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ABSTRACT

In this work the concept of self-bounded (A, B)-invariant
sets is analyzed, as well as its implication in constrained
controllability of discrete-time systems subject to state con-
straints. Self-bounded (A, B)-invariant sets are defined and
characterized. It is shown that the class of self-bounded sets
contained in a given region has an infimum, that is, a self-
bounded set which is contained in any set of this class. The
infimal set is characterized and a numerical method is pre-
sented for its computation in the polyhedral case. These re-
sults are then used to analyze the problem of constant refer-
ence tracking for state constrained systems. The results are
illustrated by a numerical example.

KEYWORDS: Linear systems, invariance, geometric ap-
proaches, feedback control.

RESUMO

Neste trabalho, analisa-se o conceito de conjuntos (A, B)-
invariantes auto-limitados e sua implicação na restrição de
controlabilidade de sistemas de tempo discreto sujeitos a res-
trições lineares nos estados. Conjuntos auto-limitados são
definidos e caracterizados. Mostra-se que a classe de con-
juntos auto-limitados contidos em uma dada região possui
um elemento ínfimo, ou seja, um conjunto auto-limitado que
é contido em qualquer outro desta classe. Este conjunto ín-
fimo é caracterizado e um método numérico é apresentado
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para seu cálculo no caso poliédrico. Estes resultados são en-
tão usados para se analisar o problema de rastreamento de
sinais de referência constantes para sistemas sujeitos a restri-
ções nos estados. Os resultados são ilustrados através de um
exemplo numérico.

PALAVRAS-CHAVE: Sistemas lineares, invariância, aborda-
gem geométrica, controle por realimentação.

1 INTRODUCTION

Linear systems subject to point-wise-in-time constraints are
an object of great interest for both theoreticians and prac-
titioners in control systems, as constraints often arise from
physical limitations on input and/or output variables. In par-
ticular, the positive invariance approach has been success-
fully used to solve a large number of problems on constrained
dynamical systems. A set in the state space is positively
invariant if any trajectory originated from this set does not
leave it. An overview of the literature concerning positively
invariant sets and their application to the analysis and syn-
thesis of control systems can be found in (Blanchini, 1999).

A key concept of this approach is that of (A, B)-invariant (or
controlled invariant) sets, which are sets that can be made
positively invariant through the choice of a suitable control
law (Blanchini, 1994; Dórea and Hennet, 1999) (see also
(Bertsekas, 1972; Glover and Schweppe, 1971)). A typical
objective in constrained control problems is to force the state
trajectory to evolve inside a given region. A possible solu-
tion is then to guarantee that the initial state belongs to an
(A, B)-invariant set contained in the aforementioned region,
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and to apply a control law such that this set is positively in-
variant. In general, a controlled state trajectory can leave an
(A, B)-invariant set to reach another one. However, there is
a class of (A, B)-invariant sets which cannot be exited by
trajectories contained in the given region. Such sets charac-
terize a situation of constrained controllability and are known
as self-bounded (A, B)-invariant sets.

The concept of self-boundedness was first introduced in
(Basile and Marro, 1982), but limited to subspaces. In (Dórea
and Hennet, 2000), this concept was extended to polyhedral
sets. This choice was motivated by the fact that physical
limitations inherent to the operation of actual systems very
often result in linear constraints on their variables. In this
work, the geometrical characterization of self-bounded sets
is firstly presented. Necessary and sufficient conditions un-
der which a given polyhedral set is self-bounded are shown.
The infimal self-bounded set contained in a given set is then
characterized and a numerical algorithm is presented for its
computation in the polyhedral case.

The existence of self-bounded sets characterizes a situation
of constrained controllability. This is precisely the case when
one tries to design a controller so that the system output
tracks a reference signal, without violating state constraints.
The results on self-bounded polyhedra are then used to de-
termine the set of constant reference signals which can be
tracked by the constrained system. The results are illustrated
by a numerical example.

Notation: In mathematical expressions, the symbol “:”
stands for “such that”. 0 represents a null matrix of appropri-
ate dimension. ker(M) represents null space of matrix M .
The columns of a matrix M form a generating set of a poly-
hedral cone R if and only if there exists a nonnegative vector
ξ such that x = Mξ, ∀x ∈ R. Each column of M is then
called a generator of R. A generating set of R is said to be a
minimal generating set if it is defined by the smallest number
of generators.

