

With w being the new input control vector, the equation (2)
corresponds to the inverse dynamic control scheme, where
the dynamic of the robot is transformed into a double set of
integrators (see Fig. 1). Thus, linear control techniques can
then be used to design a tracking position controllers, such
as the model-based predictive control (CARIMA model of
section 3).

Let us assume that the desired trajectory for each actuator is
specified with the desired positionqd, velocity q̇d and accel-
erationq̈d. The outer-loop of the controller is:

w = q̈d+KP (qd−q)+KD

d

dt
(qd−q)+KI

∫ t

0

(qd−q)dτ

(3)
whereKP = diag(k, . . . , k), KD = diag(kTD, . . . , kTD),
KI = diag(k/TI , . . . , k/TI).
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Figure 1: CTC controller, block diagram.

The controller gains are found in order to have in continuous-
time domain the following closed-loop characteristic equa-
tion for each decoupled double-integrator (s is the Laplace
variable)

(s + ωr)(s
2 + 2ξωrs + ω2

r) = 0 (4)

Thus,k = (1 + 2ξ)ω2
r , kTD = (1 + 2ξ)ωr andk/TI = ω3

r .

The two degrees of freedom RST digital controller is a stan-
dard control form in industry (Landau, 1998). CTC con-
troller is expressed in RST form using the Euler transform
with sample periodTe and a low pass filter withNTD time
constant for the derivative action, being N a constant. Thus,







































S
′
(z

−1
) =1

R
′
(z

−1
) =k

1 + Te/TId + TDd/Te

. . .

+[−1 − ν − Te/TId(−1 + ν) − 2TDd/Te]z−1

1 − νz−1

+[ν − Te/TIdν + TDd/Te]z−2

. . .

T
′
(z

−1
) =R(z

−1
)

(5)

where, z−1 is the backward shift operator,TId = 2TI ,
TDd = NTe

1+NTe/2TD
andν = 1−NTe/2TD

1+NTe/2TD
. Fig. 2 shows the

CTC controller in RST form.
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Figure 2: CTC controller in RST form.

3 PREDICTIVE CONTROL TECHNIQUES

This section has two parts. In the first part, the GPC proce-
dure design is presented. In the second part is presented the
GPC controller robustification using Youla parameterization.

3.1 GPC Design

This section presents the principles and briefly describes the
formulation of GPC law to introduce the design procedure
and implementation on the parallel robot. This control tech-
nique was developed by Clarke et al. (Clarke et al., 1987).
Predictive control philosophy can be summarized as follows:
1) definition of a numerical model of the system to predict
the future behavior, 2) minimization of a quadratic cost func-
tion over a finite future horizon, using future predicted errors,
3) elaboration of a sequence of future control values, apply-
ing only the first value both on the system and the model, 4)
iteration of the whole procedure at the next sampling period
according to the receding horizon strategy.

In linear GPC theory, the plant is modeled by input/output
CARIMA (Controlled AutoRegressive Moving Average)
form, which considers increments of input/output signals.
As mentioned before, the robot equations have been lin-
earized and decoupled by non-linear feedback, leading to
equation (2). This linearized model was then discretized us-

532 Revista Controle & Automação/Vol.23 no.5/Setembro e Out ubro 2012



ing the Euler transform andTe sample period to findA(z−1)
andB(z−1) polynomials of the model.

A(z−1)y(t) = B(z−1)u(t − 1) +
ξ(t)

∆(z−1)
(6)

With u(t), y(t) the plant input and output andξ(t) a cen-
tered Gaussian white noise. The control signal is obtained
by minimization of the quadratic cost function:

J =

N2
∑

j=N1

[r(t+ j)− ŷ(t+ j)]2 +λ

Nu
∑

j=1

∆u(t+ j − 1)2 (7)

WhereN1 andN2 define the output prediction horizons, and
Nu defines the control horizon.λ is a control weighting fac-
tor, r the reference value,̂y the prediction output value, ob-
tained solving diophantine equation, andu the control sig-
nal. The receding horizon principle assumes that only the
first value of optimal control series resulting from the opti-
mization ofδJ/δu is applied, so that for the next step this
procedure is repeated. Thus, the design has been performed
adjustingN1, N2, Nu, λ to satisfy the required input/output
behavour: fastest response consistent with stability require-
ments; with this control strategy a 2-DOF RST controller
is obtained, the procedure is described in (Boucher and Du-
mur, 1995).

