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ABSTRACT

In this work a detailed modeling of three-phase distribution
transformers aimed at complementing well-known
approaches is presented. Thus, incidence of angular
displacement and tapping is taken into account in the
proposed models, considering both actual values and per
unit. The analysis is based on minimal data requirement:
solely short-circuit admittance is needed since three-phase
transformers are treated as non-magnetically-coupled
single-phase transformers. In order to support the proposed
methodology, results obtained through laboratory tests are
presented.
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1 NOMENCLATURE

Vx: Voltage corresponding to windingx, x ∈ [1, 6].

Va, Vb, Vc: Voltages corresponding to primary-side phases
a, b andc.

VA, VB, VC : Voltages corresponding to secondary-side
phasesA, B andC.

Z1, Z2: Impedances corresponding to windings 1 and 2,
respectively.

Zm: Mutual impedance between windings 1 and 2.

I1, I2: Currents corresponding to windings 1 and 2,
respectively.

n1, n2: Turns corresponding to windings 1 and 2,
respectively.

Y t: Short-circuit admittance referred to the primary side.

a: Transformation ratio.

[Y p] : Primitive admittance matrix.
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Sn: Base power.

Vn1 , Vn2 : Base voltages corresponding to windings 1 and 2,
respectively.

Zbase: Base impedance.

R, X: Resistance and reactance, respectively.

α, β: Tap variations at the primary and secondary sides
respect to their nominal values, respectively.

[Y bus]: Admittance matrix.

[Ypp] , [Yps] , [Ysp] , [Yss]: Submatrices of matrix[Y bus].

[N ]: Connection matrix.

[Npp] , [Nss]: Submatrices of matrix[N ].

g: Grounded.

2 INTRODUCTION

It is well known that transformers are fundamental elements
of power systems, requiring proper models so accurate
analyses of the network can be performed. In transmission
system, transformer modeling is single-phase based since
its operation is considered to be balanced. On the other
hand, given the inherent unbalance nature of distribution
systems, a detailed modeling of distribution transformers
requires a three-phase approach taking into accounta− b− c
components, including neutral and ground effects. Thus,
three-phase transformer modeling has been the focus of
several researches (Chenet alli, 1991; Chen and Chang,
1992; Chenet alli, 1996; Chen and Chang, 1996; Baran and
Staton, 1997; Kerstinget alli, 1999; Kersting, 2002; Dugan,
2003; Wanget alli, 2004; Xiaoet alli, 2006). Nonetheless,
models found in the literature still lack of details regarding
some connections, angular displacement and tapping.

Depending on the power flow algoithm adopted for the
distribution network analysis, transformer models may lead
to convergence problems. Consequently, some proposals are
given in the literature in order to minimize this effect (Chen
and Chang, 1996; Baran and Staton, 1997; Kerstinget alli,
1999; Wanget alli, 2004; Xiaoet alli, 2006). Evaluation of
the impacts that certain transformer models present on the
power flow analysis is out of the scope of this paper.

Although transformer models presented in 1991 by Chenet
alli have been widely used by researchers and commercial
software, their applicability outside the US is limited since
the angular displacement is commonly restricted to two clock
hours: 1 and 11, depending on whether it is a step-up or step-
down arrangement.

The objective of this paper is to improve and to make
as general as possible widely-accepted transformer models,
considering angular displacement as well as tapping in both
primary and secondary windings. It is also demonstrated
that distribution transformers can be modeled as power
transformers when analyzing variable taps. Proposed
three-phase transformer models allow including angular
displacement, which is a basic tool for generalizing
transformer models to other different clock hours or even
vector groups. A discussion about circuit and matrix
modeling considering the variables in actual values and in per
unit is also included. Models in actual values (Siemens) are
fully described since they allow obtaining directly all major
parameters involved in the transformer modeling, leading to
a better understanding of the per unit analysis. Moreover,
in order to validate the proposed methodology, results from
laboratory tests are presented.

Generally speaking, there two ways to model distribution
transformer. One requires a large quantity of data (Gorman
and Grainger, 1992), which is often difficult to obtain. The
other way considers the use of minimal information (only
the short-circuit admittance is needed) whereas the core is
modeled as a load (Dugan, 2003; Chenet alli, 1991). The
modeling presented in this work is classified in the latter
group. Moreover, this proposal allows the modeling of
all kinds of winding connections given by the American
National Standards Institute (ANSI) and the International
Electrotechnical Commission (IEC).

