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ABSTRACT

This paper proposes a new scheme for direct neural
adaptive control that works efficiently employing only
one neural network, used for simultaneously identifying
and controlling the plant. The idea behind this struc-
ture of adaptive control is to compensate the control
input obtained by a conventional feedback controller.
The neural network training process is carried out by
using two different techniques: backpropagation and ex-
tended Kalman filter algorithm. Additionally, the con-
vergence of the identification error is investigated by
Lyapunov’s second method. The performance of the
proposed scheme is evaluated via simulations and a real
time application.

KEYWORDS: Adaptive control, backpropagation, con-
vergence, extended Kalman filter, neural networks, sta-
bility.

RESUMO

Este artigo propoe uma nova estratégia de controle
adaptativo direto em que uma tnica rede neural é
usada para simultaneamente identificar e controlar uma
planta. A motivacido para essa estratégia de controle
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adaptativo é compensar a entrada de controle gerada
por um controlador retroalimentado convencional. O
processo de treinamento da rede neural é realizado atra-
vés de duas técnicas: backpropagation e filtro de Kalman
estendido. Adicionalmente, a convergéncia do erro de
identificagao é analisada através do segundo método de
Lyapunov. O desempenho da estratégia proposta é ava-
liado através de simulacoes e uma aplicagdo em tempo
real.

PALAVRAS-CHAVE: Backpropagation, controle adapta-
tivo, convergéncia, estabilidade, filtro de Kalman esten-
dido, redes neurais.

1 INTRODUCTION

Different neural networks topologies have been intensi-
vely trained aiming at control and identification of non-
linear plants (Agarwal, 1997; Hunt et al., 1992). The
neural networks usage in this area is explained mainly
by their following capability: flexible structure to model
and learn nonlinear systems behavior (Cibenko, 1989).
In general, two neural networks topologies are used: fe-
edforward neural networks combined with tapped delays
(Hemerly and Nascimento, 1999; Tsuji et al., 1998) and
recurrent neural networks (Sivakumar et al., 1999; Ku
and Lee, 1995). The neural network used here belongs
to the former topology.

In this paper, one neural network is used for simultane-
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ously identifying and controlling the plant and the un-
certainty can be explicitly identified. The idea behind
this approach of direct adaptive control is to compen-
sate the control input obtained by a conventional feed-
back controller. A conventional controller is designed
by employing a nominal model of the plant. Since the
nominal model may not match the real plant, the perfor-
mance of the nominal controller previously designed will
not be adequate in general. Thus the neural network,
arranged in parallel with the feedback conventional con-
troller, identifies the uncertainty explicitly and provides
the control signal correction so as to enforce adequate
tracking.

For some other neural direct adaptive control schemes
the neural network is placed in parallel with the feedback
conventional controller as has been presented (Kraft and
Campanha, 1990; Kawato et al., 1987). The scheme pro-
posed here differs from these results, in the sense that
the neural network aim at improving and not replacing
the nominal controller. Additionally, Lightbody and
Irwin (1995) proposed a neural adaptive control scheme
where the neural network is arranged in parallel with
a fixed gain linear controller. The main difficult of this
scheme is to update the neural network weights by using
the error calculated between the real plant and the refe-
rence, in other words, the problem known as backpropa-
gation through the plant (Zurada, 1992). In this case,
the convergence of the neural network identification er-
ror to zero is often more difficult to be achieved (Cui
and Shin, 1993). This problem does not appear here.

Although our approach is similar to that used by Tsuji
et al. (1998), it has three main advantages (Cajueiro,
2000): (a) while their method demands modification in
the weight updating equations which is computationally
more complicated, our training procedure can be perfor-
med by a conventional feedforward algorithm; (b) while
their paper presents a local asymptotic stability analysis
of the parametric error for the neural network trained
by backpropagation algorithm where the nominal mo-
del must be SPR, that analysis can also be applied to
our scheme without this condition; (c) their scheme can
be only applied for plants with stable nominal model,
which is not the case here.

