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ABSTRACT

This paper proposes improved H-2 and H-infinity conditions
for continuous-time linear systems with polytopic uncertain-
ties based on a recent result for the discrete-time case. Basi-
cally, the performance conditions are built on an augmented-
space with additional multipliers resulting in a decoupling
between the Lyapunov and system matrices. This nice prop-
erty is used to develop new conditions for the robust stability,
performance analysis, and control synthesis of linear systems
using parameter dependent Lyapunov functions in a numeri-
cal tractable way.

KEYWORDS: Robustness, Ha/Ho, norms, convex opti-
mization.

RESUMO

Este artigo propde novas condic6es para as normas H-2 e H-
infinito para sistemas lineares incertos utilizando as idéias
originalmente propostas para sistemas discretos. Basica-
mente, as condi¢Oes de desempenho sdo obtidas em espaco
de estados aumentado onde novas varidveis livres sdo adi-
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cionadas ao problema resultando em uma separacgdo entre
as matrizes do sistema e de Lyapunov. Este propriedade é
utilizada no desenvolvimento de novos critérios para analise
de estabilidade robusta e desempenho, e sintese de controle
para sistemas lineares utilizando func6es de Lyapunov de-
pendente de pardmetros que podem ser resolvidas atravées de
problemas de otimizagao convexa.

PALAVRAS-CHAVE: Robustez, normas Hs € Hoo, Otimiza-
¢do convexa.

1 INTRODUCTION

Recently, de Oliveira et al. (1999) have proposed an en-
hanced stability test for discrete-time systems for which the
controller parametrization does not explicitly depends on the
Lyapunov function. This allows for instance the use of pa-
rameter dependent Lyapunov function to design a fixed ro-
bust H> or H.. controller or even to solve mixed control
problems in a less conservative way. Moreover, it was shown
that their method recover the usual LMI test for quadratic
stability as a particular case. Thus the new condition will
never give a more conservative result if compared with the
usual quadratic stability test. These nice properties are basi-
cally due to the LMI characterization in an augmented-space
which introduces a new slack variable bypassing the prod-
uct term that appears in the Lyapunov stability condition for
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discrete-time systems. In other words, the following usual
condition
APA-P<0 (@8]

is replaced by the following improved condition

A'G
—-P

!
P+ gA+ G <o. @
Notice that the term A’PA in (1) is the main source of con-
servativeness when dealing with uncertain system and robust
design with mixed performance specifications. The reason
is that robust performance tests are less conservative when
P is parameterized in terms of the uncertainties and the per-
formance indexes, but the robust controller parametrization
requires a single P to be used. The improved condition in
(2) eliminates the constraint of a single Lyapunov function
because the controller parametrization does not depend on
P.

Since the publication of the aforementioned paper, several
researchers have tried to get a similar result for linear contin-
uous time systems. However, the proposed results are not
convex, as for instance the techniques in (Shaked, 2001),
(Trofino and de Souza, 2002), and even the convex approach
proposed by Apkarian et al. (2001) has shown to be more
conservative than the usual quadratic stability test in many
cases. At the same time, Ebihara and Hagiwara (2002) have
proposed a dilated LMI version of the standard LMI tests
for robust control synthesis under mixed performance spec-
ifications by means of parameter-dependent Lyapunov func-
tions. As in the previous references, the method is not convex
when solving robust control problems because a scalar must
be tuned using a line search procedure. Some nice properties
of this line search problem are presented in the paper.

From the above scenario, this paper aims to present new LMI
conditions for Hs and H., analysis of linear uncertain con-
tinuous time systems. Similarly to Apkarian et al. (2001)
and (Ebihara and Hagiwara, 2002), the proposed approach
is convex but in some cases may be more conservative than
the usual LMI conditions based on quadratic stability, this
behavior relies on the fact that the dilated conditions only re-
cover the standard LMI quadratic stability tests for the nom-
inal case. A strong argument to use the improved conditions
instead of the usual LMI tests is its application for designing
robust controllers with parameter-dependent Lyapunov func-
tions considering H» or H., specifications and even mixed
performance criteria. Aiming to stress that the proposed re-
sults can lead to less conservative upper bounds of the per-
formance criteria for uncertain systems, this paper focus on
the performance analysis and the results illustrated through
exhaustive numerical tests. Basically, the numerical experi-
ments reported in Section 6 reveals that over 16000 randomly
generated systems the proposed methodology has achieved a

