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RESUMO

Projeto de uma Interface Cérebro-Computador de Uso
Geral
Este artigo apresenta a classificação de três tarefas mentais,
usando o sinal de EEG e simulando um processo em tempo
real, o que se convencionou chamar de técnica pseudo on-
line. Um classificador bayesiano é usado para reconhecer as
tarefas mentais, a extração de característica usa a densidade
espectral de potência, e o mapa Sammon é usado para visu-
alizar a separação de classes. A escolha do canal de EEG e
da frequência de amostragem é baseada na divergência simé-
trica de Kullback-Leibler, e um modelo de reclassificação é
proposto para estabilizar as classificações.

PALAVRAS-CHAVE: Interface Cérebro computador, Den-
sidade Espectral de Potência, Divergencia Simétrica de
Kullback-Leibler

ABSTRACT

This paper presents the classification of three mental tasks,
using the EEG signal and simulating a real-time process,
what is known as pseudo-online technique. The Bayesian
classifier is used to recognize the mental tasks, the feature
extraction uses the Power Spectral Density, and the Sammon
map is used to visualize the class separation. The choice
of the EEG channel and sampling frequency is based on the
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Kullback-Leibler symmetric divergence and a reclassifica-
tion model is proposed to stabilize the classifications.

KEYWORDS: Brain-Computer Interface, Power Spectral
Density, Kullback-Leibler symmetric divergence.

1 INTRODUCTION

The Federal University of Espírito Santo (UFES) has devoted
some research effort to the study and design of robotic de-
vices to assist people suffering of severe disabilities. As part
of such effort, a robotic wheelchair is currently being devel-
oped to allow people with severe motor disfunction to move
with some independence, thus improving their life quality.
(see Figure 1). To do that, a key aspect is a suitable interface
to allow the user to command the wheelchair.

In recent years, concepts like Human-Machine Interfaces
(HMIs) and Brain-Computer Interfaces (BCIs) have been
addressed as tools to improve the usability of robotic de-
vices by people suffering from severe disabilities. Consid-
ering the case of commanding the movements of a robotic
wheelchair, the final objective of the system discussed in this
paper, HMIs are associated to robotic wheelchairs in order
to adapt them to users with varying levels of disability, but
still having some voluntary movement. A BCI is adopted
to adapt robotic wheelchairs for users who have lost all vol-
untary movements (the individual is said to be imprisoned
in his own body). As examples of HMI usage, the robotic
wheelchair could be commanded through using signals ex-
tracted from muscles (electromyogram), like those associate
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to eye blinks; through detecting the movement of the eyeball
(electrooculagram); through using accelerometers attached
to the user’s head and/or using images obtained by a cam-
era to recognize head or eye positions, whenever the user is
able to voluntarily generate such body movements. As an
extreme solution in the case of an individual imprisoned in
his own body, still considering the case of commanding a
robotic wheelchair, a BCI should be adopted. Such interface
uses the record of the user’s brain electrical activity (elec-
troencephalogram - EEG) to identify signal patterns related
to the accomplishment of mental tasks. This is possible be-
cause even in such case the individual preserve his/her cogni-
tive ability, although not having the capability of converting
his/her brain command to effective movements (an example
is the case of amyotrophic lateral sclerosis – ALS, in its deep-
est degree).

Figure 1: The robotic wheelchair being developed at UFES.

In this context, several research groups have proposed meth-
ods for preprocessing, feature extraction and classification
of EEG patterns for BCI usage. Kim et al. (2003) perform
an offline classification of motor tasks using 12 s epochs for
the EEG channels C3 and C4 (considering the international
10-20 system of EEG electrodes distribution (Böcker et al.,
1994)), filtering the signal for isolating the α (8-12 Hz) and
β (16-25 Hz) frequency bands and using the coefficients of
Autoregressive Model (ARM) as the inputs for a linear dis-
criminant classifier. Jia et al. (2004) perform an offline clas-
sification of motor imagery tasks using 9 s epochs for the
EEG channels C3 and C4, filtering the signal for the 10-12
Hz passband and using Linear Discriminant Analysis (LDA)
for classification. Liu et al. (2005) perform an offline classi-
fication of finger movements based on premovement poten-
cial (Bereitschaftspotential) using the EEG channels C3 and
C4, filtering the signal into two distinct frequency bands (0-3
Hz and 9-31 Hz), and using Common Spatial Subspace De-
composition (CSSD) and Artificial Neural Network (ANN)
for classification. Anderson et al. (2007) perform a pseudo-
online classification of three mental tasks using 32 electrodes