2 PRELIMINARIES

Consider the linear, time-invariant, discrete-time system de-
scribed by:

x(k + 1) = Ax(k) + Bu(k), (1)
y(k) = Cx(k),

where x ∈ <n is the state, u ∈ <m is the control input,
y ∈ <p is the output and k is a nonnegative integer.

A nonempty closed set Ω ⊂ <n is said to be positively in-
variant with respect to a dynamic system x(k+1) = f(x(k))
if for all initial state x(0) ∈ Ω the state trajectory remains in
Ω.

A nonempty closed set Ω ⊂ <n is said to be (A, B)-invariant
with respect to system (1) if for all initial state x(0) ∈ Ω there
exists a control sequence {u(k)} such that x(k) ∈ Ω ∀k > 0.
Therefore, an (A, B)-invariant set is a set which can be made
positively invariant through a suitable control action.

It can be shown that, given a convex set Ω, there exists
an (A, B)-invariant set which contains all those (A, B)-
invariant sets contained in Ω:

C∞(Ω)
4
= supremal (A, B)-invariant set contained in Ω.

(A, B)-invariance of polyhedra for discrete-time systems
was studied in e.g. (Blanchini, 1994; Dórea and Hen-
net, 1999), where conditions under which a given polyhe-
dron is (A, B)-invariant, as well as numerical methods for
computation of C∞(Ω) were established.

From now on, the study will be restricted to closed convex
sets containing the origin, which are the most relevant for
control purposes.

A trajectory of system (1) can be forced to belong to Ω if and
only if the initial state belongs to an (A, B)-invariant set con-
tained in Ω, hence in C∞(Ω). Let Π be an (A, B)-invariant
set contained in Ω. In general, for any initial state belonging
to Π, it is possible not only to force the state to remain in Π
but also to leave it with a trajectory in Ω and to reach another
(A, B)-invariant set contained in Ω. On the contrary, there
are (A, B)-invariant sets which cannot be exited by means of
any trajectory on Ω. Such sets will be studied in next section.

3 SELF-BOUNDED (A,B)-INVARIANT
SETS

Definition 3.1 An (A, B)-invariant set Π containing the ori-
gin and contained in a set Ω is said to be self-bounded with
respect to Ω if x(k) ∈ Π ∀k > 0, ∀x(0) ∈ Π and for any
control sequence {u(k)} such that x(k) ∈ Ω ∀k > 0.

In words, Π is self-bounded with respect to Ω if for any
x(0) ∈ Π, the state vector cannot leave Π through trajec-
tories contained in Ω. That is, there is no control sequence
{u(k)} which drives the state outside Π while keeping the
state in Ω.

This definition extends to convex sets the concept of self-
bounded (A, B)-invariant (or controlled invariant) subspaces
introduced by Basile and Marro (Basile and Marro, 1982;
Basile and Marro, 1992).

Consider now the following convex sets defined in the ex-
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tended space <n ×<m:

I(Π, Ω)
4
=

{[

x
u

]

: x ∈ Π, Ax + Bu ∈ C∞(Ω)

}

, (2)

O(Π)
4
=

{[

x
u

]

: Ax + Bu ∈ Π

}

. (3)

Theorem 3.1 The convex set Π ⊂ Ω is self-bounded (A, B)-
invariant with respect to Ω if and only if

I(Π, Ω) ⊂ O(Π). (4)

Proof: Necessity is first proved: Since Π ⊂ C∞(Ω)
and C∞(Ω) is (A, B)-invariant, then ∀x(0) ∈ Π,
there always exists a control sequence {u}(C∞(Ω)) =
{u(0), u(1), u(2), ...} such that x(k) ∈ C∞(Ω) ∀k > 0.

Suppose now that there exists
[

xn

un

]

∈ I(Π, Ω) such that

Axn + Bun /∈ Π. Then, it is clear that for x(0) = xn there
exists a trajectory of the state completely contained in Ω, but
which leaves Π, contradicting thereby the assumption that Π
is self-bounded.