S′(z−1)∆(z−1)u(t) = −R′(z−1)y(t) + T ′(z)r(t) (8)

The resulting RST controller is showed in Fig. 3.
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Figure 3: RST form of GPC controller.

Where,b(t) andd(t) are the disturbances.

3.2 GPC Robustification

GPC may significantly improve performances in terms of
accuracy. Nevertheless, disturbances due to measurement
noise or neglected dynamics within the model might affect
the robot performance and hence control actions. In this way
the robustification of the controllers against these uncertain-
ties is important.

Initially, the procedure starts with GPC design, in our case
in RST form. Then, the robustness of the GPC controller is

enhanced via Youla parameterization with regards to model
uncertainties, while respecting time domain constraints,such
as disturbance rejection. This parameterization allows for-
mulating frequency and time-domain constraints as convex
optimization. This optimization problem is approximated by
a linear programing with inequality constraints, and the opti-
mal parameters belonging to the research space set.

The set of all stabilising controllers of the system, shown in
Fig. 4, which are given follows the Youla parametrization
(Kouvaritakis et al., 1992) as follows:











T (z−1) = T ′(z−1) − Ao(z
−1)Q2(z

−1)

R(z−1) = R′(z−1) + ∆(z−1)A(z−1)Q1(z
−1)

S(z−1) = S′(z−1) − z−1B(z−1)Q1(z
−1)

(9)

whereQ1(z
−1) andQ2(z

−1) are stable transfer functions,
andAoAc = ∆AS′ + z−1BR′ the characteristic polynomial
of the closed loop of Fig. 3, this characteristic polynomialis
split into a control polynomialAc and an observer polyno-
mial Ao.

Since Q2(z
−1) modifies the input/output, to remain this

transfer function unchanged,Q2(z
−1) = 0. On the other

hand, onlyQ1(z
−1) is considered, since this parameter does

not modify the input/output transfer function. This parame-
terization allows formulating frequency constraints (robust-
ness to model uncertainties) and time domain constraints
(disturbance rejection) as convex optimization.
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Figure 4: Robustified RST structure.

In this way, we consider the uncertainty block∆u(z−1) con-
nected to the system in Fig. 5(a).∆u(z−1) represents an
unstructured multiplicative direct uncertainty (M’Saad and
Chabassier, 1996). The uncertainty block is connected to the
P (z−1) = E(z−1)/V (z−1) system as shown in Fig. 5(b).

whereP (z−1) is the transfer function seen by the uncertainty
block∆u(z−1), thus:
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P (z−1) = −
z−1BR′

AoAc
−

z−1B∆A

AoAc
Q1 (10)

The parameterQ1(z
−1) results from optimization problem.

It takes into account frequencies for which the model has
more uncertainties and measurement noise influence than al-
lowed by theΦenv1(Q1) in equation (11). Also, time time-
domain specification, such as disturbance rejection dynam-
ics, in terms of the transfer disturbance/output is denotedby
Φenv2(Q1) in equation (11). The robustness is maximized
where anH∞ norm is minimized in the following way

min
Q1∈ℜH∞

Φenv1(Q1)<0
Φenv2(Q1)<0

∥

∥P (z−1)W (z−1)
∥

∥

∞ (11)

whereW (z−1) is a weighting transfer function which de-
notes the frequency ranges where model uncertainties are
more important.

The disturbancesd(t) and b(t) affect the signalsu(t) and
y(t). In equation (12), the transfer functions are linearly
parametrized by Youla parameterQ1 (Kouvaritakis et al.,
1992). These transfer functions must be considered for the
time-domain constraint problem.

[

u
y

]

=

[

Hud Hub

Hyd Hyb

] [

d
b

]

(12)

Assuming thats(t)ij is the response ofHij transfer func-
tion to a specific input, the time-domain constraint deliverthe
limits in which s(t)ij must be restricted. TheQ1 parameters
that satisfied this constraint are expressed in the following

way

Cenv = {Q1/∀t ≥ 0; smin(t) ≤ s(t)ij ≤ smax(t)} (13)

= {Q1/Φenv(Q1) ≤ 0}

with:

Φenv(Q1) = max

(

max
t≥0

(s(t)ij − s(t)max, smin(t) − s(t)ij)

)

(14)
Full developments of the method are given in (Rodriguez and
Dumur, 2005).