and filtering the signal in a passband of 8 to 30 Hz. Short-
Time Principal Component Analysis (STPCA) is used for
feature extraction and LDA is used for classification. Finally,
Blankertz et al. (2007) perform an online classification of
pre-movement potentials with user feedback, using 128 elec-
trodes, Common Spatial Pattern (CSP) and LDA.

For an online approach, parameters such as signal sampling
rate, size of time windows and their overlapping percentage
should be determined (the above mentioned BCIs propose
empirical values for such parameters). In our studies, an
analysis of Auto-correlation Function (ACF) is performed to
estimate the best values of such parameters. Power Spectral
Density (PSD) is used for feature extraction, and a Bayesian
classifier is used to recognize the mental tasks.

For each specific mental task performed, different pre-
processing techniques are used. Therefore, a prior knowl-
edge of the physiology involved in the task accomplishment
influences the classification results. Even studying the phys-
iological effects of a mental task in a general population,
isolated individuals deviate from the average characteristics
(Pfurtscheller et al., 1999). Then, it would be necessary an
individual physiological study in order to maximize the per-
formance of the classifier. In such context, this paper uses the
Kullback-Leibler (KL) symmetric divergence as a method to
standardize the selection of the positions of the electrodes
and sampling frequency, in order to automatically adapt the
BCI to motor or non-motor mental tasks.

2 MATERIALS AND METHODS

This work uses EEG data provided by IDIAP Research Insti-
tute (Switzerland), for the BCI Competition III, in June 2005
(Millán, 2004.). This data set contains EEG signals acquired
from normal subjects during four sessions, without feedback.
All 4 sessions of a given subject are 4 minutes long. In
each session the subject randomly accomplished three mental
tasks for about 15 seconds, which are the imagination of right
or left hand movements and generation of words beginning
with the same random letter. The EEG records are not split
in trials, for the individuals are continuously performing one
of the mental tasks. The acquisition system is a Biosemi one,
using a cap with 32 integrated electrodes located at standard
positions of the international 10-20 system. The sampling
rate was 512 Hz. Signals were acquired at full DC, and no
artifact rejection or correction was employed.

2.1 EEG Properties During Mental Tasks

The initial cognitive activity responsible for the intention of
performing a motor task, either limb movement imagination
or the physical movement, occurs in the brain cortex, over the
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frontal, pre-frontal and parietal lobes. This signal is propa-
gated to the striatum and the motor loop at the base of the
brain and reaches the motor cortex through the thalamus. In
the motor loop, this stimulus suppresses the sending of pace-
maker rhythms in the thalamus to the primary motor cortex
(M1), and starts the sending of signals related to the motor
tasks performing (Bear et al., 2008).

Similarly, studies of Pfurtscheller et al. (1999) show that the
accomplishment of mental tasks causes changes in the en-
ergy of α and β frequency bands, with respect to the values
observed in the cortex at rest. If such change is a decrease
of the EEG power in such frequency bands, it is called an
Event-Related Desynchronization (ERD). In opposition, an
increase is called an Event-Related Synchronization (ERS).
The ERD/ERS is observed in the cerebral hemisphere with
opposite laterality in relation to the member imagined, due
to the contra laterality of motor movements, since the sig-
nal path from M1 to the effective muscles, called pyramidal
tract, is crossed. All axons of the pyramidal tract neurons
intersect, either in the decussation of the bulb pyramids or in
spinal cord (Guyton and Hall, 2006).

Bianchi et al. (1998) used the analysis of ERD/ERS and the
phase of the Power Spectral Density (PSD) of the filtered
EEG signal in the α and β bands, and confirmed the activa-
tion flow from the frontal area to the central area during the
preparation of a movement. Therefore, the electrodes over
the motor cortex, the frontal lobe and the parietal lobe, have
information from the mental task that occurs during motor
activation flow (Figure 2 - Left).