This paper is organized as follows. In section 2, the con-
trol scheme and the model of the plant are introduced.
In section 3 the model of the neural network is descri-
bed and in section 4 the convergence of the NN based
adaptive control is investigated. In section 5 some si-
mulations are conducted. Finally, in section 6 a real
time application is presented. Section 7 deals with the
conclusion of this work.

2 PLANT MODEL AND THE PROPO-
SED ADAPTIVE CONTROL SCHEME

2.1 Plant Model with Multiplicative Uncer-
tainties

We firstly consider the case in which the controlled plant
presents multiplicative uncertainty (Maciejowski, 1989).
Consider the SISO plant

y(k) = G(z~")u(k) (1)

Let G,,(27 1) be the nominal model and AG,,(271) the
multiplicative uncertainty, i.e.,

G(z™) =Gu(z"H[1 + AG(z71)] (2)

where G,,(271) and AG,,(271) are given as

6ol = ®

being B, (27 1) is Hurwitz,

2.2 Proposed Adaptive Control Scheme

We start by designing the usual feedback control system.
If there is no uncertainty, i.e., AG,,(271) = 0 in (2),
then the nominal feedback controller C,(z~!) can be
designed to produce the desirable performance.

Now, let us consider the general case in which
AG,,(z71) # 0. Hence the controller must be modi-
fied accordingly, i. e.,

Clz) 2 Cu(z Y1 + AC (=7 Y)] (5)

It is easy to prove that

AG,(z71)

-1
A0 = T AG, )

(6)

is the controller correction necessary to enforce the de-
sired performance (Tsuji et al., 1998).

However, AG,,(z7!) is unknown, hence AC,,(z71) can
not be calculated in (6), and then the controller (5) is not
directly implementable. In order to circumvent this dif-
ficulty, we propose the NN based scheme for identifying
the uncertainty AG,,(2~!) shown in Fig. 1.
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Figura 1: Block diagram of the proposed NN based
adaptive control scheme.

Definition 1: y,(k), the output of the nominal model,
is given by

Yn(k) = Gn (2™ )u(k) (7)

Definition 2: Ay, (k), the filtered mismatch between
the plant output and its nominal model output denoted
by y(k) and y, (k) respectively, is given by

Ay (k) EAG, (27 u(k)

=G, (=) - (y(k) = yn(k))
=G, (=) - y(k) — u(k) (8)

Definition 3: u(k), the control input, from (5) can be
written as

k) = C(z™ )1 + ACH (= )]e(k) = up (k) + Auy (k)

(9)
where
un (k) = Cn(z_l)e(k) (10)

is the nominal control signal and

Aty (k) = AC (27 un (k) (11)

is the control signal modification.

Definition 4: ¢(k), the identification error, is given by
E(k) = Aym(k) - Aym(k) (12)

From (1), (2), (7) and (8) the output of the plant is
given by
y(k) =G (271 + AG (27 )]u(k)

=yn(k) + Gn (2 Aym (k) (13)

Now, from (9) and (13) we get
Ay (k) :AGm(z_l)[un(k) + Au (k)]
=AG (271 + AC,, (k)]un(k)

and from (9) and (14), the control signal correction
Au,, (k) can be rewritten as

AC,, (271

(14)

Aum(k) = R + acaz o v B (19)
By replacing (6) into (15), we obtain
At (k) = —Aym (k) (16)

Moreover, if ¢ — 0, from equations (12) and (16) then
AGm (k) = Aym (k) = —Aup (k).

On the other hand, from equations (1), (2), (8) and (16),
one should write

y(k) =yn (k) + Gn(z™") Ay (k)
=Gy(z~ )( n(k) + Aup (k) + Gr(z™ )Aym(k)
=G (27" (un(k) = Aym (k) + Gu(z™") Ay (k)
=G (2" )un(k) (17)

Remark 1: It is clear from (17) that if ¢ — 0 then
the control scheme will behave as desired. Therefore,
from (10) it is obvious that the nominal controller signal
converges to the nominal controller signal obtained by
controlling the nominal plant.