Sufficiency comes from the fact that if (4) is verified, then
any trajectory starting from Π and completely contained in
C∞(Ω) (hence, in Ω) will not leave Π. 2

Corollary 3.1 Let {u(k)}(C∞(Ω)) be any control sequence
{u(0), u(1), u(2), ...} such that, x(k) ∈ C∞(Ω), ∀x(0) ∈
C∞(Ω), ∀k > 0. Then, any (A, B)-invariant set Π, self-
bounded with respect to Ω, is such that x(k) ∈ Π, ∀x(0) ∈
Π, ∀k > 0, ∀{u(k)}(C∞(Ω)).

Proof: It suffices to notice that any vector
[

x(k)
u(k)

]

, cor-

responding to the state and the control in time k, where
x(0) ∈ Π, x(k) ∈ C∞(Ω) and u(k) is in {u(k)}(C∞(Ω)), is

such that
[

x(k)
u(k)

]

∈ I(Π, Ω). Therefore, if condition (4) of

self-boundedness is verified, then x(k) ∈ Π ∀k ≥ 0. 2

This corollary states that any control law for which C∞(Ω)
is positively invariant is such that any self-bounded set con-
tained in Ω is also positively invariant under this law.

The study will now be specialized to convex polyhedra con-
taining the origin, represented by sets of linear inequalities:

Ω = R[W, ζ] = {x : Wx ≤ ζ}, ζ ≥ 0,

Π = R[G, ρ] = {x : Gx ≤ ρ}, ρ ≥ 0.

where W and G are matrices and ζ and ρ are vectors of ap-
propriate dimensions. Let also the supremal (A, B)-invariant
set contained in Ω be a convex polyhedron represented by:

C∞(Ω) = R[V, ν] = {x : V x ≤ ν}, ν ≥ 0.

The hypothesis above is not always verified. C∞(Ω) may
be defined by an infinite number of linear inequalities. In
practice, however, this is not a serious drawback: as shown
in (Blanchini, 1994), under mild assumptions, C∞(Ω) can be
arbitrarily approximated by an (A, B)-invariant polyhedron
R[V, ν].

Theorem 3.2 The convex polyhedron R[G, ρ] ⊂ R[W, ζ] is
self-bounded (A, B)-invariant with respect to R[W, ζ] if and
only if there exist matrices L and M such that:

LG + MV A = GA,
MV B = GB,
Lρ + Mν ≤ ρ,
L ≥ 0, M ≥ 0.

(5)

Proof: See (Dórea and Hennet, 2000).

The matrix relations in (5) are linear. Self-boundedness of a
polyhedron can therefore be checked through the resolution
of linear programming problems as for the classical positive
invariance relations (see e.g. (Hennet, 1995)).

4 THE INFIMAL SELF-BOUNDED SET

The family of (A, B)-invariant sets contained in a given con-
vex set, say Ω, is an upper semilattice with respect to the op-
eration “convex hull of the union”. This property guarantees
the existence, in this family of the supremal set C∞(Ω).

The most outstanding property of the family of self-bounded
(A, B)-invariant sets contained in a given set is to be a lattice
instead of a semilattice. Hence it admits both a supremum
(C∞(Ω)) and an infimum. The existence of an infimum is
guaranteed by the following property:

Property 4.1 The family of all self-bounded (A, B)-
invariant sets contained in a convex set Ω is closed under
intersection.

Proof: It follows immediately from the Definition 3.1. Let
Π1 and Π2 be two self-bounded (A, B)-invariant sets con-
tained in Ω. Then it is clear that any trajectory starting from
x(0) ∈ Π1 ∩ Π2 and contained in Ω can leave neither Π1

nor Π2, hence Π1 ∩Π2. Therefore, Π1 ∩Π2 is self-bounded
(A, B)-invariant. 2
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Since Ω is closed by assumption, this property guarantees the
existence, in the family of self-bounded (A, B)-invariant sets
contained in Ω, of an infimal element (an element which is
contained in all the other elements):

C∞(Ω)
4
=

infimal self-bounded (A, B)-invariant set
contained in Ω.