The structure of this paper is as follows: section 3 presents
the fundamental concepts for single-phase transformers,
whereas in section 4 the incidence of taps on single-phase
transformers is addressed. Distribution transformer analysis
is presented in section 5. Finally, in section 6 transformer
bank modeling is addressed taking into account actual values
and per unit, as well as angular displacement and tapping
incidence.

3 SINGLE-PHASE TRANSFORMER
FUNDAMENTAL CONCEPTS

A single-phase transformer model based on matrices and,
initially, considering its nominal values (winding 1 withn1

turns and winding 2 withn2 turns), as presented in figure 1,
is given by:

[

V1

V2

]

=

[

Z1 Zm

Zm Z2

]

·
[

I1

I2

]

(1)

These values are winding based, i.e. primitive impedance is
used.
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Figure 1: Single-phase transformer without tapping.

Y t =
Z2

Z1Z2 − Z2
m

(2)

Equations (1) and (2) could be either based on actual values
or p.u. Regarding the case of actual values in equation (2),Y t
is the short-circuit admittance referred to the primary. Then,
the primitive admittance matrix is:

[Y p] =

[

Y t −aY t
−aY t a2Y t

]

(3)

wherea =
n1

n2
.

Matrix [Y p] in p.u. is obtained by dividing each term of
equation (3), whose units are Siemens, by its corresponding
base values:

Yp−base =
Sn

V 2
n1

, Yps−base =
Sn

Vn1Vn2

andYs−base =
Sn

V 2
n2

.

wherep: primary ands: secondary.

Then, substitutinga =
Vn1

Vn2
, the primitive admittance[Y p] in

p.u. is obtained:

[Y p]pu =

[

ypu −ypu

−ypu ypu

]

(4)

4 GENERAL MATHEMATICAL
MODEL FOR A SINGLE-PHASE
TRANSFORMER WITH VARIABLE
TAPS

When taps vary, fundamentally two parameters experience
alterations:

a) The voltage at the secondary side of the transformer due
to the new transformation ratio, and;

b) The transformer short-circuit impedance since the
inductive reactance is a function of the squared number
of turns. When modifying the number of turns, the
resistance is also affected.

When nominal values are considered (taps at their nominal
positions in both primary and secondary sides), short-circuit
tests are performed in order to obtain the transformer’s
nominal admittance:Y tnom.

4.1 Off-nominal Taps incidence on
Transformer’s Impedance

In power transformers, where the resistance can be neglected
(Z ≈ X), tap variations modify the impedances according
to the new number of turns and quadratically since the
inductance is a function of the squared number of turns.

Let α and β be the tap variations at the primary and
secondary sides respect to their nominal values, respectively.
Thus, when taps are altered, the new transformer ratio is:

anew = a · α

β
.

Consequently, Z1−new = α2Z1−nom, Z2−new =
β2Z2−nom andZm−new = αβZm−nom.

This is valid for both actual values and p.u. as long as
the nominal base values ofZbase are kept constant. The
transformer’s new admittance will be:

Y tnew =
Z2−new

Z1−newZ2−new − Z2
m−new

Y tnew =
β2Z2−nom

α2Z1−nom · β2Z2−nom − α2β2Z2
m−nom

Y tnew =
Z2−nom

α2
(

Z1−nomZ2−nom − Z2
m−nom

)

Then, using equation (2) and considering nominal values:

Y tnew =
Y tnom

α2
(5)
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4.2 Off-nominal Taps incidence on
Transformer’s Primitive Admittance

In order to avoid mistakes in the analysis, the process
performed in section 3 is repeated taking into account a new
number of turns for both primary and secondary sides. Thus,

n′
1 = α · n1 (6)

n′
2 = β · n2 (7)

When the short-circuit test is carried out, the voltage in the
secondary side is null (V ′

2 = 0). Then, according to equation
(5), the transformer’s short-circuit admittance is:

Y t′ =
Z ′

2

Z ′
1Z

′
2 − Z ′2

m

=
Y t

α2
(8)

In addition, the following expressions are also obtained:

Z ′
1

Z ′
m

=
n′

1

n′
2

=
α · n1

β · n2
= a

α

β
(9)