Remark 2: The neural network here is a direct model
of the uncertainty AG,,(z7!) and is aiming at approxi-
mating the uncertainty output Ay, (k).

Remark 3: In spite of the nominal model minimum
phase restriction this scheme of adaptive control can also
be applied to non-minimum phase systems. It depends
on the neural network ability for identifying the uncer-
tainty arising from a non-minimum phase plant modeled
by a minimum phase nominal model.

Remark 4: Although this neural adaptive control
scheme is developed to compensate the nominal con-
troller signal of plants with multiplicative uncertainty,
it also can compensate other type of non structured un-
certainty. Consider, for instance, the additive case

Gz = Gn(z7Y) + AG (27 (18)

Since the nominal model is non minimum phase, from
(2) and (18), we conclude that there is always a cor-
respondent multiplicative uncertainty for the additive
uncertainty given by (18).
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On the other hand, although equations (16) and (17)
can only be applied for linear plants, this scheme of
neural adaptive control also presents good performance
when applied for nonlinear plants (Cajueiro and He-
merly, 2000).

3 NEURAL NETWORK TOPOLOGY

The neural network topology used here is a feedforward
one combined with tapped delays. The training process
is carried out by using two different techniques: back-
propagation and extended Kalman filter. The two ap-
proaches used to train the neural network are justified
due to the slow nature of the training with the standard
backpropagation algorithm (Sima, 1996; Jacobs, 1988).
Thus the neural network trained via extended Kalman
filter can be useful in more difficult problems.

The input of the neural network is defined as follows

OI(k)=[ u(k—1) u(k— P, )
Aym(k—1) Ay (k = Pay,.) 17 (19)
where Ay, (k—1) Ay (k — Ppy,,) is calcula-

ted by using (8) and the cost function is defined, from
(12) as

T() = 56 = S (A (k) ~ Ag(R)?  (20)

3.1 Learning Algorithm Based on the Ex-
tended Kalman Filter

The Kalman filter approach for training a multilayer
perceptron considers the optimal weights of the neural
network as the state of the system to be estimated and
the output of the neural network as the associated mea-
surement. The optimal weights are those that minimize
the cost J(k). The weights are in general supposed to be
constant, and the problem boils down to a static estima-
tion problem. However, it is often advantageous to add
some noise, which prevents the gain from decreasing to
zero and then forces the filter to continuously adjusting
the weight estimates. Therefore, we model the weights
as
wlk +1) = wk) + v (k),
E[vw(i)vw(j)T] = va(s(i _j) (21)

The measurements of the system are assumed to be some
nonlinear function of the states corrupted by zero-mean
white Gaussian noise. Thus, the observations of the

system are modeled as
(k) = h(w(k), D' (K)) + vgo (k) E[vgo (i)vgo (5)"]
= Ppod(i — j), (22)
The extended Kalman filter equations associated to pro-

blem (19) and (20) are (Singhal and Wu, 1991)

w(k+ 1) = (k) + K(k)e(k)
P(k+1) = P(k) — K(k)H(k)P(k) + P,,

where K (k) is the Kalman filter gain given by

K (k) = P(k)H (k)" [H (k)P (k) H (k)" + Py, o]7" (25)

T
8<I>O(k)] )

10 = i

w(k) = (k)

There are some local approaches (Iiguni et al., 1992;
Shah et al., 1992) for implementing the extended Kal-
man filter to train neural networks in order to reduce
the computational cost of training. Since we are using
small neural networks, this is not an issue here. Then,
we consider only the global extended Kalman algorithm,
more precisely, the approach known by GEKA - Global
Extended Kalman Algorithm (Shah et al., 1992).