C∞(Ω) is the set defined by the intersection of all self-
bounded (A, B)-invariant sets in Ω. It should be noticed that
C∞(Ω) cannot be empty as it was assumed that the origin
belongs to any self-bounded set.

Theorem 4.1 Consider the following sequence of sets:

C0 = {0},
Ci+1 = {x ∈ C∞(Ω) : ∃xi ∈ Ci, ui :

x = Axi + Bui}.
(6)

The infimal self-bounded (A, B)-invariant set contained in Ω
is given by: C∞(Ω) = limi→∞ Ci (i = 0, 1, 2, ...).

Proof: First we prove, by induction, that Ci ⊂ Ci+1 ∀i =
0, 1, 2, ... Suppose Ci−1 ⊂ Ci. Then, it is clear that any x ∈
C∞(Ω) such that there exist xi ∈ Ci−1 and ui for which
x = Axi + Bui belongs to Ci+1. In other words, any x ∈ Ci

belongs to Ci+1. Therefore, if Ci−1 ⊂ Ci then Ci ⊂ Ci+1.
Since clearly C0 ⊂ C1, then, by induction, Ci ⊂ Ci+1 ∀i =
0, 1, 2, ...

Consider now an admissible trajectory starting from x(0) ∈
C∞(Ω). A trajectory will be said to be admissible if it does
not leave Ω (hence C∞(Ω)) ∀k > 0. Since Ci ⊂ C∞(Ω)
∀i = 0, 1, 2, ... then x(0) ∈ Ci for some i. Hence, x(1) ∈
Ci+1 ⊂ C∞(Ω). Therefore, any admissible trajectory is such
that x(k) ∈ C∞(Ω) ∀k > 0. This proves that C∞(Ω) is
self-bounded (A, B)-invariant.

Let now C ⊂ Ω be an arbitrary self-bounded (A, B)-invariant
set, and suppose Ci ⊂ C for some i. Then, Axi + Bui ∈ C
∀xi ∈ C, ui such that Axi + Bui ∈ C∞(Ω). Therefore, x =
Axi +Bui ∈ C ∀xi ∈ Ci, ui such that Axi +Bui ∈ C∞(Ω).
Hence, any x ∈ Ci+1 also belongs to C. Therefore, Ci ⊂ C
∀i hence C∞(Ω) ⊂ C. This proves that C∞(Ω) is infimal. 2

Ci is the set of states which can be reached from the origin
in i steps by means of a control sequence such that x(k) ∈
C∞(Ω) ∀k ≥ 0. Therefore, one can conclude that C∞(Ω)
is the set of reachable states from the origin inside C∞(Ω).
It can be also noticed that Ci+1 is the projection of I(Ci, Ω)
onto the state space <n.

The focus is now turned towards the computation of C∞(Ω)
when Ω is a polyhedral set represented by R[W, ζ] and
C∞(Ω) = R[V, ν]. Let the set Ci be given by: Ci = {x :

Gix ≤ ρi}. >From (6), the set Ci+1 is then given by:

Ci+1 = {x : ∃xi, ui : x − Axi − Bui = 0,
Gixi ≤ ρi, V x ≤ ν} .

The relations defining Ci+1 can be written in the following
matrix form:









I
−I
0
V









x +









−A −B
A B
Gi 0
0 0









[

xi

ui

]

≤









0
0
ρi

ν









. (7)

The dependency on xi and ui in the definition of Ci+1 can
be eliminated as follows. Let the rows of matrix T =
[

T+

1 T−

1 T2

]

form a minimal generating set of the polyhe-
dral cone defined by the vectors w =

[

w+

1 w−

1 w2

]

, with

w1
+, w1

−, w2 ≥ 0, such that:
[

w+

1 w−

1 w2

]





−A −B
A B
Gi 0



 =

[

0 0
]

. Then, from application of Farkas’ Lemma
(Schrijver, 1987; Dórea and Hennet, 1999), ∃xi, ui such
that the first three inequalities in (7) are verified if

and only if
[

T+

1 T−

1 T2

]









I
−I
0



x −





0
0
ρi







 ≤ 0

. Therefore, the set Ci+1 is given by: Ci+1 =
{

x :

[

T+

1 − T−

1

V

]

x ≤

[

T2ρi

ν

]}

.