Z ′
m

Z ′
2

=
n′

1

n′
2

=
α · n1

β · n2
= a

α

β
(10)

Z ′
1

Z ′
2

=

(

n′
1

n′
2

)2

=

(

α · n1

β · n2

)2

= a2

(

α

β

)2

(11)

Finally, it is obtained:

[Y p]
′
=

[

Y t′ −Y t′ · a · α
β

−Y t′ · a · α
β

Y t′ · a2 ·
(

α
β

)2

]

(12)

Then, substitutingY t′ according to equation (5):

[Y p]new =







Y tnom

α2
−aY tnom

αβ

−aY tnom

αβ

a2Y tnom

β2






(13)

Equation (13) is in Siemens andY tnom stands for the
nominal short-circuit admittance referred to the primary side.
For analysis in p.u., the following expression should be used:

Table 1: Values obtained in the tests

Tap α
Current

(A)
Voltage

(V)
Power
(W)

R (Ω) X (Ω)

1 1.025 0.790 243 66 105.75 288.844

2 1.000 0.830 242 70 101.61 273.287

3 0.975 0.874 242 74 97.77 259.388

4 0.950 0.974 242 85 90.34 231.742

[Y p]pu−new =







Y tpu−nom

α2
−Y tpu−nom

αβ

−Y tpu−nom

αβ

Y tpu−nom

β2






(14)

5 DISTRIBUTION TRANSFORMERS

In this section a real-life distribution transformer (20 KVA,
13200 V/240 V) is analyzed by means of laboratory tests.
Taps at the primary side are:

Tap1 = 13530 V (2.5%);

Tap2 = 13200 V (nominal);

Tap3 = 12870 V (-2.5%);

Tap4 = 12540 V (-5.0%);

Tap5 = 12210 V (-7.5%).

The following analysis will consider solely variations at
the primary side, which is the case of distribution network
transformers. Consequently,β = 1. These short-circuit
tests were carried out considering the transformer’s nominal
current.

5.1 Laboratory Tests

Tests carried out varying the available taps of the transformer
led to the results shown in table 1.

Considering the impedance (Zt = Rt + jXt) of the most
distant tap from the nominal position (Tap 5,α = 0.925),
one can compute the corresponding short-circuit admittance
referred to the primary side. Thus,

Z ′
t = 90.34 + j231.742Ω, then

Y ′
t = (Z ′

t)
−1 = 1.46 · 10−3 − j3.746 · 10−3 Siemens.

Taking into account that in this casea = 13200/240 =
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55 and using equation (12), the transformer’s primitive
admittance matrix is obtained:

[Y p] =

[

4.02 · 10−3
∠ − 68.702◦ −0.2045∠− 68.702◦

−0.2045∠− 68.702◦ 10.406∠− 68.702◦

]

Siemens.

In order to verify the performance of the power transformer
model applied on distribution transformers, equation (13)is
used to compute the primitive admittance matrix for Tap 5
(table 1). The nominal short-circuit admittance is calculated
as follows:

Ztnom = 101.61 + j273.287Ω, then

Y tnom = (Ztnom)−1 = 3.4298 · 10−3
∠ − 69.6◦ Siemens.

Hence, considering alsoa = 55 and α = 0.925, the
following matrix is calculated:

[Y p] =

[

4.008 · 10−3
∠ − 69.6◦ −0.2039∠− 69.6◦

−0.2039∠− 69.6◦ 10.375∠− 69.6◦

]

Siemens.

The comparison of both results prove the good performance
of the method based on power transformers since the errors
in magnitude do not exceed 0.3%, whereas for the angle this
value is 1.3%. Consequently, given the accuracy obtained
with a transformer of relatively low capacity (20 KVA), it is
expected that most distribution transformers (commonly with
capacities higher than 20KVA) present better results. Off-
nominal load cenarios are also expected to exhibit similar
performances.