better result in about 83% of cases in the robust Hy norm
against the usual quadratic stability tests and the approach
of Apkarian et al. (2001) that surprisingly has got a better
result for only one system. The results for the H., norm
of uncertain systems are yet conservative and require further
improvements. Section 7 presents the control results for both
‘H- and H, performance specifications.

Notation. The notation used throughout this paper is stan-
dard. R™ denotes the set of n-dimensional real vectors,
R™*™ js the set of n x m real matrices, I,, is the n x n
identity matrix, 0,, is the n x n matrix of zeros. For a real
matrix S, S’ denotes its transpose, and S > 0 means that S
is symmetric and positive-definite. The symbol x for a block
matrix represents its symmetrical block outside the main di-
agonal. Matrix and vector dimensions are omitted whenever
they can be inferred from the context.

2 PROBLEM STATEMENT

Consider the following time-invariant system

i =
3.{Z

where x € R™ denotes the state, w € R the disturbance
input vector, z € RY the performance vector, A, B,C, D
are real matrices of compatible dimensions. To represent
some system dynamics and parameters that are not precisely
known or are difficult to be exactly modelled, suppose the
matrices of the system S can take any value in a given poly-
tope IT as indicated below (Boyd et al., 1994):

A, B | .
H:CO{|:CZ_ Di},z:L...,p} (4)

where Co{-} refers to the convex hull of {-}. For conve-
nience, we may alternatively represent the uncertain system
S by the notation S € S where the set S is as follows:

S:{Sin(s);[g g]eﬂ} ®)

One can characterize the system performance in terms of
input-to-output experiments by means of the Hs and H
norms. When the disturbance signal is impulsive, the Hs-
norm is the most indicated (assuming that D = 0), on
the contrary for square integrable signals the £5-gain of the
input-to-output operator (or simply H..-norm) can be used.
For completeness, we provide the following definitions of
system norms.

Ax + Buw,
Cz + Dw, ©)

Definition 1 The Hsy-norm of system S is given by

S ésu Eit 6
51l Seg;H (®)]l2 (6)
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where z;(t) is the system response to a unitary impulse in the
i — th input channel with 2(0) = 0 and D = 0.

If the disturbance signal w(t) is a white noise with zero mean
value and unitary power density spectra, the Ho-norm may
be interpreted as follows

IS]13 = sup € (=(t)"=(t))
Ses
where €(z(t)'z(t)) denotes the mathematical expectation of
the random variable z(t)’ z(¢).

Alternatively, supposing xz(0) = 0, the greatest energy gain
that can be obtained from the disturbance signal w(t) € L5 to
the output z(¢) corresponds to the H..-norm of the uncertain
system S leading to the following definition.

Definition 2 The H,-norm of system S is given by

2(t
ISl 2 s SO ©
SES, w(t)]|2
0#we Ly

where L, denotes the space of square integrable vector func-
tions on [0, co).

From the above scenario, the problem to be addressed in this
paper is to obtain a new set of less conservative LMI condi-
tions to compute the H5 and H o System norms in a numeri-
cal tractable way.

3 Hy; ANALYSIS

Assuming that D = 0, a bound on the H,-norm of system
S can be computed by the following standard result from
the LMI theory and the observability Gramian (Boyd et al.,
1994).

Lemma 1 Consider system S with D = 0. Suppose there ex-
ist symmetric matrices P and N with appropriate dimensions
satisfying the follow optimization problem for all S € S.

min trace(V) :

PN

P>0, N—-BPB>0, ®)
AP+ PA+C'C<0.

