Acessibilidade / Reportar erro

Predictive control with mean derivative based neural euler integrator dynamic model

Neural networks can be trained to get internal working models in dynamic systems control schemes. This has usually been done designing the neural network in the form of a discrete model with delayed inputs of the NARMA type (Non-linear Auto Regressive Moving Average). In recent works the use of the neural network inside the structure of ordinary differential equations (ODE) numerical integrators has also been considered to get dynamic systems discrete models. In this paper, an extension of this latter approach, where a feed forward neural network modeling mean derivatives is used in the structure of an Euler integrator, is presented and applied in a Nonlinear Predictive Control (NPC) scheme. The use of the neural network to approximate the mean derivative function, instead of the dynamic system ODE instantaneous derivative function, allows any specified accuracy to be attained in the modeling of dynamic systems with the use of a simple Euler integrator. This makes the predictive control implementation a simpler task, since it is only necessary to deal with the linear structure of a first order integrator in the calculations of control actions. To illustrate the effectiveness of the proposed approach, results of tests in a problem of orbit transfer between Earth and Mars and in a problem of three-axis attitude control of a rigid body satellite are presented.

Neural Control; Nonlinear Predictive Control; Feed Forward Neural Nets; Dynamic Systems Neural Modeling; Ordinary Differential Equations Numerical Integrators


Sociedade Brasileira de Automática Secretaria da SBA, FEEC - Unicamp, BLOCO B - LE51, Av. Albert Einstein, 400, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, 13083-852 - Campinas - SP - Brasil, Tel.: (55 19) 3521 3824, Fax: (55 19) 3521 3866 - Campinas - SP - Brazil
E-mail: revista_sba@fee.unicamp.br