5.2 Modeling with Taps at the Primary
Side

When taps are located at the primary side, the winding at
the secondary side (winding 2) is not modified. Therefore,
the resistance referred to the secondary side (R2) is not
modified either. Nevertheless, when taps vary,R2 referred to
the primary side should take into account the transformation
ratio aα. In addition, considering that the resistance of the
primary side varies according to the number of turns, in other
words, the resistance varies linearly withα andR′

2 ≈ R1, the
new resistance is obtained as follows:

Rt−new = αR1 + (aα)2 R2 = αR1 +
(

a2R2

)

α2

Rt−new = αR1 + (R′
2)α2 ∼= αR1 + (R1)α2

Rt−new = R1

(

α + α2
)

Rt−new

Rt−nom

=
R1

(

α + α2
)

2R1
=

(

α + α2
)

2

Rt−new = Rt−nom ·
(

α + α2
)

/2 (15)

On the other hand, the reactance varies quadratically:

Xt−new = α2X1 + (aα)
2
X2 = α2X1 +

(

a2X2

)

α2

Xt−new = α2X1 + (X ′
2) α2 ∼= α2X1 + (X1) α2

Xt−new = X1

(

2α2
)

Xt−new

Xt−nom

=
X1

(

2α2
)

2X1
= α2

Xt−new = Xt−nom · α2 (16)

Thus, the distribution transformer model for anyα is:

Zt = Rt−nom

(

α + α2
)

/2 + jXt−nomα2 (17)

Another way to approach the transformer modeling with taps
at the primary side is that when distribution transformers
are considered as power transformers. In this case, self-
quadratic variation of the reactance (α2) is applied to the
whole impedance, i.e. it is applied on the resistance as well.

In order to compare both approaches presented above, and
given that the resistance is the parameter being considered
differently, the multiplying factors ofRt−nom are presented
in table 2:
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Table 2: Multiplying factors ofRt−nom.

α (α + α2)/2 α2

0.925 0.89 0.8556

1.025 1.038 1.0506

Table 3: Measured impedance vs. estimated impedance.

α
measured (Ω) estimated (Ω)

R X R[(α + α2)/2] R[α2] X
1.025 105.75 288.844 105.45 106.75 287.12

0.975 97.77 259.388 97.83 96.59 259.80

0.950 94.52 245.475 94.12 91.70 246.64

0.925 90.34 231.742 90.46 86.94 233.83

Since results are similar, approximations can be used for
the resistance. Moreover, generally speaking, the whole
impedance can be approximated. Thus,Ynew = Ynom/α2.

Results obtained through laboratory measurements (table 1)
and through equations (15), (16), and the approximation
above presented, are shown in table 3.

Strictly speaking, the reactive part of the model adjusts
properly the estimated values compared to those measured
in laboratory. It is also observed that, regarding the
resistive part, the first approach, equation (15), follows
more accurately (almost perfect adjustment) the measured
values. Nevertheless, due to systematic problems when
forming matrix [Y bus], it is recommendable to consider
the distribution transformer as power transformer (α2) since
embedded errors are relatively small.

6 TRANSFORMER BANKS MODELING

This section presents in a general manner the mathematical
models of three-phase transformers obtained from
using single-phase transformers as a three-phase bank.
Incidence of the transformer’s angular displacement on its
corresponding model is also addressed.

Magnetization impedance of a transformer is quite large
and is neglected for voltage regulation studies. This
approximation does not affect power flow results. Iron losses
obtained through the open-circuit test can be modeled by
adding them to the actual load.

Modeling a three-phase transformer considering all magnetic
couplings may require data from several short-circuit
tests. Therefore, it is a common procedure to consider

three-phase distribution transformers as a bank of three
single-phase transformers, magnetically isolated from each
other and connected properly to achieve the connection
modeling under analysis (Kersting, 2002). Thus, required
information for modeling the three-phase transformer is
reduced exclusively to the short-circuit test for solely one
transformer, information that is always available.

In general, it is recommended to obtain matrix[Y p]
directly from the short-circuit tests since, otherwise, in
order to avoid numerical instability problems it would be
necessary to obtain extremely accurate measurements of the
Z parameters.

The following subsections 6.1 and 6.2 are aimed at
presenting the procedures needed to obtain matrix[Y bus]
for both approaches, Siemens and per unit. Two application
examples will be presented thereafter. Subsections 6.4 and
6.5 present the connections summary for various types of
connections and the transformer modeling considering the
ideal ordering for the primitive admittance and connection
matrices, respectively. The latter is important since
conclusions will be drawn in order to model the incidence
of the angular displacement, presented in subsection 6.6.
Finally, the incidence of taps in the three-phase transformer
modeling is addressed in subsection 6.7.