Then, S is quadratically stable and the following holds:
|S||3 < trace(N), VS € S. 9)

From above, notice that the decision variable P multiplies

the system matrix, and when A is an affine function of an-

other decision variable, as for instance the control-gain K in
design control problems, Lemma 1 can be easily applied for

control design if the system matrices are perfectly known.
However, for the class of systems considered in this paper a
robust controller can be obtained only by considering a sin-
gle Lyapunov matrix P (Shaked, 2001) which may be very
conservative. To overcome this problem, an augmented-LMI
version of Lemma 1 is proposed in the following.

Theorem 2 Consider system S with D = 0. Suppose there
exist positive definite matrices W, N and a free matrix G,
with appropriate dimensions, satisfying the following opti-
mization problem for all S € S.
min trace(N) :
W,N,G
N B'G
g w |”Y
W+ AG+GA Aa
GA -W 0
C 0o -1

1q
2

(10)

< 0.

where A=A+ 1T,and A=A —I,,.

Then, S is quadratically stable and the following holds:

|S]|3 < trace(N), VS € S. (12)

Proof: Suppose there exist W, G, N such that optimization
problem (10) is satisfied.

Applying the Schur complement to the first LMI of (10) leads
to
N-BGW'GB>0
Now, defining the Lyapunov matrix as
P2GWTG,
we get N — B'PB > 0.

(12)

Consider the second LMI of (10) and applying the Schur
complement yields

AGWTIGA+ (W + AG' +GA) +2C0'C < 0. (13)
From the fact that!
W+ AG +GA+ AGWTIGA >0,
condition (13) implies
A'PA— A'PA+20'C =2(A'P+PA+C'C) <0
taking into account the definition of P in (12).

Finally, the rest of the proof follows from Lemma 1. O

Remark 1 The advantage of considering Theorem 2 instead
of Lemma 1 is obvious for polytopic systems, since we can
employ parameter-dependent Lyapunov matrices in Theorem
2 by only considering that W = W, (fori = 1,...,p) in
(10).

1See, eg., (de Oliveiraet a., 1999) and (Shaked, 2001).
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4 H. ANALYSIS

From the following LMI version of the Bounded Real
Lemma (Boyd et al., 1994), an upper bound on the H ,-norm
of system S can be determined.

Lemma 3 Consider system S. Suppose there exist a sym-
metric matrix P with appropriate dimension and a scalar ~
satisfying the follow optimization problem for all S € S.

min 7 : P >0,

A'P+PA PB o

(14)
B'P —I, D | <o.
C D -1
Then, S is quadratically stable and the following holds:
[Slloc <7, VS €S. (15)

From the same arguments of Section 3, the above Lemma
may be conservative for control design of polytopic systems
and also for multi-objective performance criteria (Apkarian
et al., 2001). To overcome this problem, we give the follow-
ing improved H ., condition.

Theorem 4 Consider system S and suppose there exist a
positive definite matrix W, a free matrix G and a positive
scalar ~ satisfying the following optimization problem for all
Ses.

minvy: W >0,
W,G,:y
Wea GB A'G’ 0 C’
B'G" -2~I,, B'G 0 D’
GA GB -W 0 0 <0
0 0 0 -2vI, O
C D 0 0 -1
(16)

where Wg = W+GA+A'G', A= A+I,and A= A—1,.
Then, § is quadratically stable and the following holds:

ISllso <7, ¥ S €. (17)

Proof: Suppose that Theorem 4 is satisfied. Also, for conve-
nience, define the following notation:

(18)

From above, notice that we can recast (16) as follows

Wa+ Gada + A,G,, A,Gl,  C
G.A, -W, 0
C, 0o -1,

From Theorem 2, the above implies the following
I 1 !
AP+ P, A, +-C.C, <0
Y

Finally, the above LMI is equivalent to (14) and the rest of
this proof follows from Lemma 3. a

Observe that the 4-th row and column of (16) can be re-
moved, without loss of generality, reducing the size of the
LMLI.

Remark 2 From the same arguments of Remark 1, the
improvement of Theorem 4 over the standard Bounded
Real Lemma (BRL) is clear when we consider parameter-
dependent Lyapunov matrices by taking W = W, (for ¢ =
1,...,p)in (16).

