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ABSTRACT

The purpose of this paper is to study the determination of
stability regions for discrete-time linear systems with satu-
rating controls through anti-windup schemes. Considering
that a linear dynamic output feedback has been designed to
stabilize the linear discrete-time system (without saturation),
a method is proposed for designing an anti-windup gain
that maximizes an estimate of the basin of attraction of the
closed-loop system in the presence of saturation. It is shown
that the closed-loop system obtained from the controller plus
the anti-windup gain can be modeled by a linear system con-
nected to a deadzone nonlinearity. From this model, stability
conditions based on quadratic Lyapunov functions are stated.
Algorithms based on LMI schemes are proposed for com-
puting both the anti-windup gain and an associated stability
region.

KEYWORDS: Anti-windup, control saturation, discrete-time
systems, regions of stability.

RESUMO

Este artigo tem por objetivo o estudo da determinação de
regiões de estabilidade para sistemas lineares discretos no
tempo com controles saturantes, através da utilização de la-
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ços de anti-windup. Considerando que um compensador di-
nâmico de saída é previamente projetado para estabilizar o
sistema linear em tempo discreto (i.e. desconsiderando-se a
saturação), é proposto um método para projetar um ganho
de anti-windup que maximize a região de atração do sistema
em malha fechada na presença de saturação. É mostrado
que o sistema em malha fechada, obtido a partir do controla-
dor com o termo de anti-windup, pode ser modelado por um
sistema linear em cascata com uma não-linearidade do tipo
zona-morta. A partir deste modelamento, condições de esta-
bilidade baseadas em funções de Lyapunov quadráticas são
estabelecidas. Algortimos baseados na solução de LMIs são
propostos para computar simultaneamente o ganho de anti-
windup e a região de estabilidade associada.

PALAVRAS-CHAVE: Anti-windup, saturação de controle,
sistemas discretos no tempo, regiões de establidade.

1 INTRODUCTION

The basic idea underlining anti-windup designs for linear
systems with saturating actuators is to introduce control mod-
ifications in order to recover, as much as possible, the perfor-
mance induced by a previous design carried out on the ba-
sis of the unsaturated system. First results on anti-windup
consisted on ad-hoc methods intended to work with stan-
dard PID controllers (Fertik and Ross, 1967; Åström and
Rundqwist, 1989) which are commonly used in present com-
mercial controllers. Nonetheless, major improvements in
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this field have been achieved in the last decade as it can
be observed in (Barbu et al., 2000; Kothare and Morari,
1999; Teel, 1999; Burgat and Tarbouriech, 1998; Kapoor
et al., 1998; Teel and Kapoor, 1997; Kothare and Morari,
1997; Miyamoto and Vinnicombe, 1996) among others.

Several results on the anti-windup problem are concerned
with achieving global stability properties. Since global re-
sults cannot be achieved for open-loop unstable linear sys-
tems in the presence of actuator saturation, local results have
to be developed. In this context, a key issue is the deter-
mination of domains of stability for the closed-loop system
(estimates of the regions of attraction). With very few ex-
ceptions, most of the local results available in the literature
of anti-windup do not provide explicit characterization of the
domain of stability.

In (Gomes da Silva Jr. et al., 2002) an attempt has been made
to fill in this gap by providing two design algorithms that ex-
plicitly optimize a criterion aiming at maximizing a stability
domain of the closed-loop system. The results have been pro-
vided as LMI problems and covered continuous-time linear
systems with saturating actuators.

In this paper we further fill in such a gap by providing similar
results for discrete-time linear system with saturating actua-
tors. For a given linear output feedback design that yields
a certain performance when in closed-loop with the unsatu-
rated linear system, an anti-windup gain is designed in order
to enlarge the region of asymptotic stability of the closed-
loop system. Results are stated in terms of LMI problems
derived from quadratic stability design criteria.

The anti-windup problem for discrete-time systems has re-
ceived less attention in the literature. It has been addressed
in (Fertik and Ross, 1967; Walgama and Sternby, 1993) (see
references therein), in the scope of the conditioning tech-
nique, and in (Shamma, 1999) in the context of constrained
regulation. Similarly as in the continuous time case, the pro-
posed designs do not explicitly address the problem of en-
larging the domain of stability of the closed-loop system.
This point is the central issue of this paper.

