Redes neurais aplicadas a relés diferenciais para transformadores de potência

Este trabalho apresenta um sistema completo de proteção diferencial para transformadores de potência, através da teoria de Redes Neurais Artificiais (RNAs). O método proposto trata a classificação do sistema de proteção como um problema de reconhecimento de padrões e constitui um método alternativo aos algoritmos convencionais. Muitos fatores, tais como a energização do transformador e a saturação dos TCs, podem causar uma operação inadequada do relé de proteção. Um sistema de proteção completo foi desenvolvido, incluindo um módulo baseado em RNA em substituição aos filtros harmônicos, usados no algoritmo convencional. Este módulo se constituiu de uma RNA tipo MLP Backpropagation para a classificação de sinais. Abordagens baseadas na reconstrução dos sinais distorcidos causados pela saturação dos TCs são também propostas. Essa análise foi realizada através do emprego de RNAs Recorrentes de Elman, utilizadas para reconstruir os sinais distorcidos pela saturação dos TCs. Essas rotinas foram adicionadas ao algoritmo final de proteção. O desempenho dos algoritmos propostos foi comparado ao do algoritmo convencional de proteção de transformadores, em termos de velocidade e precisão de resposta. Com a utilização de uma ferramenta de inteligência artificial em um algoritmo completo de proteção de transformadores, uma solução precisa, rápida e eficiente foi obtida, se comparada aos métodos convencionais.

Proteção Diferencial; Redes Neurais Artificiais; Transformadores de Potência; Saturação do Transformador de Corrente


Sociedade Brasileira de Automática Secretaria da SBA, FEEC - Unicamp, BLOCO B - LE51, Av. Albert Einstein, 400, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, 13083-852 - Campinas - SP - Brasil, Tel.: (55 19) 3521 3824, Fax: (55 19) 3521 3866 - Campinas - SP - Brazil
E-mail: revista_sba@fee.unicamp.br