3.2 The Standard Backpropagation Algo-
rithm

The standard backpropagation algorithm is a gradi-
ent descent method for training weights in a multilayer
preceptron that was popularized by Rumelhart et al.
(1986). The basic equation for updating the weights is

Aib(k) = —ne(l) gk = ne(h)

0O (k)
duw (k)

(27)

From (23) — (26), it can be seen that the extended Kal-
man filter algorithm reduces to the backpropagation al-
gorithm when

[H(k)P(k)H (k)" + P,)7! = al (28)
P(k) = pI (29)

and nis given by
n=p-a (30)

See Ruck et al. (1992) for more details.
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4 STABILITY AND CONVERGENCE
ANALYSIS

The stability analysis is divided into two parts: (a) the
study of the influence of the neural network in the con-
trol system stability when the nominal controller em-
ployed to control the real plant is analyzed; (b) the inves-
tigation of the conditions under which the identification
error of the neural network asymptotically converges to
zero are investigated.

4.1 Control System Stability

The closed loop equation that represents the control sys-
tem shown in Fig.1, without considering the dynamics
uncertainty and the output of the neural network, is

Gn(z7HC,(z7h)

y(k) = 1 TGz D)Cn(z )

r(k) (31)

It represents a stable system, since C,,(z7!) is properly

designed.

By considering now the introduction of the uncertainties
and the control signal correction via NN, from Fig. 1
we get

(1+AG,, ( 1))Gn( ) i
(1+AGu (=~ >> < )Gl >
L+ (1+AG (27 1)Gn(271)C (2~ )T(k) 32

Since ®° (k) = tanh(e), where tanh(e) is the hyperbo-
lic tangent function, and r(k) are bounded, in order to
guarantee the stability we have to analyze under which
conditions the denominator of (32) is a Hurwitz poly-
nomial, when the denominator of (31) also is. These
conditions can be found in a very general result, known
as the small gain theorem, which states that a feedback
loop composed of stable operators will certainly remain
stable if the product of all the operator gains is smaller
than unity. Therefore, if a multiplicative perturbation
satisfies the conditions imposed by the small gain theo-
rem, then one should assert that e(k), given by equation
(12), is bounded. Since ®7 (k) and ®°(k), the output of
the neural network layers, depend on the weights whose
boundedness depends on the boundedness of e(k), it is
clear that the boundedness of (k) is the first condition
for the output of the neural network layers, 7 (k) and
@O(k), not saturating. If saturation happens, then in
(26) H(k) = 0 and we can not conclude, as in section
4.2, that the identification error converges asymptoti-
cally to zero.

4.2 ldentification Error Convergence

We start by analyzing the conditions under which the
neural network trained by Kalman filter algorithm gua-
rantees the asymptotic convergence of the identification
error to zero. Next, we show that a similar result is va-
lid for the neural network trained by backpropagation
algorithm.

Theorem 1: Consider that the weights w(k) of a mul-
tilayer perceptron are adjusted by the extended Kalman
algorithm. If w(k) € Lo, then the identification error
(k) converges locally asymptotically to zero.

Proof:

Let V (k) be the Lyapunov function candidate, which is
positive definite, given by

(33)

Then, the change of V (k) due to training process is ob-
tained by
(k+1) — (k)]

AV (k) = %[52 (34)

On the other hand, the identification error difference
due to the learning process can be represented locally
by (Yabuta and Yamada, 1991)

T 20 T
Ac(k) = {g;((?)} A (k) = 8;; (g;) Ai(k) (35)
From equations (21) and (33),
OO (k) r
Ae(k) = — 3 k) Aw(k) =
—H(k)K(k)e(k) = —QEerre(k) (36)
where
Qercr (k)= H(k)K (k) (37)

and it can be easily seen that 0 <
then, from (32) and (34),

QEKF(k) < 1 and

AV (k) = 2e(k)Ac(k) + Ae?(k) =

—&2(k)(2Qexr (k) — QExp (k) (38)