5 CONSERVATIVENESS

To show the source of conservativeness of the proposed
method, consider the following identity:
®:=2(A'P+PA)= APA— A'PA. (19)

Without loss of generality let us decompose P as P =
G'W ~1@G for some free matrix G and some W > 0 to get

AGWIGA - AGWIGA
< AGW GA+AG +GA+W

o

(20)
(21)

Using the last inequality as an upper bound for 2(A’P+ P A)

we get the following LMI with the Schur complement
AG +GA+W AQ

h 0 22

{ GA W ] < 22)

Clearly (22) implies & < 0. However, the converse is not

true in general. An exception occurs when the choice G =
—W A1 is possible. In this case we get

-w  —AAYW
o 23
[ “WAA W <0 @
which in turn yields
APA—APA=2AP+PA) <0 (24)

where P = (A)"'WA~!
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The choices G = — WA 'and P = (A)"'WA~! are
possible whenever the matrix A is not uncertain, because
otherwise P, G will depend on the same uncertain parame-
ters leading (22) to be non-convex in these parameters. This
shows that (22) is equivalent to the usual LMI quadratic sta-
bility test ® < 0 in the nominal case but it may be conser-
vative in the uncertain case. The same conclusion follows
from the results in Section 3, i.e. they may be conservative
in the uncertain case but not in the nominal case. However,
due to the particular structure of the matrices in (18) the re-
lation G, = —Waflgl is no longer possible which suggests
the results in section 4 may have an additional degree of con-
servatism. This point needs further investigation.

6 NUMERICAL EXAMPLES

This section reports a conservativeness analysis of the pro-
posed improved conditions by means of exhaustive tests over
16000 linear uncertain systems which are randomly gener-
ated using Gaussian distribution with zero mean and unitary
variance. Let us start with the results from Theorem 2. For
each system S, the robust 75 norm is compute by:

(i) Theorem 2 with parameter-dependent Lyapunov func-
tions (see Remark 1), refereed to as (N);

(if) The approach of Apkarian et al. (2001), refereed to as
(M;

(iii) The standard Ho-norm computation of Lemma 1
(quadratic stability approach) which is referred to as

Q).

The robust methods to compute the H2-norm can be applied
whenever the underlying system is robustly stable. In this
sense, it is required the Hurwitz stability of each matrix A
generated from the convex combinationof A, ..., A, to nu-
merically verify ||S||> by means of a fine grid procedure.
In addition, whenever necessary, we have to modify A so
that the Hurwitz stability is guaranteed for all A € 114 £
Co{Ai,...,A,}. To minimize the computational burden,
such procedure has been applied only to the extreme values
of A. Specifically, whenever the randomly generated matrix
A; is not Hurwitz stable, (o 4 1)I,, has been subtracted from
A;, where o is the maximum real part of the eigenvalues of
A;. Although the later procedure cannot ensure the Hurwitz
stability of A over I1 4, it can significantly reduce the number
of generated systems that are not asymptotically stable over
4.

To carry out the statistical tests, we assume four different val-
ues for n and p which are respectively the state vector dimen-
sion and the vertex number. Precisely, we have taken 1000

n 3 4

p N T Q N T Q
2 || 984 | 963 | 977 || 991 | 965 | 992
3 || 956 | 887 | 948 || 977 | 895 | 879
4 || 922 | 819 | 915 || 960 | 793 | 950
51 893 | 721 | 882 || 924 | 705 | 917
n 5 6

p N T Q N T Q
2|l 992 | 958 | 995 || 995 | 960 | 993
3 || 869 | 978 | 825 || 991 | 854 | 991
4 || 977 | 763 | 977 || 979 | 672 | 987
51 948 | 611 | 957 || 972 | 466 | 978

Table 1: Number of systems for which the methods success-
fully found a solution for the H- case

systems for each situationn = 3,...,6 andp = 2,...,5,
and our attention is focused on comparing:

(&) The number of times that each method provides a feasi-
ble solution; and

(b) The number of times that each method achieve the best
performance.