Related to the mental task of generating words beginning
with the same random letter, it is known that language pro-
cessing, understanding and speech production occurs in the
Broca’s area, while the combination of information and in-
terpretation occurs in Wernicke’s area (Figure 2 - Right). As
a consequence, information about this mental task is mea-
sured by electrodes over the left hemisphere of the frontal
and parietal lobes.

� �

Figure 2: Left: Primary motor cortex; Right: Broca’s area and
Wernicke’s area.

2.2 Signal Pre-Processing

Small time windows of EEG signals, with a fixed number
of samples, s, were taken to simulate real-time classifica-
tion. The time windows are continuously displaced by a
sample (the sliding window technique). Thus, after the first
time window is filled, each following window is generated
by displacing the current window by one sample, preserving
an overlapping of s-1 samples (Figure 3), so that the BCI
classification rate is equal to the sampling rate.

�

Figure 3: Sliding window technique.

Concerning the pseudo-online classification, it is necessary
to estimate the optimal sampling rate, to not overload the
system, and the optimal size of the time windows. EEG
signals were originally obtained at a sampling frequency of
512 Hz, as previously mentioned. The analysis of the Auto-
correlation Function, R(τ ), was performed to determine if
the signal is sub-sampled or over-sampled. The ACF is de-
fined as

R (τ) = E
[(

S (t) −
_______

S (t)
)

·
(

S (t − τ) −
_______

S (t)
)]

,

τ = 0, 1, · · · , N
(1)

where E[•] is the expectation and the line above indicates
average value along time. The nonlinear Auto-correlation
Function is the ACF of the squared signal (S2(t)). The sam-
pling period, TS , can be chosen by following the heuristic
rule (Aguirre, 1995)

τm

20
≤ TS ≤

τm

10
(2)

where τm = min(tR), tR being the time instant correspon-
dent to the first minimum of R(τ). Figure 4 shows the ACF
of 9 channels. Horizontal lines represent the 95% confidence
interval. The first minimum out of the confidence interval
was obtained for a delay of 0.23 s (τm), so that 0.011 s ≤ TS

≤ 0.023 s, or 44.524 Hz ≤ FS ≤ 89.2857 Hz. As a result,
the signal was re-sampled to 64 Hz, which corresponds to a
three-step decimation.
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Figure 4: Autocorrelation Function.

The size of the time window should be sufficient to contain
most of the influence of a sample in the next sample and to
characterize a pattern that can be recognized by the classi-
fier. To estimate the size of the time windows the coeffi-
cients of the Partial Auto-Correlation Function (PACF) were
calculated for the EEG signals, to verify how S(t) is auto-
correlated to S(t-τ ). The last lag out of Bartlett’s confidence
interval is the estimate of the minimum number of samples
of the time windows (Lin et al., 1995). The PACF was per-
formed in time windows of 10 s overlapped by 75%, for all
EEG data. Figure 5 shows the mean of the PACF for all time
windows and channels: a size of 5 s was obtained for indi-
viduals 1 and 3, and a size of 5.4 s was obtained for subject 2.
Therefore, time windows with duration of 5 s were adopted.

��

Figure 5: Partial Auto-Correlation Function.

2.3 Feature Extraction

For each time window, the power spectral density (PSD) of
the EEG signals was calculated. PSD is the Fourier trans-
form of the Auto-Correlation Function, R(τ ), of the signal,
if it can be considered Wide-Sense Stationary (WSS). It de-
scribes how the signal power is distributed along frequency,
and is defined as

S (f) =

∞
∫

−∞

R (τ) ·e−2πifτdτ = F [R (τ)] (3)

As the EEG signal was sub-sampled to 64 Hz the signal max-
imum frequency is 32 Hz. PSD was designed to return one
coefficient for each integer value of frequency, thus resulting
in 33 coefficients, including the DC component.

To view the effect of PSD in the class separation, data was
clustered in each class and looking for a low-dimensional
representation. K-means algorithm was used to cluster the
data and obtain 20 centroids per class (Duda et al., 2000).
Then Sammon mapping is performed for low-dimensional
visualization (Sammon, 1969). Figure 6 shows the sepa-
ration of classes of the subject-1 training data. Left figure
shows the unprocessed EEG signal and right figure shows the
signal processed through using PSD, where there is a quite
visible class separation.