The paper is organized as follows. In section 2 we state
the problem being considered and provide the main defini-
tions and concepts required in the paper. Stability condi-
tions for the closed-loop systems are provided in section 3
by employing quadratic Lyapunov functions. Based on the
results of section 3, numerical algorithms to synthesize the
anti-windup gain are developed in section 4. Section 5 pro-
vides simulation results for a case study, illustrating the ef-
fectiveness of the proposed design technique. Concluding
remarks are given in section 6.

Notations. For any vector x ∈ <n, x º 0 means that all

the components of x, denoted x(i), are nonnegative. For two
vectors x, y of <n, the notation x º y means that x(i) −
y(i) ≥ 0, ∀i = 1, . . . , n. The elements of a matrix A ∈
<m∗n are denoted by A(i,j), i = 1, . . . ,m, j = 1, . . . , n.
A(i) denotes the ith row of matrix A. For two symmetric
matrices, A and B, A > B means that A − B is positive
definite. A′ denotes the transpose of A. diag(x) denotes a
diagonal matrix obtained from vector x. Im denotes the m-
order identity matrix. Co{·} denotes a convex hull.

2 PROBLEM STATEMENT

Consider the discrete-time linear system
{

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where x(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p are the state,
the input and the measured output vectors, respectively, and
t ∈ N . Matrices A, B and C are real constant matrices of
appropriate dimensions. We suppose that system (1) satisfies
the following assumptions.

Assumption 1 Pairs (A,B) and (C,A) are assumed to be
controllable and observable respectively.

Assumption 2 The input vector u is subject to amplitude
limitations defined as follows:

U0 = {u ∈ <m;−u0 ¹ u ¹ u0} (2)

where u0(i) > 0, i = 1, ...,m denote the control amplitude
bounds.

Considering system (1) and the assumptions above, we as-
sume that an nc-order dynamic output stabilizing compen-
sator

xc(t+ 1) = Acxc(t) +Bcy(t)
vc(t) = Ccxc(t) +Dcy(t)

where xc(t) ∈ <nc is the controller state, uc = y(t) is the
controller input and vc(t) is the controller output, was de-
signed to guarantee some performance requirements and the
stability of the closed-loop system in the absence of control
saturation. In consequence of the control bounds, the actual
control signal to be injected in the system is a saturated one,
that is,

u(t) = sat(vc(t)) = sat(Ccxc(t) +DcCx(t)) (3)

where each component of sat(vc(t)) is defined, ∀i =
1, ...,m, by:

sat(vc)(i)
4
=







−u0(i) if vc(i)(t) < −u0(i)
vc(i)(t) if − u0(i) ≤ vc(i)(t) ≤ u0(i)
u0(i) if vc(i)(t) > u0(i)

(4)
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In order to mitigate the undesirable effects of the
windup, caused by input saturation, an anti-windup term
Ec(sat(vc(t))−vc(t)) can be added to the controller (Åström
and Rundqwist, 1989; Teel, 1999). Thus, considering the dy-
namic controller and this anti-windup strategy, the closed-
loop system reads:

x(t+ 1) = Ax(t) +Bsat(vc(t))
y(t) = Cx(t)

xc(t+ 1) = Acxc(t) +Bcy(t)
+Ec(sat(vc(t))− vc(t))

vc(t) = Ccxc(t) +Dcy(t)

(5)

Define now an extended state vector

ξ(t) =

[

x(t)
xc(t)

]

∈ <n+nc (6)

and the following matrices

A =

[

A+BDcC BCc
BcC Ac

]

; B =

[

B
0

]

R =

[

0
Inc

]

; K =
[

DcC Cc
]

Hence, from (6) and (5), the closed-loop system reads:

ξ(t+ 1) = Aξ(t)− (B+REc)ψ(Kξ(t)) (7)

with

ψ(Kξ(t)) = vc(t)−sat(vc(t)) = Kξ(t)−sat(Kξ(t)) (8)

The matrix A is supposed to be Hurwitz, i.e., in the absence
of control bounds, the closed-loop system would be globally
stable.