Table 1 shows the number of systems that lead to feasible
solutions to the methods (N), (T) and (Q). Observe that, the
new method (N) and the approach (Q) present similar num-
ber of feasible solutions. Moreover, one can note that the
approach (T) has worse performance.

Table 2 shows the number of systems in which the ap-
proaches (N), (T) and (Q) achieved the lowest upper-bound
on ||S||2. It turns out that the proposed H, condition has
achieved the best performance in a large majority of cases,
and the improvement is even better with the increasing of
the number of vertices, even though the standard quadratic
stability test demonstrates a better performance in some sit-
uations. In addition, the methodology proposed by Apkar-
ian et al. (2001) has outperformed our approach and the
quadratic method for only one system.

A similar study is now carried out to analyze the conserva-
tiveness of the proposed H ., condition. To this end we solve
the robust H ., problem by using the following approaches:

(i) Theorem 4 with parameter-dependent Lyapunov func-
tions, refereed to as (NV.);

(if) The standard H..-norm computation of Lemma 3
(quadratic stability approach) which is referred to as

(Qoo),
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n 3 4

p N | T| Q N | T| Q
2| 745 | 1| 245 | 741 | 0 | 255
3| 768 | 0| 182 | 818 | O | 167
4818|0120 854 | 0 | 115
51 801| 0| 123 | 835 | 0 | 109
n 5 6

p N | T| Q N | T| Q
21723 | 0| 273 | 727 | 0 | 268
3185|0162 | 830 | 0 | 165
41844 | 0| 1411 868 | 0 | 123
51 851 | 0| 117 || 842 | 0 | 143

Table 2: The number of systems corresponding to the ap-
proach achieving the lowest bound on ||S]||2.

To the authors” knowledge, there is no other convex approach
to robust H..-norm computation in the continuous-time con-
text.

Assuming n = 5, p = 3 the number of feasible solution over
1000 systems are 985 with the proposed method (V) and
986 with the usual method (Q). The quadratic approach
(Qoo) has achieved the best performance in 542 cases, and
the new approach (V) in 303 cases. The same H., upper
bound was obtained with both methods in 141 cases. The sit-
uation is similar for other values of p and n. These numerical
experiments confirm the claim in the previous section that the
results for H . are yet conservative and need to be improved.

7 STATE-FEEDBACK CONTROL

One of the most advantages of the proposed H, and Ho
conditions is the possibility of designing a robust state-
feedback control law considering parameter-dependent Lya-
punov functions. Notice that convex conditions for control
design can be easily obtained from the Dual version of The-
orems 2 and 4. To extend these theorems for control design,
consider S as defined in (3) with an additional control input
u(t) e R, ie.

= Az + Bw + Eu,
S:< 2z = Cx+ Dw+ Fu, (25)
u = Kux,

where K € R"™™ is the control-gain to be determined,
E ¢ R™ 7" and F' € R?*" are uncertain matrices. Simi-
larly to Section 2, the uncertain system S is represented by
the notation S € S, where the set S is redefined accordingly
to (25).

7.1 'H, Design

Setting D = 0, a state-feedback control law that stabilizes
system S (while minimizing an upper-bound on its Hs-norm
for all S € S) can be obtained by means of the dual version
of Theorem 2.

The dual version of the improved H, condition is de-
vised from the controllability Gramian (Green and Lime-
beer, 1995) leading to the following result.

Theorem 5 Consider system S with D = 0. Suppose there
exist symmetric matrices W;, N (: = 1,...,p), and non-
symmetric ones G, Y with appropriate dimensions satisfying
the following optimization problem for all S € S.

min _trace(N) : [ N CG+FY } > 0,

W;,N,G,Y * Wi,
( Wi + AG + G A ) N (26)
+EY +Y'E’
GA+Y'E “w, o | <
L
B’ —Ln
wherei =1,...,p.