4 TEST-BED MODEL

4.1 Description

Orthoglide is a parallel robot with three translational degrees
of freedom (Fig. 6). The Orthoglide mechanical structure has
a movable platform, three prismatic actuators, and three iden-
tical kinematic chainsPRPaR (P prismatic,R rotational,
Pa parallelogram, see Fig. 6(a)). The actuated joints are
the three orthogonal prismatic ones at the fixed basis. The
workspace volume is free of singularities and self collisions
(see Fig. 6(b)), thus Orthoglide is useful for many tool paths.

P

R

Pa

R

P

Fixed Basis

Tool

R

Pa

R

P

R

Pa

R

(a) kinematic
scheme.

(b) Dimensions.

Figure 6: Orthoglide Robot, description.

Orthoglide robot was designed for high-speed machining,
thus the machine reaches a tool velocity of 1.2m/s and an
acceleration of 20m/s2 at the isotropic configuration, there-
fore the complete dynamics of the machine can not be ne-
glected in control algorithms to obtain a high position ac-
curacy in the tool (Wenger et al., 2002). Orthoglide robot
has two helpful characteristics which facilitate the imple-
mentation of a new control law: an analytical expression for
the direct kinematic model and no singularities within the
workspace.
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4.2 Geometric and kinematic modeling

In the model, the active joints areq =
[

q11 q12 q13

]T

associated to the linear actuators. The passive joints are
[

q21 q22 q23 q31 q32 q33

]T
. The Inverse Geometric

Model (IGM) delivers the actuator positionsq as function of

Cartesian position of end effector0pP =
[

xp yp zp

]T
,

such as Fig. 7 presents, thus:





q11

q12

q13



 =





zp cos(q31) cos(q21)d41 − d61

xp − xA2 − cos(q32) cos(q22)d42 − d62

yp − yA3 − cos(q33) cos(q32)d43 − d63



 (15)

where:

q31 = sin−1(
−yp

d41

); q21 = −(sin−1(
−xp

cos(q31)d41

) + π
2 )

q32 = sin−1(
−zp+zA2

d42

); q22 = −(sin−1(
−yp+yA2

cos(q32)d42

) + π
2 )

q33 = sin−1(
−xp+xA3

d43

); q32 = −(sin−1(
−zp+zA3

cos(q33)d43

) + π
2 )

The direct geometric model is reduced to a simple equation
of second order such as is presented at (Pashkevich et al.,
2006):





xp

yp

zp



 =





qb1/2 − t1/qb1

qb2/2 − t1/qb2

qb3/2 − t1/qb3



 (16)

where:

qbi = qbi + d4i, for i = 1, 2, 3.

t1 = −B−
√

B2−4AC
2A , A = q2

11q
2
12 + q2

11q
2
13 + q2

12q
2
13,

B = q2
11 + q2

12 + q2
13 and C = (q2

11 + q2
12 + q2

13 −
4d2

41)/(q2
11q

2
12q

2
13)/4

The Inverse Kinematic Model (IKM) delivers actuators ve-
locities q̇ =

[

q̇11 q̇12 q̇13

]T
as function of Cartesian ve-

locity of the end effector0vP =
[

ẋp ẏp żp

]T
:

q̇ = 0J−1
P

0vP (17)

where,0J−1
P is the inverse Jacobian matrix of the robot, thus:

0J−1
P =







− 1
tan(q21)

tan(q31)
sin(q21)

1

1 − 1
tan(q22)

tan(q32)
sin(q22)

tan(q33)
sin(q23)

1 − 1
tan(q23)






(18)

The second order inverse kinematic model gives the actua-

tors accelerations̈q =
[

q̈11 q̈12 q̈13

]T
as function of the

Cartesian platform acceleration0v̇P, and actuator velocities
q̇:

q̈ = 0J−1
P (0v̇P −0 J̇P q̇) (19)

Figure 7: Orthoglide Robot, Geometric CAD.

4.3 Dynamic modeling

The Cartesian accelerations of the end effector0v̇P can
be calculated using the direct dynamic equation of the Or-
thoglide. It is written in the following form (Guegan et al.,
2007):

0v̇P = A(q)−1
robot[

0J−T
P Γ − h(q, q̇)robot] (20)

where:

• A(q)robot =
∑3

i=1[A(q)ix] + I3mp is the total inertia
matrix (3x3) of the robot, the inertia of kinematic chains
and movable platform.