By definition,

ψ(Kξ) =
[

ψ(K(1)ξ) ... ψ(K(m)ξ)
]′

is a decentralized deadzone nonlinearity and satisfies the
following sector condition (see figure 1) (Khalil., 1992),
(Gomes da Silva Jr. et al., 2001):

ψ(Kξ)′[ψ(Kξ)− ΛKξ] ≤ 0, ∀ξ ∈ S(K, uλ0 ) (9)

where Λ ∈ <m∗m is a positive diagonal matrix and the set
S(K, uλ0) is a polyhedral set defined as follows:

S(K, uλ0) = {ξ ∈ <n+nc ;−uλ0 ¹ Kξ ¹ uλ0} (10)

where uλ0(i)
4
=

u0(i)

1−Λ(i,i)
, i = 1, ...,m.

The basin of attraction of system (7) is defined as the set of
all ξ ∈ <n+nc such that for ξ(0) = ξ the corresponding tra-
jectory converges asymptotically to the origin. In particular,

ψ(K(i)ξ)

K(i)ξ

u0(i)

(uλ0(i) − u0(i))

uλ0(i)

Figure 1: function ψ(Kξ)

when the global stability of the system is ensured the basin
of attraction corresponds to the whole state space. However,
in the general case, the exact characterization of the basin of
attraction is not possible. In this case, it is important to ob-
tain estimates of the basin of attraction. Consider then the
following definition:

Definition 1 A set E is said to be a region of asymptotic sta-
bility for the system (7) if for all ξ(0) ∈ E the corresponding
trajectory converges asymptotically to the origin

Hence, the idea is to use regions of stability in order to ap-
proximate the basin of attraction (Khalil., 1992).

The problem we aim to solve throughout this paper is sum-
marized as follows.

Problem 1 Determine the anti-windup gain matrix Ec and
an associated region of asymptotic stability, as large as pos-
sible, for the closed-loop system (7).

Of course, the implicit objective in Problem 1 is to optimize
the size of the basin of attraction for the closed-loop system
(7) over the choice of the gain matrix Ec. This can be ac-
complished indirectly by searching for an anti-windup gain
Ec that leads to a region of stability for the closed-loop sys-
tem as large as possible.

In order to address Problem 1, we propose to use quadratic
Lyapunov functions and ellipsoidal regions of stability, as
will be see in the sequel.

Remark 1 The region of linear behavior of system (7) is de-
fined as follows

RL = {ξ ∈ <n+nc ;−u0 ¹ Kξ ¹ u0} (11)

Note that inside RL there is no saturation occurrence, i.e.
ψ(Kξ(t)) = 0.
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3 STABILITY CONDITIONS

Throughout this section, we consider as Lyapunov candidate
function, the quadratic function:

V (ξ(t)) = ξ(t)′Pξ(t), P = P ′ > 0 (12)

Proposition 1 If there exist a symmetric positive definite
matrix W ∈ <(n+nc)×(n+nc), diagonal positive definite ma-
trices Λ ∈ <m×m and S ∈ <m×m, a matrix Z ∈ <nc×m

and a positive scalar γ satisfying:





W −WK
′Λ −WA

′

−ΛKW 2S SB
′ + Z ′

R
′

−AW BS +RZ W



 > 0 (13)

[

W (1− Λ(i,i))WK
′
(i)

(1− Λ(i,i))K(i)W γu20(i)

]

≥ 0

i = 1, ...,m

(14)

0 < Λ(i,i) ≤ 1, i = 1, ...,m (15)

then for the gain matrix Ec = ZS−1 the ellipsoid
E(P, γ−1) = {ξ ∈ <n+nc ; ξ′Pξ ≤ γ−1}, with P = W−1,
is a region of stability for the system (7)