Then, S is asymptotically stable with
u(t) = YGla(t),
and ||S||2 satisfies (11) for all S € S.
Proof: The proof of above Theorem is straightforward from

the controllability Gramian and the control parametrization
Y = KG. O

Example 1 Consider a mass/spring/damper system given by
the following representation (Zhou, 1998):

& = A(k1,ke)x + Bw+ Eu, z = Cx + Fu, 27)
where z = [ r1 Xy T3 T4 ]/, ki € [ 0.8,1.2 },
ks € [3.2,4.8],and

0 0 1 0 0
0 0 0 1 0
A=l 5 w02 o2 BT 0 |
k1 k1 kz
o —mdke 01 015 0.5
0 10 00
0 ¢= [ 0 0 0O ] ’
E = ,
1 r_ 0
0 1

Applying Theorem 5, we get an upper-bound on the system
2-norm (in closed-loop) of A = 0.3478 with a control matrix

K=—[04839 0.2348 0.6042 0.2929 .
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It turns out that our approach has lead to a better result than
the one proposed in (Apkarian et al., 2001) which get an
upper-bound of A = 0.3959.

7.2 H. Design

Similarly to the H- case, one can obtain a (robust) stabiliz-
ing state-feedback controller such that an upper-bound on the
Hoo-norm of S is minimized by means of a dual version of
Theorem 4.

Basically, we redefine the BRL in terms of the Lyapunov ma-
trix inverse and then apply standard results from the matrix
theory. These manipulations yields the following result.

Theorem 6 Consider system S and suppose there exist sym-
metric matrices W1, ..., Wp, non-symmetric ones, G and Y,
and a positive scalar ~ satisfying the following optimization
problem for all S € S.

min v: W; >0,

Wi, G,y
Wa, * * 0 B
\Ill 72’}/Iq * 0 D (28)
U, W -W; 0 0 <0
0 0 0 —2¢0, 0
Iq
B D 0 R
where i € {1,...,p}, and
Wg, = W;+GA+A'G' +YE+E'Y',
¥, = CG+FY,
Uy, = G'A+Y'E.

Then, S is asymptotically stable with
u(t) = YG (1),
and (17) is satisfied for all S € S.
Proof: The proof of above Theorem is straightforward from
the dual version of Theorem 4, i.e., by setting P =

P1G=G 1A= A,B=Cand C = B, and then
applying the control parametrization Y = KG. O

Example 2 Consider the following linear time-invariant sys-
tem borrowed from (Gahinet et al., 1994):

0o 0 1 0 0 0

s 0 0 0 1| oo {w}
&k —f f 01| ul
ko o~k f —f 10

Approach || BRL
~ 1.557

Shaked
1.478

Proposed
1.498

Table 3: Comparative closed-loop H .-norms.

where z = [ 21 22 3
f€[0.0038,0.04].

s |, k € [0.09,0.4 ], and

The problem to be addressed is to design a state-feedback
law © = Kz such that the closed-loop system is robustly
stable while minimizing an upper-bound on the worst-case
‘H-norm of the above system.

Applying Theorem 6, we get an upper-bound v = 1.498 with
a control-gain given by

K =—[51.523 399.593 22.331 664.714 |.

Table 3 shows a comparative study among the standard
Bounded Real Lemma (BRL) in (Boyd et al., 1994), the im-
proved LMI test of (Shaked, 2001, Lemma 3.1), and our ap-
proach. In spite of the fact that our approach seems to be
more conservative than the Shaked’s one, we stress the fact
that our approach is convex while in (Shaked, 2001) a param-
eter € has to be optimized.

8 CONCLUDING REMARKS

This paper have proposed improved H5 and H., conditions
for continuous-time linear systems with polytopic uncertain-
ties. Basically, the performance conditions are built on an
augmented-space with additional multipliers resulting in a
decoupling between the Lyapunov and system matrices. This
nice property can be used to design robust state-feedback
controllers with parameter dependent Lyapunov functions
taking into account both Hs and H., norms. Statistical nu-
merical tests have proven the advantage of the proposed H-
approach over previous results from the robust control liter-
ature. In addition, we have presented the H, and H, con-
ditions for state-feedback design also considering parameter-
dependent Lyapunov functions and a robust control law. Fu-
ture research will concentrate on improving the H ., results
that are yet conservative and extend the results for filtering
and control problems.
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