• Γ =
[

Γ11 Γ12 Γ13

]T
is the actuators force vector.

• h(q, q̇)robot =
∑3

i=1[hix(qi, q̇i) − A(q)ix
0J̇iq̇i] −

mpg

• h(q, q̇)ix is the Coriolis, gravitation, and centrifuge
force vector (3x1).A(q)ix is the inertia matrix (3x3)
of each kinematic chain.

• mp is the mass of the movable platform,g =
[

0 g 0
]T

is the gravity vector.
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Therefore, the numerical integration of the direct dynamic
equation allows to simulate the dynamics of the robot. The
dynamic parameters of the robot correspond to masses, iner-
tias and frictions identified in (Guegan et al., 2003).

5 SIMULATION AND RESULTS

In order to establish a framework to compare the perfor-
mance of the controllers, we simulated the dynamic response
of the Orthoglide robot and we use the following controllers
CTC and GPC, thus the control laws have been tested in sim-
ulation in Matlab / SimulinkR©.

5.1 Simulation

We simulated the dynamic response of the Orthoglide robot
using the following controllers CTC and GPC in order to es-
tablish a performance comparison in terms of tracking ac-
curacy and disturbance rejection. The controller parameters
were set according to the procedure design presented earlier.

The robot behavior is simulated using the direct dynamic
model of the parallel robot in equation (20). Uncertainties
about dynamic parameters, errors in geometric parameters
(due to assembly tolerances), fictions and Gaussian noise on
sensors (variance 1. 10−9) are included in the simulation
(Fig. 8).
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Figure 8: Orthoglide robot, simulation of complete model.

In order to provide a CTC/GPC comparison which makes
sense, tuning of both controllers were performed as stated
below, looking for the same input/output behavior. Further-
more, the tuning parameters were also adjusted in order to
obtain similar frequency features for the open controlled loop
(in terms of phase and gain margins in the bode diagram in
particular).

CTC controller is tuned using the following parameters:ξ=1
to guarantee response without overshoot andωr=50rad/s
obtained experimentally from the parameter identificationof
the robot; leading tok = 7500, kTD = 150, k/TI = 125000
and a filter of the derivative action withN = 30. CTC con-

troller is implemented in RST in Fig. 2 using the Euler trans-
form with sample periodTe=2.5ms. In the same way, GPC
was also tuned to obtain the same input/output behaviour
with the same bandwith and damping ratio as for CTC, lead-
ing to the following set of parameters:N1=1, N2=10,Nu=1
andλ=1.10−9. This was assessed by comparing the Bode di-
agram of the controlled loop. Furthermore robustification of
GPC and filtering the derivative effect in the CTC controller
leads to the same effect with respect to noise amplification.
In that sense, both controllers were tuned in a similar way.
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Figure 9: Time-domain constraints Φenv1(Q1) and
Φenv2(Q1).

To robustify the GPC controller, the optimization problem
of equation (11) has to be solved satisfying the two time do-
main constraints:Φenv1(Q1) andΦenv2(Q1). The constraint
Φenv1(Q1) corresponds to a time domain template for dis-
turbance rejectiony(t)/d(t), the template of this constraint
is shown in Fig. 9(a). The constraintΦenv2(Q1) corresponds
to a time domain constraint for measurement noise/control
transfer functionu(t)/b(t), this specification restricts the
noise effect on control signal, therefore the variation ofu(t)
is limited to a range of+/−1 for this application. Fig 9(b)
shows the fixed limits in control signal and the measurement
noise. Finally, the selected weighting function is

W (z−1) =
1 − 0.6z−1

0.4
(21)
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Another aspect for the comparison of the controllers is the
computational complexity. The computational cost of the
implementation of inverse dynamic model for the inner loop
to linearize the robot dynamics is addressed in (Guegan
et al., 2003). The outer loop for CTC and GPC controllers
corresponds to the difference equations of each RST polyno-
mial. The RST polynomials of CTC controller are presented
in equation (5). The RST polynomials of GPC controller are
obtained through an off-line optimization, the order of RST
polynomials for this application are 3, 2 and 10 respectively.
In the same way the GPC controller is robustified using the
off-line optimization of equation (11), thus for this case the
order of RST polynomials for this application are 8, 7 and 15
respectively. Consequently, the computational complexity is
rather similar for both controllers, the advantage of the RST
form being only the need for a few additions and multiplica-
tions, which goes very fast in real time.