From (38) follows that for asymptotic convergence of
e(k) to zero we need only Qgrr(k) # 0. Now, from
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(37) a sufficient condition for this is H(k) # 0. On
the other hand, (26) implies this only occurs when the
weights are bounded. However, this can not be proved
to happen, since the Lyapunov candidate function does
not explicitly include the weight error. This depends on
the proper choice of the neural network size and initial
parameters. Hence, we have to assume that the neural
network size and initial parameters have been properly
selected. This difficulty is also present, although disgui-
sed, in Ku and Lee (1995) and Liang (1997).

Corollary 1: Consider that the weights w(k) of a mul-

tilayer perceptron are adjusted by the backpropagation

algorithm. If w(k) € Lo and 0 < 7 < W , where
ow (k)

9 (k) is the output of the neural network, then the iden-

tification error (k) converges locally asymptotically to

Zero.

Proof:

The convergence of the identification error of a neural
network trained by backpropagation algorithm is a spe-
cial case of the above result. More precisely, by consi-
dering equations (25), (28) - (30), one can arrive at an
equation similar to (37), with

2

09° (k
and the correspondent variation in V' (k) is
AV (k) = —e*(k)(2Qpr(k) — QEp(K))  (40)

Equation (40) states that the convergence of the identi-
fication error for the neural network trained by backpro-

. . 999 (k)
pagation method is guaranteed as long as || & 0 #0
, and

0<n<

(41)

el
dw(k)

so as to enforce AV (k) < 0 in (40) when (k) # 0.

Remark 5: Although (38) and (40) have the same
form, the conditions for the identification error conver-
gence are more restrictive when the backpropagation al-
gorithm is used, since an upper bound in the learning
rate is required, given by (41), as we should have expec-
ted.

Remark 6: Since the candidate Lyapunov function gi-
ven by equation (33) does not include the parametric
error w(k) = w*(k) — w(k), even if there were an opti-
mal set of parameters, the convergence of w(k) to zero
would depend on the signal persistence.

Remark 7: Since (40) is a quadratic equation, a bigger
learning rate 1 does not imply that there is a faster
learning.

5 SIMULATIONS

In this section, simulations of two different plants are
presented to test the proposed control scheme. We start
by considering a linear plant to which can be applied
equations (16) and (17). Next, a non-BIBO nonlinear
plant is used as a test. Moreover, the stability of this
control system can not be assured, since the nominal
controller designed by using the nominal model results
in an unstable control scheme when it is applied to the
real plant.

5.1 Simulation with Linear Plant

The plant used here has the nominal model given by

~0.01752z71 +0.01534272

Gn(z71) =
() = 163771 4 0.6703:2

(42)

and it is considered the following multiplicative uncer-
tainty

1848271
AG, (=) = 0.18482

= 43
1-0.8521z~1 (43)

Thus, from equations (2), (42) and (43), one should
write the model of the real plant

_ 0.01752271 +0.003642272 — 0.010232 3

Gz H = [
(z7) 1—24921 +2.0662—2 — 0.57122-3
(14)

The nominal controller here is given by

Un (k) = upn(k — 1) + Kp(e(k) — e(k — 1)) + Kre(k)
(45)

with K, = 2.0 and K; = 0.26.

As it can be seen in Fig. 2, although the control system
presents good performance when nominal controller is
applied to the nominal model, the control system is too
oscillatory when the nominal controller is applied to the
real plant.

The input of the neural network is

S'(ky=[uk-1) Aya(k—1)]  (46)

The initial weights were initialized within the range
[ —-0.1 0.1 } The simulation was performed using the
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Control system outputs

—+— Nominal model / Nominal Controller
a5 —— Real plant / Nominal controller

100 200 300 400 500 600 700 800
Time steps

Figura 2: Control systems performance using the nomi-
nal controller

usual backpropagation. The usage of the algorithm ba-
sed on the extended Kalman filter is not justified since
the neural network task here is simple. Fig. 3 shows the
output of the nominal model and the output of the real
plant controlled by the proposed scheme using the back-
propagation algorithm, after few time steps an adequate
performance is achieved.