� �

Figure 6: Left: Low-dimensional visualization of the class
separation; Right: Low-dimensional visualization of the class
separation using the PSD coefficients of the EEG signals.

2.4 Stationarity Test

As the PSD and the classifier require stationarity, the Runs
Test was performed to determine the randomness of the EEG
signal for distinct lengths of time windows. Figure 7 shows
the mean of the z-score of the Runs Test calculated for time
windows of 0.1s to 10 s. This z-score is compared with the z-
score of the standard normal distribution at 5% significance
level, which is 1.96. A z-score with an absolute value greater
than 1.96 indicates non-randomness.

�

Figure 7: Runs Test z-score of the EEG signal for distinct time
windows.
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Figure 7 shows that the EEG is never considered random,
since the z-score was always greater than 1.96. Nevertheless,
the shaded area highlights the minimum z-score that corre-
sponds to a greater degree of randomness. For subject 1 the
EEG is more likely to be stationary for windows with lentgh
under 1 s or above 4 s. For subjects 2 and 3 the EEG is more
likely to be stationary for windows with lentgh under 0.5 s
or above 3.6 s. As the PACF analysis obtained time windows
with duration of 5 s, we can assume that the EEG is station-
ary.

2.5 Feature Selection

The aim of the feature selection procedure is to maximize the
distinction between classes (mental tasks) in order to make
the classification easier. Features used in the classifier are the
PSD coefficients, and then the histograms of each frequency
of the PSD spectrum are calculated for each EEG channel, re-
sulting in 32x32 histograms for each class, discarding the DC
component. Then, a measure of the discrimination between
classes, D, was used to compare the three class histograms
of each cell of the Channels X Frequency matrix. Figure 8
shows the Channels X Frequency matrix, where C1, C2 and
C3 are the three classes of mental tasks aforementioned.

�

Figure 8: Channels x Frequencies matrix.

The Kullback-Leibler symmetric divergence was used to cal-
culate the discrimination measure D (Rossow et al., 2010).
The K-L divergence is given by

DKL (C1||C2) =

n
∑

i=1

H1 (i) log

(

max (H1 (i) , δ)

max (H2 (i) , δ)

)

(4)

where H1 and H2 are histograms of two distinct classes, C1

and C2, with n samples and δ is a small number, here selected
as δ = 0.001, used to prevent the logarithm of zero or the di-
vision by zero. The symmetric version of the K-L divergence
is given by

S (C1||C2) = DKL (C1||C2) + DKL (C2||C1) (5)

Then, the discriminant Di,j of each channel i and frequency
j is given by

Di,j = Si,j (C1||C2) + Si,j (C1||C3) + Si,j (C2||C3) (6)

Figure 9 shows the discriminant Di,j Matrix calculated for
subject 2, in which the discriminant values are represented in
grayscale. Some highest discriminant values were obtained
for the tuples (CP1, at 12 and 22 Hz) and (C4, at 12 and 21
Hz), which is conform to prior knowledge that motor mental
tasks affect α and β frequency bands over the contralateral
motor cortex. The tuples (F3, at 32 Hz) and (Fz, at 28 Hz)
also obtained high discriminant values, what we believe to
be related to mental task of generation of words that would
be occurring in Broca’s area, which is in the left brain hemi-
sphere.

All features having discriminant values over a percentage, ξ,
of the maximum discriminant obtained, which in this case
was obtained for channel CP1 at 12 Hz, were chosen. Then,
figure 10 shows the selected features of subject 2 discrimi-
nant matrix, using ξ = 50%.

2.6 Classifier

The Bayesian classifier is a simple probabilistic approach
based on Bayes’ Rule in which the class distributions are
modeled by a normal distribution (Duda et al., 2000). The
posteriori probability that the correct class is k, given a data
sample x, is

P (Ck|x) =
P (x|Ck) · P (Ck)

P (x)
(7)
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��

Figure 9: Discriminant matrix, D, of Subject 2.