5.2 Tracking position error

With the purpose of comparing the behavior of CTC and
GPC controllers, two workspace trajectoriespd on thex − y
plane are used: 1) a triangular one (edge length = 50mm),
with a fifth-degree polynomial interpolation; thus it has a
smooth joint space trajectory, at the points where the di-
rection of the trajectory changes the initial accelerationis
1m/s2 to test the behavior of the controllers (Fig. 10(a));
and 2) a circular one (∅=50mm, Fig. 10(b)), the initial con-
ditions velocity and acceleration are zero.

Fig 10 presents the respective workspace trajectories using
CTC, GPC and RGPC. The highest acceleration on the end
effector, for these workspace trajectories, is 5m/s2.

Initially, we can see that the workspace trajectories are closer
to reference using GPC and RGPC controllers (Fig. 11(b)).
GPC and RGPC controllers improve the tracking of the
workspace trajectory, since with this controller the robot
softly follows the abrupt changes in direction, due to the an-
ticipative effect of the predictive control (Fig. 11(a)).

In order to establish the total tracking error of the three actu-
ators of robot over a trajectory the Root Mean Square Error
(RMSE) of the actuators is evaluated:

RMSE (e) =
1

3m

m
∑

k=1

√

e(k)T e(k) (22)

where,e(k) is the error vector of the three actuators for each
k instant.

In Fig. 12, the maximum acceleration of the end effec-
tor varies from 1m/s2 to 5m/s2 for triangular workspace
trajectory (Fig. 12(a)) and circular workspace trajectory
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Figure 10: Workspace trajectories.

(Fig. 12(b)). For both trajectories, when acceleration in-
creases, tracking accuracy decreases because RMSE in-
creases. However, using the GPC and RGPC controllers, the
increase of RMSE is smaller than using CTC controller; thus,
the GPC and RGPC offer a better tracking accuracy. Hence,
for parallel robots that operate at high accelerations (high dy-
namics), the GPC and RGPC controllers performance is bet-
ter than CTC controllers according to the increase of accel-
eration.

The Fig. 13 shows measurement noise effect in the control
signal on actuators for triangular and circular trajectories.
The noise affects more the CTC and GPC control signals than
the RGPC control signals. The noise in the control signal us-
ing CTC and GPC are very high since the nominal actuators
force is 400N .

The RGPC rejects the noise on the control signal and main-
tains the tracking position accuracy.
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Figure 11: Tracking workspace trajectory and errors.

6 DISTURBANCE REJECTION

Fig. 14 shows the joint space error when a step load of 1Kg
is applied in the end effector of the robot. Although the re-
sults in terms of tracking position accuracy of the GPG are
better than the CTC, robustying GPC against noise decreases
the dynamics of the closed-loop, thus transient of disturbance
rejection is increased as shown Fig. 14(c). This is the main
compromise to be fulfilled using the Youla parameter for ro-
bustification: trade-off between noise rejection and perfor-
mances in terms of disturbance rejection. This trade-off can
be adjusted by means of tuning parameters present in equa-
tion 11 (mainly envelops definition).

7 CONCLUSIONS

The simulation of Orthoglide parallel robot for a position
tracking control using GPC, RGPC and CTC controllers is
analyzed. In order to apply these control laws, the parallel
robot was decoupled and linearized by feedback; after that,
CTC and GPC controllers were applied to the linear equiva-
lent model.
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Figure 12: RMSE and maximum acceleration.
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Figure 13: Control signal on actuators.
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Figure 14: Disturbance rejection, error on actuators.

For trajectories typically used in machining, a better per-
formance was obtained in terms of tracking accuracy with
respect to parameter variation using GPC and RPGC con-
trollers; thus, we show that the generalized predictive control
improves the dynamic behavior of the parallel robot in terms
of tracking error over a trajectory with high acceleration.The
robustification of GPC significantly reduces noise in the sig-
nal control. In this way the robustification of GPC against
these uncertainties is important in the parallel robots.

Further works will develop robust predictive control laws
considering the complete model of parallel robots without
linearization.
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