6.1 Approach in Siemens

To obtain matrix[Y bus] in actual values the following steps
should be performed:

1. A 6 by 6 primitive admittance matrix[Y p] is formed
in Siemens, composed by three decoupled single-
phase transformers. First, third and fifth rows and
columns represent the primary sides of transformers,
whereas the remaining rows and columns represent the
corresponding secondary sides.

[Y p] =

=

















Yt −aYt 0 0 0 0
−aYt a2Yt 0 0 0 0

0 0 Yt −aYt 0 0
0 0 −aYt a2Yt 0 0
0 0 0 0 Yt −aYt

0 0 0 0 −aYt a2Yt

















(18)

This step is general for all possible connections in
Siemens and, meanwhile, considering nominal taps.
At this stage the three-phase transformer is not yet
connected.
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2. For a particular connection under study the
corresponding connection matrix[N ], which relates
windings voltages to nodal voltages and considers the
angular displacement, should be selected.

3. The following formula is applied:

[Y bus] = [N ]
t · [Y p] · [N ] (19)

6.2 Approach in Per Unit

Matrix [Y bus] can be also computed in per unit following a
similar procedure to that presented for actual values:

1. Same as step 1 of previous subsection, but considering
matrix [Y p] in p.u., using three submatrices as in
equation (4).

2. Same as step 2 of previous subsection.

3. Same as step 3 of previous subsection.

4. Matrix [Y bus] can be presented in terms of its
submatrices:

[Y bus] =

[

[Ypp] [Yps]
[Ysp] [Yss]

]

(20)

where[Ypp] stands for the primary side,[Yss] stands for
the secondary side and[Yps] and[Ysp] for the primary-
secondary and secondary-primary, respectively. These
submatrices should be corrected due to changes in base
voltages according to the corresponding connection, as
follows:

Wye-wye: [Y bus] remains without alteration.

Wye-delta: Base voltage at the secondary changes,
consequently[Y bus] in p.u. should be adapted in terms
of its submatrices. Thus,[Ypp] remains the same,[Yps]
and[Ysp] are divided by

√
3, and[Yss] is divided by 3.

Delta-delta: Both base voltages at the primary and
secondary sides change, therefore the whole matrix
[Y bus] should be divided by 3.

Delta-wye: Base voltage at the primary side changes.
Thus,[Ypp] is divided by 3,[Yps] and[Ysp] are divided
by

√
3, and[Yss] remains the same.

6.3 Examples

In this subsection two distribution transformers, with
grounded and isolated neutral, will be analyzed aimed
at illustrating the calculation details of matrix[Y bus]
considering both approaches, actual values and per unit.

 

Figure 2: Grounded-neutral Yd1 Transformer.

6.3.1 Grounded-neutral Yd1 Transformer

The electrical scheme of the wye-delta transformer with
angular displacement of 30˚ (1 o’clock) is presented in figure
2.

Firstly, winding voltages are presented as a function of node
voltages. Numbers are referred to winding voltages (1, 3 and
5 for the primary side and 2, 4 and 6 for the secondary side)
and letters (a, b, c, A, B, C) are referred to nodal voltages
respect to the reference (ground), as follows:

















V1

V2

V3

V4

V5

V6

















=

















1 0 0 0 0 0
0 0 0 1 −1 0
0 1 0 0 0 0
0 0 0 0 1 −1
0 0 1 0 0 0
0 0 0 −1 0 1

















·

















Va

Vb

Vc

VA

VB

VC

















The matrix which is multiplying the nodal voltages is called
connection matrix[N ]. Then, solving equation (19) for this
particular connection, the admittance matrix for those six
nodes is expressed by:

[Y bus] =

=

















Yt 0 0 −aYt aYt 0
0 Yt 0 0 −aYt aYt

0 0 Yt aYt 0 −aYt

−aYt 0 aYt 2a2Yt −a2Yt −a2Yt

aYt −aYt 0 −a2Yt 2a2Yt −a2Yt

0 aYt −aYt −a2Yt −a2Yt 2a2Yt

















(21)
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At this point, the problem has been solved in Siemens,
consideringa equal to the nominal winding ratio andYt

as the short-circuit admittance (in Siemens) referred to the
primary side.