As shown in (Keerthi and Gilbert, 1987), it is possible to
compute matrix T by means of Fourier-Motzkin elimination
technique (Schrijver, 1987).

After suppression of redundant constraints, the polyhedral
set Ci+1 can be written in the form: Ci+1 = {x : Gi+1x ≤
ρi+1}. Algorithm (6) is then run until Ci+1 = Ci up to a
given accuracy. Since all the sets in question are polyhedra,
this test can be performed via linear programming through
application of Farkas’ Lemma (Hennet, 1995).

If Ω = R[W, ζ] is an unbounded symmetrical polyhedron,
then the set C∞(Ω) can have infinite directions as well.
In this case, the preceding procedure is not able to com-
pute C∞(Ω). One is then led to decompose its computation
by “subtracting” from Ω the minimal self-bounded (A, B)-
invariant subspace contained in ker(W ) and applying the al-
gorithm above to a polyhedron defined on a reduced order
space (see (Dórea and Hennet, 1999) for further details).

5 CONSTANT REFERENCE TRACKING
UNDER STATE CONSTRAINTS

The goal now is to determine conditions under which it is
possible to compute a control law u(k), k = 0, 1, · · · such
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that the output y(k) tracks a constant reference signal r,
respecting at the same time the state constraints, that is, for

all x(0) ∈ Ω:

{

lim
k→∞

y(k) = r,

x(k) ∈ Ω ∀k ≥ 0.

The first specification can be achieved only if r = Cx̄,
where x̄ is an equilibrium point, that is, there exists a ū such
that:

x̄ = Ax̄ + Bū.

Let NB be a matrix whose rows form a basis for the left null
space of matrix B. The set of equilibrium points is then given
by:

{x̄ : NB(I − A)x̄ = 0}.

Also, it is clear from the development of the preceding sec-
tions that the second specifications can be achieved only if:

x̄ ∈ C∞(Ω).

Indeed, if x̄ /∈ C∞(Ω), then, for some x(0) ∈ Ω, any con-
trol law such that limk→∞ x(k) = x̄ would violate the con-
straint x(k) ∈ Ω. Moreover, if x̄ ∈ C∞(Ω) but x̄ /∈ C∞(Ω),
then, due to the self-boundedness of C∞(Ω), for any x(0) ∈
C∞(Ω) ⊂ Ω, x̄ is not reachable from trajectories which re-
spect the state constraints.

Therefore, the set of trackable constant references is given
by:

YR =

{

r : r = Cx̄, with
NB(I − A)x̄ = 0
x̄ ∈ C∞(Ω)

}

.

Consider now the polyhedral case, for which:

Ω = R[W, ζ] = {x : Wx ≤ ζ}, ζ ≥ 0,
C∞(Ω) = R[G, ρ] = {x : Gx ≤ ρ}.

In this case:

YR = {r : ∃x̄ : r − Cx̄ = 0,
NB(I − A)x̄ = 0, Gx ≤ ρ}.

The relations defining YR can be written in the following
matrix form:













I
−I
0
0
0













r +













−C
C

NB(I − A)
−NB(I − A)

G













x̄ ≤













0
0
0
0
ρ













. (8)

Let the rows of matrix U =
[

U+

1 U−

1 U+

2 U2 U3

]

form a minimal generating set of the polyhedral cone

defined by the vectors u =
[

u+

1 u−

1 u+

2 u−

2 u3

]

,
with u1

+, u1
−, u2

+, u2
−, u3 ≥ 0, such that:

[u1
+ u1

− u2
+ u2

− u3]













−C
C

NB(I − A)
−NB(I − A)

G













x̄ = 0.

Then, from application of Farkas’ Lemma, ∃x̄ such that (8)
is verified if and only if:

[U+

1 U−

1 U+

2 U2 U3]

























I
−I
0
0
0













r −













0
0
0
0
ρ

























≤ 0.

Therefore, the set YR is the polyhedron given by:

YR =
{

r : (U+

1 − U−

1 )r ≤ U3ρ
}

.

The focus is now turned towards the computation of a control
law which forces the system to track a given reference r ∈
YR.