�

Figure 10: Selected features using ξ=50%.

where P(x|Ck) is the class probability density function (pdf),
P (Ck) is the priori probability and P(x) is the unconditioned
probability. The normal distributions of each class k are
modeled using the same covariance matrix, Σ, and are given
by

P (x|Ck) =
1

(2π)
d

2 · |Σ|
1

2

· e−
1

2
(x−µk)T Σ−1(x−µk) (8)

where µk is the mean of the class k and d is the dimension
of the normal distribution. The linear discriminant function,
fk, is given by the logarithm of the posteriori probability,
as in (6) . The unconditioned probability, P(x), is only a
scale factor for the posteriori probability, P (Ck|x), so that
the term -lnP(x) can be ignored. If all classes have equal pri-
ori probabilities, P (Ck), the term lnP (Ck) can also be ig-
nored. For the linear case of the Discriminant Analysis, it is

considered that all classes have the same covariance matrix,
so (−1/2)ln|Σ| and (−d/2)ln2π are independent of k. They
become unimportant additive constants that can be ignored.
The expansion of the quadratic form (x−µk)T Σ−1(x−µk)
results in a sum involving xT Σ−1x that is also independent
of k and can be ignored (Duda et al., 2000), resulting in

fk(x) = ln (P (Ck|x)) ⇒

fk(x) = ln (P (x|Ck)) + ln (P (Ck)) − ln (P (x)) ⇒

fk(x) = − 1
2 (x − µk)T Σ−1(x − µk) − d

2 ln 2π − 1
2 ln |Σ| ⇒

fk(x) = − 1
2xT Σ−1x + µT

k Σ−1x − 1
2µT

k Σ−1µk ⇒

fk(x) = µT
k Σ−1x − 1

2µT
k Σ−1µk

(9)
The class of a data sample x is assigned to the class with
higher linear discriminant function value. Two sessions of
the database were used to estimate the means and covariance
matrices of each class, i.e. 66.67% of the database. Then,
the covariance matrix used by the classifier is the mean of
the covariance matrices of the three classes. One session was
used for validation, and all events are equally likely a priori.

2.7 Reclassification Method

Figure 11 shows the classifier output. The best value of suc-
cess rate of subject 1 was 83.77±1.27%, with ξ = 50%. For
subject 2, the best value of success rate was 65.75±1.52%,
with ξ = 50%, and the best value of success rate of subject 3
was 55.53±1.59%, using ξ = 0%.

Real class is represented by dotted line and the predicted
class is represented by the continuous line. In this figure,
Class 1 corresponds to a task of imagination of left hand
movement; Class 2 corresponds to the same task for the right
hand and Class 3 corresponds to the mental task of generat-
ing words beginning with the same random letter.

It may be noted that the predicted class oscillates faster than
the user could change tasks, which represents instability of
the classifier. Therefore, a method to smooth the classifi-
cations was developed. Each classifier output will form a
new vector of classification, which stores the previous clas-
sifications for a period of time, called reclassification win-
dow. These windows were taken to behave as time windows;
they are continuously displaced by one classification, thus,
not changing the original classification rate of the system.

The reclassification could smooth the results using the most
frequent class in the reclassification window, but this will
lead to a delay during the transitions of mental tasks, since
the new class should occur more often than the old class so
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that the classifier identifies a change of class. To minimize
the delay, the output of the classifier will be the class with
highest weight in the reclassification window. The weight of
each past classification is given in relation to the size of the
subgroup of equal classes that it belongs. The weight is cal-
culated by the inverse of the probability of a repeated occur-
rence of a class. For three equiprobable classes, a sample s in
a subgroup with size n will have probability P (s) = (1/3)n.
Thus, the weight of this sample is given by W (s) = (3)n,
penalizing, this way, isolated samples or samples in small
subgroups among the various identical classifications, which
would be a noise in the classification. Figure 12 shows an
example where the reclassification window is composed of
nine past classifications. Although the 3 classes occur with
the same number of times, the class that occurs more times
without changing will have the highest weight and will be
assigned to the system output.

3 RESULTS AND DISCUSSION

The length of the reclassification windows, λ, was varied
from 1 to 320 past classifications. The values of ξ are varied
up to 90% in order to find the best parameter for each sub-
ject. Figure 13 shows the curves obtained for each subject,
where the circle mark indicates the best values of ξ. Figure
14 shows the stabilized classification of the signal using the
values of ξ and the reclassification windows size, λ, that ob-
tained the best result (it can be noticed a significant reduction
in the noise during the classification). Table 1 shows the best
values of success rate of each subject and the parameters (ξ,
λ) used. In the last column, B is the information transfer rate,
calculated, in [bits/min], as (60/λ) • B, with

B = log2N +p·log2p+(1−p)·log2

(

1 − p/N − 1

)

, (10)

where N is the number of classes and p is the success prob-
ability.