If values in p.u. are required, firstly, equation (19) should
considera = 1 andYt in p.u. Secondly, due to the wye-delta
connection, submatrices[Yps] and[Ysp] are divided by

√
3,

and[Yss] is divided by 3. Thus, it is calculated:

[Y bus]pu =







































Yt 0 0
−Yt√

3

Yt√
3

0

0 Yt 0 0
−Yt√

3

Yt√
3

0 0 Yt

Yt√
3

0
−Yt√

3
−Yt√

3
0

Yt√
3

2Yt

3

−Yt

3

−Yt

3
Yt√
3

−Yt√
3

0
−Yt

3

2Yt

3

−Yt

3

0
Yt√
3

−Yt√
3

−Yt

3

−Yt

3

2Yt

3







































(22)

6.3.2 Isolated-neutral Yd1 Transformer

In this case there exist 7 nodes:a, b and c at the primary
side;A, B andC at the secondary side and the floating point
n (common point of wye connection).

Then, consideringV1 = Va − Vn, V3 = Vb − Vn and
V5 = Vc − Vn, a 7 by 7 admittance matrix in p.u. can
be computed by using equation (19). Finally, using Kron’s
reduction for eliminating the floating pointn, the following
matrix is obtained:

[Y bus]pu =





















2Yt

3
−Yt

3
−Yt

3
−Yt√

3
Yt√
3

0
−Yt

3
2Yt

3
−Yt

3 0 − Yt√
3

Yt√
3

−Yt

3
−Yt

3
2Yt

3
Yt√
3

0 − Yt√
3

− Yt√
3

0 Yt√
3

2Yt

3
−Yt

3
−Yt

3
Yt√
3

− Yt√
3

0 −Yt

3
2Yt

3
−Yt

3

0 Yt√
3

− Yt√
3

−Yt

3
−Yt

3
2Yt

3





















(23)

6.4 Connections Summary

6.4.1 In Siemens

The connections summary based on the four submatrices of
[Y bus], i.e. [Ypp], [Yps], [Ysp] and [Yss], is shown in table
4. This is actually an extension of a table presented in

Table 4: Connections Summary for analysis in Siemens.

Connection [Ypp] [Ypp] [Ypp] [Ypp]
Angular

Disp.
Clock
Hour

Y g − Y g [YI ] [YI ].a2 −[YI ].a −[YI ].a 0o 0

Y g − Y [YII ] [YII ].a2 −[YII ].a −[YII ].a 0o 0

Y g − D [YI ] 3.[YII ].a2 √
3.[YIII ].a

√
3.[YIII ]t.a 30o 1

Y − Y g [YII ] [YII ].a2 −[YII ].a −[YII ].a 0o 0

Y − Y [YII ] [YII ].a2 −[YII ].a −[YII ].a 0o 0

Y − D [YII ] 3.[YII ].a2 √
3.[YIII ].a

√
3.[YIII ]t.a 30o 1

D − Y g 3.[YII ] [YI ].a2 √
3.[YIII ]t.a

√
3.[YIII ].a 330o 11

D − Y 3.[YII ] [YII ].a2 √
3.[YIII ]t.a

√
3.[YIII ].a 330o 11

D − D 3.[YII ] 3.[YII ].a2 −3.[YII ].a −3.[YII ].a 0o 0

Chenet alli (1991) for per unit analysis and including the
corresponding angular displacement.

Matrices presented in table 4, consideringYt in Siemens, are
given by:

[YI ] =





Yt 0 0
0 Yt 0
0 0 Yt



 ,

[YII ] =
1

3





2Yt −Yt −Yt

−Yt 2Yt −Yt

−Yt −Yt 2Yt





and

[YIII ] =
1√
3





−Yt Yt 0
0 −Yt Yt

Yt 0 −Yt



 .

Notice that in general[Ysp] = [Yps]
t. Given that[YI ] = [YI ]

t

and[YII ] = [YII ]
t in some cases[Ysp] = [Yps].

6.4.2 In Per Unit

When an analysis in per unit is required, table 4 can be
reduced, obtaining table 5 as presented in Chenet alli (1991).

Matrices [YI ], [YII ] and [YIII ] are those of the previous
approach (Siemens) while consideringYt in p.u.