It is well known that the trajectory of a system can be con-
fined in an (A, B)-invariant polyhedron through a piece-
wise linear state feedback control law u(k) = φ(x(k))
(Blanchini, 1994; Dórea and Hennet, 1999). If the polyhe-
dron is contractive, then under this control law x(k) → 0
when k → ∞.

In (Blanchini and Miani, 2000) it is shown that a control
law which achieves asymptotic tracking can be derived from
φ(x) by applying a translation to the state and control vari-
ables, so that the new variables are given by: x̂ = x − x̄,
û = u − ū. Clearly, a control law such that x̂(k) → 0
achieves x(k) → x̄ (thus y(k) → r) when k → ∞.

6 NUMERICAL EXAMPLE

Consider the system (1) for which:

A =

[

−0.8 0.2
0.5 −0.9

]

, B =

[

0
1

]

,

C =
[

1 −1
]

,

and the set of state constraints Wx(k) ≤ ζ with

W =













0.2 0.2
−1 −1
−1 0.35
0.25 −0.5
0.6 0.1













, ζ =













1
1
1
1
1













.
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The computation of the supremal (A, B)-invariant set con-
tained in Ω = R[W, ζ] results in C∞(Ω) = R[V, ν], with:

V =

[

W
3.0857 −0.7714

]

, ν =

[

ζ
3.8571

]

.

The application of the algorithm presented for computation
of the infimal self-bounded (A, B)-invariant set contained in
Ω yields C∞(Ω) = R[G, ρ] with:

G =

















0.2 0.2
−1 −1
−1 0.35
0.25 −0.5
17.5 0

−5.7143 0

















, ρ =

















1
1
1
1

13.8095
5.4422

















.

The sets Ω, C∞(Ω), C∞(Ω) are shown in Figure 1.
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Figure 1: {0} ⊂ C∞(Ω) ⊂ C∞(Ω) ⊂ Ω.

The computation of the set of admissible reference signals
gives:

YR = {r : −3.7209 ≤ r ≤ 0.8}.

For r = 0.5, the corresponding x̄ and ū are:

x̄ =

[

−0.0625
−0.5625

]

, ū = −1.0375.

It turns out that, in this example, closed-loop positive invari-
ance of C∞(Ω) can be achieved through linear state feedback
u(k) = Fx(k) (see in e.g. (Hennet, 1995) details on how it

−1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

5

C∞(Ω)

Ω

Figure 2: Ω, C∞(Ω), admissible x̄ and the trajectory of the
state.

can be checked via linear programming). Then, the appli-
cation of the procedure based on variable translation, sug-
gested in (Blanchini and Miani, 2000) for the computation of
a control law such that the system can track r = 0.5, gives
the linear state feedback: u(k) = F (x(k) − x̄) + ū, with
F =

[

0.0079 0.8178
]

.

In Figure 2 the sets Ω, C∞(Ω) and the set of admissible x̄ are
shown, as well as a trajectory of the state under the control
law computed above, with null initial state. In Figure 3 the
response y(k) is shown.

It can be noticed that in this example x̄ and ū are unique for
the given reference r. However, this is not true in the general
case. As suggested by one of the reviewers, this freedom on
the choice of x̄ and ū could be used to optimize the compu-
tation of the tracking control law, in the sense of achieving
other control goals.

7 CONCLUSIONS

This work presented the concept of self-bounded (A, B)-
invariant sets of the state space for discrete-time systems.
The existence of such sets implies limitations in the control-
lability of trajectories confined in a given set. Self-bounded
polyhedral sets were geometrically and analytically charac-
terized.

Given a convex region, there exists a self-bounded set which
is contained in any other self-bounded set in this region. If a
trajectory completely contained in the region starts from this
infimal set, then it will not exit it. Such an infimal set was
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Figure 3: Time response y(k).

characterized and a numerical method was presented for its
computation in the polyhedral case.

Finally, it was shown how this concept can be applied in the
study of a tracking problem for state constrained linear sys-
tems. The set of the constant reference signals which can be
tracked was then characterized.

Although only state constraints have been treated here, as
shown in (Dórea and Hennet, 2000), control constraints as
well as persistent disturbances can be easily casted in the pre-
sented framework.
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