Fig. 4 shows that the nominal controller signal conver-
ges to the nominal controller signal that would exist if
there was no uncertainty.

Remark 8: Since the plant given by (44) is linear, one
should note that the uncertainty could be identified by
using a linear neural network or a least squares and an
ARX model. This will not occur in section 5.2.

5.2 Simulations with a Non-BIBO Nonli-
near Plant

The nonlinear plant used to test the proposed method is
the one given by Ku and Lee (1995), that is, a non-BIBO
nonlinear plant, linear in the input.

The reference signal is given by
r(k+ 1) = 0.6r(k) + S sin(27k/100) (47)

where 8 = 0.2, and the real plant is given by
y(k+1) = 0.2¢%(k) + 0.2y(k — 1) + 0.4sin[0.5(y (k) +
y(k —1))] - cos[0.5(y(k) + y(k —1))] + 1.2u(k) (48)

This plant is unstable in the sense that given a sequence
of uniformly bounded controls {u(k)}, the plant output

Control system outputs

Al —— Nominal model / Nominal controller
—— Real plant/ Neural controller

100 200 300 400 500 600 700 800
Time steps

Figura 3: Performance of the real plant controlled by the
proposed scheme using the backpropagation algorithm.

Nominal control signals

—=— Nominal model / Nominal controller
-25 L —— Real plant / Neural controller

100 200 300 400 500 600 700 800
Time steps

Figura 4: Nominal control signals.

may diverge. The plant output diverges when the step
input u(k) > 0.83, Vk is applied.

Ku and Lee (1995) employed two DRNNs (Diagonal Re-
current Neural Networks), one as an identifier and the
other as the controller, and an approach based on adap-
tive learning rates to control this system. Their neu-
ral network used as identifier employed 25 neurons and
the one used as controller had 42. Here, we use the
scheme proposed in section 2: the nominal model is that
identified by employing an ARX model, and the neural
network for simultaneous control and identification, has
21 neurons. Although our approach is much simpler and
less computationally expensive than that in Ku and Lee
(1995) and it produces better results.

The nominal model was identified by using Least Squa-
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res and ARX model, thereby resulting

Gle) = 1.21342-1 — 0.612472
" T T0.90612-1 + 0.13562-2

(49)

In this simulation, the nominal controller used is a
proportional-integral controller, given by (45) with
K,=K;=05.

The control system employing the nominal controller for
controlling the real plant (48) results unstable, although
the nominal controller provides good tracking of the re-
ference signal (47) when applied to the nominal model
(49).

The input of the neural network here is also given by
(46).

The initial weights were randomly initialized in the
range [—0.1,0.1]. The simulations were performed by
usual backpropagation and extended Kalman filter using
the same conditions and the same seed for generating the
initial weights. The learning rate used in the first case
was 7 = 1 and the initial data for the second case was
P(0) = 1001, Pgo = P, = 107°.

In Fig. 5, the output of the nominal model controlled by
the nominal controller and the output of the real plant
controlled by the proposed scheme using the backpropa-
gation algorithm are presented. After a hundred time
steps, the control system exhibits adequate tracking.

Fig. 6 shows the control system outputs when the ex-
tended Kalman filter algorithm is used. Since the ex-
tended Kalman filter uses the information contained in
the data more efficiently, the convergence is much faster
than that in Fig. 5.

It should be highlighted here that the speed of conver-
gence in Figs. 5 and 6 is more than 10 times faster than
that reported in (Ku and Lee, 1995).