Table 5 can be extended by including the angular
displacement, as shown in table 4. It is important to remark
that for those transformers fabricated under the ANSI 30
degrees, angular displacement for step-up Delta-wye or Wye-
delta connections is 330˚, whereas for step-down Delta-wye
or Wye-delta connection is 30˚. Consequently, step-down
Delta-wye and step-up Wye-delta transformers that do not
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Table 5: Connections Summary, Chen et alli (1991).

Connection [Ypp] [Ypp] [Ypp] [Ypp]

Y g − Y g [YI ] [YI ] −[YI ] −[YI ]

Y g − Y [YII ] [YII ] −[YII ] −[YII ]

Y g − D [YI ] [YII ] [YIII ] [YIII ]
t

Y − Y g [YII ] [YII ] −[YII ] −[YII ]

Y − Y [YII ] [YII ] −[YII ] −[YII ]

Y − D [YII ] [YII ] [YIII ] [YIII ]
t

D − Y g [YII ] [YI ] [YIII ]
t [YIII ]

D − Y [YII ] [YII ] [YIII ]
t [YIII ]

D − D [YII ] [YII ] −[YII ] −[YII ]

match the base angular displacement should be corrected as
described thereafter in subsection 6.7.

6.5 Ideal ordering for the primitive
admittance and connection matrices

For three-phase transformers the primitive admittance matrix
[Y p], as presented in equation (18), is ordered by grouping
firstly the primary side parameters and then the secondary
side. Thus, the new order of the rows and columns will be
1-3-5-2-4-6:

[Y p] =

1 3 5 2 4 6

=

1
3
5
2
4
6

















Yt 0 0 -aYt 0 0
0 Yt 0 0 -aYt 0
0 0 Yt 0 0 -aYt

-aYt 0 0 a2Yt 0 0
0 -aYt 0 0 a2Yt 0
0 0 -aYt 0 0 a2Yt

















(24)

[Y p] =

[

[Ypp]prim
[Yps]prim

[Ysp]prim
[Yss]prim

]

(25)

For any connection, it can be noticed that the four
submatrices in equation (25) are diagonal:

[Ypp]prim
= Y t [I] ,

[Yps]prim
= −aY t [I] ,

[Ysp]prim
= −aY t [I]

and
[Yss]prim = a2Y t [I] .

In addition, given the diagonal nature of[Y p], it is verified
that [Yps]prim

= [Ysp]prim
.

Thus,

[Y p] =

[

Y t [I] −aY t [I]
−aY t [I] a2Y t [I]

]

.

Analysis in per unit requiresa = 1 andY t in p.u., otherwise
a is the windings ratio andY t the admittance referred to the
primary side (in Siemens).

This new re-ordering makes the connection matrix[N ] to
present other particularities:

[N ] =

[

[Npp] [0]
[0] [Nss]

]

(26)

Submatrices[0] are due to the absence of connections
between primary and secondary sides in three-phase
transformers. However, this would not be the case for auto-
transformers.

In order to compute[Y bus], equation (19) is solved by using
equations (25) and (26):

[Y bus] =

[

[Npp]
t

[0]

[0] [Nss]
t

]

·
[

[Ypp]prim
[Yps]prim

[Ysp]prim
[Yss]prim

]

·

·
[

[Npp] [0]
[0] [Nss]

]

(27)

[Y bus] =

[

Y t [Npp]
t
[Npp] −aY t [Npp]

t
[Nss]

−aY t [Nss]
t [Npp] a2Y t [Nss]

t [Nss]

]

(28)

Equation (27) is valid in Siemens. Per unit analysis should
considera = 1, Y t in p.u., and some submatrices should be
modified according to subsection 6.2.

Given that, from matrices theory,(A · B)
t
= Bt · At then:

(

[Npp]
t [Nss]

)t

= [Nss]
t
(

[Npp]
t
)t

= [Nss]
t [Npp] .

Consequently, it is observed that for[Y bus] always[Ysp] =

[Yps]
t.
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Table 6: Two winding three-phase transformer vector groups.

Vector Group Clock Hours

I 0 - 4 - 8

II 2 - 6 - 10

III 1 - 5 - 9

IV 3 - 7 - 11

6.6 Incidence of the Angular
Displacement

There are two ways for including the angular displacement
in the transformer modeling:

a. A connection matrix [N ] is constructed taking into
account the particular angular displacement under
study. Then (19) is solved for either p.u. or siemens.

b. First, a connection summary is used (table 4 or table
5). Then, by considering the corresponding basic
clock hour (angular displacement) and the appropriate
methodology, any other clock hour can be achieved.