Proof. The satisfaction of relations (14) and (15) implies that
the set E(P, γ−1) is included in the polyhedral set S(K, uλ0).
Hence, for all ξ(t) ∈ E(P, γ−1) it follows that ψ(Kξ(t)) =
Kξ(t) − sat(Kξ(t)) satisfies the sector condition (9). By
considering the quadratic Lyapunov function as defined in
(12) and by computing the variation of V (ξ(t)) along the
trajectories of system (7) one gets:

∆V (ξ(t)) = V (ξ(t))− V (ξ(t+ 1)) =
= ξ(t)′Pξ(t)− ξ(t)′(A′PA)ξ(t)
+2ξ(t)′A′P (B+REc)ψ(Kξ(t))
−ψ(Kξ(t))′(B+REc)

′P (B+REc)ψ(Kξ(t))

(16)

Thus, by using the sector condition (9) and the S-procedure
with a positive definite diagonal matrix T it follows 1:

∆V (ξ(t)) ≥ ξ′Pξ − ξ′(A′PA)ξ
+2ξ′A′P (B+REc)ψ
−ψ′(B+REc)

′P (B+REc)ψ
+2
∑m

i=1 T(i,i)ψ
′
(i)[ψ(i) − Λ(i,i)K(i)ξ]

(17)

or equivalently

∆V (ξ(t)) ≥
[

ξ′ ψ′
]

[

X1 X2
X ′
2 X3

] [

ξ
ψ

]

(18)

1For notational simplicity we drop the time dependence and consider
ξ(t) = ξ and ψ(Kξ(t)) = ψ.

where

X1 = P −A
′PA

X2 = A
′P (B+REc)−K

′ΛT
X3 = 2T − (B+REc)

′P (B+REc)

Note now that, by Schur’s complement, relation (13) is
equivalent to
[

W −WK
′Λ

−ΛKW 2S

]

−

[

−WA
′

(BS +RZ)′

]

P
[

−AW (BS +RZ)
]

> 0

(19)
Considering now T = S−1 and pre and post multiplying

(19) by
[

P 0
0 T

]

(20)

it follows that
[

X1 X2
X ′
2 X3

]

> 0

As a result, the quadratic form in (18) is positive definite im-
plying ∆V (ξ(t)) > 0 (i.e V (ξ(t + 1) < V (ξ(t))). Since
this reasoning is valid ∀ξ(t) ∈ E(P, γ−1), ξ(t) 6= 0, it fol-
lows that the function V (ξ(t)) is strictly decreasing along
the trajectories of system (7). Hence, we can conclude that
E(P, γ−1) is a stability region for system (7) which means
that for any ξ(0) ∈ E(P, γ−1), the corresponding trajectory
converges asymptotically to the origin. 2

Proposition 1 gives a condition for the local stability of sys-
tem (5) inside an ellipsoidal region in the state space. Note
that, the larger are theΛ(i,i), the larger is the region S(K, uλ0 )
where the relation (17) can be verified and, as a consequence,
a large contractive ellipsoid can be included. We can then
state the following corollary, concerning a global stability
condition.

Corollary 1 If there exist a symmetric positive definite ma-
trix W ∈ <(n+nc)×(n+nc), a diagonal positive definite ma-
trix S ∈ <m×m and a matrix Z ∈ <nc×m satisfying:





W −WK
′ −WA

′

−KW 2S SB
′ + Z ′

R
′

−AW BS +RZ W



 > 0 (21)

then, for Ec = ZS−1, system (7) is globally asymptotically
stable.

Note that (21) corresponds to verify (13) with Λ = Im. In
this case, the nonlinearity ψ(Kξ) satisfies the sector condi-
tion ∀ξ ∈ <n+nc , i.e., the region S(K, uλ0) corresponds to
the whole state space.
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4 NUMERICAL ANTI-WINDUP GAIN DE-
SIGN

Based on the result stated in Proposition 1, in this section we
aim to present some numerical algorithms in order to solve
Problem 1. The main idea is to obtain an anti-windup gain
matrix that ensures the local stability of the closed-loop sys-
tem in a region of the state space <n+nc . We are then inter-
ested in one of the following cases:

1. A set of admissible initial conditions, Ξ0 ⊂ <n+nc , for
which asymptotic stability must be ensured, is given.

2. We aim to design the anti-windup gain in order to maxi-
mize the estimation of the basin of attraction associated
to it. In other words, we want to compute Ec such that
the associated region of asymptotic stability is as large
as possible considering some size criterion.