Remark 9: A comparison between the algorithm based
on the extended Kalman filter and the backpropagation
algorithms can be done as follows: (a) The algorithm
based on the extended Kalman Filter presents better
transient performance, but it is computationally more
expensive; (b) the algorithm based on the extended Kal-
man filter has presented more sensibility to the choice of
its parameters P(0), Pyo and P, than the backpropa-
gation algorithm for the choice of its only one parameter

n.

Control system outputs

—=— Nominal model / Nominal controller
—— Real plant/ NN controller

0 50 100 150 200 250 300
Time steps

Figura 5: Simulation of a nonlinear non-BIBO plant
using backpropagation algorithm.

Control system outputs

-0.6

—— Nominal model / Nominal controller
—— Real plant/ NN controller

-0.8

0 50 100 150 200 250 300
Time steps

Figura 6: Simulation of a nonlinear non-BIBO plant
using extended Kalman filter algorithm.

6 REAL TIME APPLICATION

The real time application employs the Feedback Process
Trainer PT326, shown in Fig. 7, and the scheme pro-
posed in section 2. This process is a thermal process
in which air is fanned through a polystyrene tube and
heated at the inlet, by a mesh of resistor wires. The
air temperature is measured by a thermocouple at the
outlet.

The nominal model used was identified using Least
Squares with ARX model, as in Hemerly (1991), and
is given by

0.0523

_1 _
Gn(=7) = S 5064

(50)
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Polystyrene
Tube

Cold - : Hot
Air h h Air
——> %) 3 3 [— (et )
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Thermocouple
Wires

Figura 7: Set up for real time control of the thermal
process PT326.
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IS 04 L i
0.2 N -
—e— Nominal model / Nominal controller
—— Real plant / Nominal controller
0 L L L L
0 50 100 150 200 250

Time steps

Figura 8: Control system performance using the nomi-
nal controller.

The nominal controller is a proportional-integral con-
troller with Kp = 1 and K; = 1, given by the equation
(45). The input of the neural network is the same as
in (46). The neural network used here is trained using
the backpropagation method. The remaining design pa-
rameters are sampling time 0.3s, learning rate n = 0.05
and the initial weights randomly in the range [—0.1,0.1].

As can be seen in Fig. 8, the nominal controller is such
that the control system presents a too oscillatory beha-
vior. Hence, the introduction of the neural network is
well justified.

In Fig. 9 we can see that the NN controller compen-
sates for the uncertainty, and adequate performance is
achieved after few time steps.

7 CONCLUSIONS

This paper proposed a neural adaptive control scheme
useful for controlling linear and nonlinear plants (Caju-
eiro, 2000; Cajueiro and Hemerly, 2000), using only one
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Figura 9: Control system performance using the NN
based proposed scheme.

neural network which is simultaneously applied for con-
trol and identification. The nominal model can either be
available or identified at low cost, for instance by using
the Least Squares algorithm. The identification perfor-
med by the neural network is necessary only to deal with
the dynamics not encapsulated in the nominal model. If
the proposed scheme is compared to another schemes,
one should consider the following: (a) The approaches
which try to identify the whole plant dynamics can have
poor transient performance. For instance, in Ku and Lee
(1995) the plant described by (48) is identified and more
than three thousand time steps are required. (b) The
neural network control based methods that need to iden-
tify the inverse plant have additional problems. (c) If
more than one neural network has to be used, in general
the convergence of the control scheme is slow and the
neural network tuning is usually difficult. (d) The ap-
proaches that have to backpropagate the neural network
identification error through the plant are likely to have
problems to update the neural network weights.

When compared to Tsuji et al. (1998), the proposed
scheme requires less stringent assumptions. In their lo-
cal stability analysis the SPR condition is required for
the nominal model. Moreover, we can employ an usual
feedforward neural network, which is computationally
less expensive than the one used there. Besides the
scheme proposed here can also be applied to unstable
plants. Additionally, here the asymptotic convergence
of the identification error is analyzed for two different
training algorithms.

The simulations and the real time application highligh-
ted the practical importance of the proposed scheme.
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