�

Figure 11: Classifier output.

�

Figure 12: Time windows and the reclassification windows.

��

Figure 13: Classifier sucess rate for different choices of ξ.

Table 1:

Accuracy ξ λ
B

[bits/min]
Subject 1 94.93±0.71% 50% 2.5s 29.88
Subject 2 78.89±1.31% 50% 1.88s 20.12
Subject 3 81.31±1.25% 0% 5s 8.44
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The Table 2 shows the statistical measures of the perfor-
mance of the best classifiers, where it is shown the Precision,
Sensitivity and Specificity of each class (C1, C2 and C3).

�

Figure 14: Stabilized classifications.

Table 2:
Subject 1

Precision Sensitivity Specificity
C1 0.85 1 0.95
C2 0.98 0.97 0.99
C3 0.99 0.91 0.99

Subject 2
Precision Sensitivity Specificity

C1 0.54 0.79 0.87
C2 0.80 0.73 0.86
C3 0.93 0.85 0.95

Subject 3
Precision Sensitivity Specificity

C1 0.80 0.79 0.90
C2 0.80 0.79 0.91
C3 0.83 0.86 0.91

Finally, the results presented here are compared with the best
results submitted to BCI Competition III. Those works used
the same data set used here, so that they have the same mental
tasks for classification. The results are summarized in Table
3, obtained from Anderson et al. (2007).

First, some considerations should be made. The classifica-
tions performed by the works compared in Table III used a
simple reclassification method, smoothing the classifications
results with windows of 0.5 seconds, which causes a highly
probable delay during the classification. As one can see, our
results are in average 23% better than the best work sum-

Table 3:
Subject 1 Subject 2 Subject 3 Average

Authors 94.93 78.89 81.31 85.04
C. Anderson 62.3 57.6 47.5 55.8
S. Sun 74. 3 62.3 52.0 62.8
A. Schlögl 69.0 57.1 32.3 52.7
E. Arbabi 55.4 51.8 43.6 50.2
A. Salehi 26.5 32.8 24.5 28.0

marized in Table III, with reclassification windows of up to
5 seconds being used. However, the reclassification method
developed causes less likely delays, which partly justifies the
use of larger reclassification windows.

It should also be taken into account the different technique
adopted in each compared work. Anderson et al. used Short-
time PCA for feature extraction and LDA for classification.
Sun et al. removed artifacts from seven electrodes, the EEG
signal was bandpass filtered to 8-13 Hz for subject 1 and 2
andto 11-15 Hz to subject 3. A multiclass approach to com-
mon spatial patterns was used and support vector machines
(SVM) was used for classification. Schlögl et al. downsam-
pled the signal to 128 Hz, formed all bipolar channels and
estimated autoregressive models for each channel, besides
getting the energy in α and β bands. Then, the best single
feature was selected to a statiscal classsification. Arabi et
al. downsampled the signal to 128 Hz, filtered it preserving
the 0.5-45 Hz band, extracted features based on statistical
measures and on parametric models of one second windows
and classified them using a Bayesian classifier. Salehi used
a combination of Short-time Fourier transform (STFT) en-
ergy values and time-domain features to be classified by a
Bayesian classifier.

Finally, the work presented here downsampled the EEG to
64 Hz, used the PSD with five second windows for feature
extraction, the symmetric KL divergence for feature selection
and a simplified version of a Bayesian classifier.

4 CONCLUSION

The application of all proposed methods resulted in a clas-
sifier able to identify the three classes and to obtain results
much above random (33%) success rate. Finally, we con-
clude that the success rate, the stability of the classifier result
and the information transfer rate make possible its applica-
tion in BCIs associated to robotic devices, such as a robotic
wheelchair, whose control should be performed in real time.

As future work we intend to study the use of the multivariate
gamma distribution to describe the PSD features, instead of
the multivariate normal distribution used in the classifier. We
also suggest the use of different types of classifiers associ-
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ated with the methods described in this study, like SVMs or
Regularized Discriminant Analysis (RDA).
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