Both cases can be addressed if we consider a set Ξ0 with a
given shape and a scaling factor β. For example, let Ξ0 be
defined as a polyhedral set described by its vertices:

Ξ0
4
= Co{v1, v2, . . . , vr}

where vr ∈ <n+nc , r = 1, . . . , nr. Note also that vectors vi
can represent the directions for which the region of stability
should be maximized.

Recalling Proposition 1, we aim at searching for matricesW ,
Λ, S, Z and a scalar γ in order to satisfy

β Ξ0 ⊂ E(P, γ−1) (22)

In case 1, mentioned above, this problem reduces to a feasi-
bility problem with β = 1 whereas in case 2, the goal will
be to maximize β. The problem of maximizing β can be ac-
complished by solving the following optimization problem:

min
W,Z,S,Λ,µ,γ

µ

subject to

(i)





W −WK
′Λ −WA

′

−ΛKW 2S SB
′ + Z ′

R
′

−AW BS +RZ W



 > 0

(ii)

[

W (1− Λ(i,i))WK
′
(i)

(1− Λ(i,i))K(i)W γu20(i)

]

≥ 0,

i = 1, ...,m

(iii)

[

γµ γv′r
γvr W

]

≥ 0 r = 1, . . . , nv

(iv) µ > 0
(23)

Considering β = 1/
√
µ, the minimization of µ implies the

maximization of β. The satisfaction of the inclusion relation
(22) is ensured by the LMI (iii). Unfortunately, (23) is a

BMI problem in variables W , Λ, γ and µ. However, in the
single-input case, since Λ is a scalar, an optimal solution to
the problem can easily be found by takingΛ iteratively over a
grid and solving (23) as an LMI problem. In this case, since
Λ is fixed, γ can be considered as equal to 1 without loss
of generality. This strategy can be pursued even in the case
m = 2, where a bidimensional grid must be considered and
the optimal solution to problem (23) can be searched over the
grid. For m > 2, the grid strategy becomes more difficult to
implement. In this case, the following algorithm, in which
the basic idea is to iterate between steps where we fix Λ or
W , can be considered.

Algorithm 1 :

• Step 0: Initialization of Λ.

• Step 1: Fix Λ obtained as solution of previous step and
solve problem (23) with γ = 1.

• Step 2: Fix W obtained in step 1 and solve the follow-
ing problem:

min
Λ,Z,S,µ,γ

µ

subject to
(i), (ii) from (23)

(iii) µW − vrv′rγ ≥ 0 r = 1, . . . , nv
(iv) µ > 0

(24)

• Step 3: If the difference between µ obtained in step 2
and the one obtained in the previous iteration is greater
than a desired accuracy go to step 1, otherwise set Ec =
ZS−1 and stop.

In both steps, an eigenvalue problem is solved (Boyd et al.,
1994) and the satisfaction of the inclusion relation (22) is
ensured by the LMI (iii).

The idea behind step two in Algorithm 1 is the attempt of
increasing the scalars λ(i), in order to increase the region
S(K, uλ0) and, as a consequence, make it possible to include
a larger ellipsoidal set associated to W . It is worth noticing
that the optimal matrices obtained in step 1, and the fixed
Λ, are a feasible solution for step 2. Hence, in the worst
case, the optimal solution of step 2 will be the same of the
one in step 1. Conversely, the optimal matrices obtained as
solution of step 2, considering W normalized with respect
to γ, consists in a feasible solution for step 1. These facts
ensures that, considering a reasonable numerical accuracy,
the value of µ does not increase from one step no another.
Hence, the convergence of the algorithm is always ensured.

It should be pointed out that, depending on the initialization
of Λ, the algorithm will converge to a different suboptimal
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solution. Moreover, it can happen that for a fixed Λ, step 1
has no feasible solution. On the other hand, it can be ob-
served that for Λ = 0, step 1 will always present a feasible
solution. That one corresponds to the case where the set of
asymptotic stability is contained in the region of linearity of
the closed-loop system. Hence, a recommended first initial
guess for Λ, always feasible, would be the matrix 0.