When equation (19) is used in order to compute[Y bus]
for each of the 26 IEC connections (excluding 10 zig-zag
connections) it is observed that submatrices[Ypp] and [Yss]
do not suffer any modification due to changes in angular
displacement. Consequently, given that[Ysp] = [Yps]

t it is
necessary to solely focus on analyzing[Yps].

Starting from the basic clock hour, in order to “move” a
given clock hour to the next one within the same vector
group (see table 6), rows of the submatrix[Yps] should be
“rotated” in such a way that the first row becomes the second,
the second becomes the third and the third becomes the
first. If the desired clock hour was not achieved yet, the
process is repeated considering the new matrix (obtained in
the previous step) as the basic one.

If a vector group change is required, firstly the[Yps] should
be obtained considering a connection 6 clock hours above the
basic clock hour, which is the negative of it. In this way:

• For Yy or Dd connection, whose basic clock hour
is 0 (table 4), the corresponding 6-clock-hours-above
submatrix is:[Yps]6 o′clock

= − [Yps]0 o′clock
.

• For Yd connection, whose basic clock hour is 1:
[Yps]7 o′clock

= − [Yps]1 o′clock
.

• For Dy connection, whose basic clock hour is 11:
[Yps]5 o′clock

= − [Yps]11 o′clock
.

If after the vector group change another clock hour (within
the same vector group) is required, the procedure explained
previously should be performed.

6.7 Incidence of taps in the three-phase
transformer modeling

When considering off-nominal taps, matrix[Y bus] from
equation (20) is modified into:

[Y bus] =

[

[Ypp] /α2 [Yps] /αβ
[Ysp] /αβ [Yss] /β2

]

(29)

This can be demonstrated by extending the procedure
presented in subsection 4.2, for single-phase transformer,
to the three-phase transformer analysis. Thus, the
corresponding primitive admittance matrix is:

[Y p] =





















Y t
α2

−aY t
αβ

0 0 0 0
−aY t

αβ
a2Y t
β2 0 0 0 0

0 0 Y t
α2

−aY t
αβ

0 0

0 0 −aY t
αβ

a2Y t
β2 0 0

0 0 0 0 Y t
α2

−aY t
αβ

0 0 0 0 −aY t
αβ

a2Y t
β2





















.

Re-ordering rows and columns based on primary and
secondary sides, the new primitive admittance matrix is:

[Y p] =





















Y t
α2 0 0 −aY t

αβ
0 0

0 Y t
α2 0 0 −aY t

αβ
0

0 0 Y t
α2 0 0 −aY t

αβ
−aY t

αβ
0 0 a2Y t

β2 0 0

0 −aY t
αβ

0 0 a2Y t
β2 0

0 0 −aY t
αβ

0 0 a2Y t
β2





















.

Given that the four primitive submatrices[Ypp]prim
,

[Yps]prim
, [Ysp]prim

and[Yss]prim are diagonal:

[Y p] =

[

Y t/α2 [I] −aY t/αβ [I]
−aY t/αβ [I] a2Y t/β2 [I]

]

.
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By using equation (26) and solving equation (19), it is
obtained:

[Y bus] =

[

Y t/α2 [Npp]
t
[Npp] −aY t/αβ [Npp]

t
[Nss]

−aY t/αβ [Nss]
t [Npp] a2Y t/β2 [Nss]

t [Nss]

]

.

Thus, submatrix⌊Ypp⌋ is divided byα2, submatrices⌊Yps⌋
and⌊Ysp⌋ are divided byαβ and submatrix[Yss] is divided
by β2. This is valid for all clock hours, both in per unit or
Siemens.

7 CONCLUSIONS

A methodology that allows, with minimal data (one short-
circuit test), modeling three-phase distribution and power
transformers based on a single-phase transformers bank was
presented. Proposed models provide detailed information
required for implementing most distribution transformer
connections. In addition, a methodology to include angular
displacement (basic tool for generalizing transformer models
to other different clock hours or even vector groups)
and tapping incidence, commonly not addressed in the
specialized literature (Wanget alli, 2004; Xiaoet alli, 2006),
was presented. Both approaches, actual values and per unit,
were also addressed aimed at specifying the corresponding
differences.
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