The solution of the optimal problems in steps 1 and 2 in-
volves the solution of LMIs. Nowadays, considering sys-
tems of reasonable dimensions, we can say that these prob-
lems can be efficiently solved by means of commercial and
free packages (LMI solvers). Of course, large scale prob-
lems can suffer from numerical unstability. Concerning, the
processing-time, it will depend on the dimension of the con-
sidered system. However, even it is large, this is not a prob-
lem because the computations are made off-line.

4.1 Gain Constraints

A constraint of anti-windup gain limitation can be added to
the optimization problem (23) as follows.

Note that, since
Ec = ZS−1

it follows that Ec(i,j) = Z(i,j)S
−1
(j,j)

Hence, if
[

S(j,j)σ Z(i,j)
Z(i,j) S(j,j)

]

≥ 0

by the Schur’s complement one has

σ − Z(i,j)S−1
(j,j)Z(i,j)S

−1
(j,j) ≥ 0

which ensures that (Ec(i,j))2 ≤ σ

By the same reasoning, structural constraints on Ec can be
take into account in (23) by fixing some of the elements of
matrix Z(j,i) as zero.

5 ILLUSTRATIVE EXAMPLE

Consider the following linear open-loop unstable system:

x(t+ 1) = 1.2x(t) + u(t)
y(t) = x(t)

and the stabilizing PI controller

xc(t+ 1) = xc(t)− 0.05y(t)
vc(t) = xc(t)− y(t)
u(t) = sat(vc(t))

Let the shape set Ξ0 be defined by as a square region in the
space <2:

Ξ0 = Co{
[

1
1

]

;

[

1
−1

]

;

[

−1
1

]

;

[

−1
−1

]

}

Considering, the control bound u0 = 1 and a scaling factor β
we aim to compute an anti-windup gain Ec in order to obtain
a region of stability βΞ0 ⊂ E(P, γ−1) with β as large as
possible.

Using Algorithm 1, the obtained optimal solution is β =
1.5729 with:

Λ = 0.756; P =

[

0.0613 −0.0405
−0.0405 0.2619

]

γ = 1; Ec = −0.0011

The obtained domain of stability is shown in figure 2. The
figure also depicts several trajectories of the closed-loop sys-
tem as an attempt to illustrate its basin of attraction. Regard-
ing the state of the plant, it can be seen that the domain of
stability is confined to the interval x(0) ∈ (−5, 5). In fact,
for x(0) = 5 and xc(0) ∈ (−∞, 4], the state of the controller
diverges towards −∞ while the state of the plant remains at
its initial value (a similar reasoning holds for the symmetric
trajectory). The ellipsoidal estimate of the domain of stabil-
ity is seen to span beyond the region of linearity meaning
that saturation does effectively occur for certain initial con-
ditions inside the estimated domain of stability. On the other
hand, the ellipsoidal estimate includes points that are close
to the boundaries of the basin of attraction, especially in the
direction of the state of the plant, thus providing a reasonable
estimate of the basin of attraction. In this regard, it is impor-
tant to remark that the optimization criterion and the choice
of Ξ0 are degrees of freedom that influence the ellipsoidal
estimate of the basin of attraction.

6 CONCLUDING REMARKS

We have provided a method to design an anti-windup gain
aiming at enlarging the region of asymptotic stability of lin-
ear control systems with saturated inputs. The method con-
siders a given output linear feedback designed for the original
systems in the absence of saturation, and provide a design of
an anti-windup gain in order to improve an estimate of its re-
gion of asymptotic stability. Such an improvement is always
possible since the trivial solution (zero gain) is part of the set
of solutions encompassed by the method.

The numerical algorithms proposed simplify considerably in
the single-input case. In this case, the optimal solution can
be found by a simple griding procedure. In general, the pro-
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Figure 2: (a) obtained region of stability ; (b) region of lin-
earity

posed methods involve solving BMIs, which can be accom-
plished by means of relaxation algorithms presented in the
paper.
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