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ABSTRACT

The problem of fault detection and isolation (FDI) in coop-
erative manipulators is addressed in this paper. Four FDI
procedures are developed to deal with free-swinging joint
faults, locked joint faults, incorrectly measured joint posi-
tion, and incorrectly measured joint velocity. Free-swinging
and locked joint faults are isolated via neural networks. For
each arm, a Multilayer Perceptron (MLP) is used to repro-
duce the dynamics of the fault-free robot. The outputs of
each MLP are compared to the actual joint velocities in or-
der to generate a residual vector which is then classified by
an RBF network. The remaining faults are isolated based on
the kinematic constraints imposed on the cooperative system.
Results obtained via simulations and via an actual coopera-
tive manipulator robot are presented.

Keywords: Fault Detection, Fault Isolation, Robotic Manip-
ulators, Co-operation, Neural Networks.

1 INTRODUCTION

The actuation areas of Robots have been spreading from in-
dustries and laboratories into hospitals, deep sea, outer space,
nuclear facilities, and other hazardous, unstructured, or hard-
to-reach environments. In these environments, robots are
employed to avoid the exposition of human beings to dan-
ger or because of the reliability of robots in executing repet-
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itive tasks. However, faults in robots, which are not unusual
due to their inherent complexity, can put at risk the robot, its
mission, and the working environment.

There are several sources of faults in robots, such as elec-
trical, mechanical, hydraulic, and of software (Visinsky
et al., 1994). There are good reasons to research and to de-
velop fault detection and isolation (FDI) systems for robots,
in particular to improve their safety to work among humans.

Robotic systems with kinematic or actuation redundancy are
interesting in applications where the fault problem should be
addressed because the number of degrees of freedom (dof) in
these systems is greater than the dof required to manipulate
the load. Actuation redundancy can be found in only closed-
link mechanisms as cooperative systems formed by two or
more arms (Nakamura, 1991). As in the humans, where the
use of two arms presents an advantage over the use of only
one arm in several cases, two or more robots can execute
tasks that are difficult or even impossible for only one robot
(Vukobratovic and Tuneski, 1998). Examples of such tasks
include the manipulation of heavy, large or flexible loads,
assembly of structures, and manipulation of objects that can
slide from only one robot end-effector.

Actuation redundancy makes the use of cooperative robots
in unstructured or hazardous environments very appealing.
However, as cited before, FDI is crucial in these environ-
ments. Because of the dynamic coupling of the joints, in-
ertia, and gravitation, the faulty arms can quickly accelerate
into wild motions that can cause serious damage (Visinsky
et al., 1994). Furthermore, as the controller is not projected
to operate with faults, the squeeze forces can increase caus-
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ing damage to the load and instability in the cooperative sys-
tem (Tinós et al., 2006).

This work develops an FDI scheme for cooperative robots
rigidly connected to an undeformable load based on pro-
cedures to isolate four kind of faults: free-swinging joint
faults (FSJFs), locked joint faults (LJFs), incorrectly mea-
sured joint position faults (JPFs), and incorrectly measured
joint velocity faults (JVFs). The faults are detected and iso-
lated as follows:

a) JPFs and JVFs are detected and isolated based on kine-
matics constraints imposed by the closed kinematic chain. If
the number of armsm in the cooperative system is greater
than two (m > 2) and supposing that only one fault occurs
each time, the manipulator with the wrong measurement can
be direcly detected by checking the estimates of the load po-
sition (or velocity for JVFs) obtained for each arm. Then, the
estimate of each joint position (or velocity for JVFs) of the
faulty arm is computed and compared to its measurement in
order to isolate the fault. Ifm = 2, the arm with the wrong
measurement cannot be identified just by checking the esti-
mate of position (or velocity) of the load obtained for each
arm. In this case, the estimate of the joint position (or veloc-
ity) should be done for all arms.

b) FSJFs and LJFs are detected by artificial neural networks
(ANNs). The dynamics of the arms are mapped by Multi-
layer Perceptrons (MLPs), which produces outputs that are
compared to actual velocity measurements in order to gener-
ate the residual vector. Then, a Radial Basis Function Net-
work (RBFN) is utilized to classify the residual vector.

This paper is organized as follows: Section 2 describes the
kinematics and dynamics of cooperative manipulators; Sec-
tion 3 describes the FDI system; Section 4 presents the re-
sults of the FDI system in simulations and in an actual co-
operative robot with two arms; finally, the conclusions are
presented in Section 5.

2 COOPERATIVE MANIPULATORS

The equation of motion for thei-th arm in a fault-free multi-
robot system withm robots rigidly connected to an unde-
formable load is given by

Mi(qi )q̈i +gi(qi )+Ci(qi , q̇i)q̇i = τ i −Ji(qi)
Thi (1)

whereqi is the vector of joint angles of armi, i = 1, . . . ,m,
τ i is the vector of applied torques at the joints of armi,
Mi(qi) is its inertia matrix,Ci(qi , q̇i) is its matrix of cen-
trifugal and Coriolis terms,gi(qi) is its vector of gravita-
tional terms,Ji(qi) is the geometric Jacobian (from joint
velocity to end-effector velocity) of armi, hi = [fT

i ηT
i ]T is

the force vector at the end-effector of armi, fi is the vector of

spatial forces at the end-effector of armi, andηi is the vec-
tor of torques at the end-effector of armi; the friction terms
were not shown for simplicity. The combined dynamics of
all arms can be written in only one equation as

M(q)q̈ + g(q) + C(q, q̇)q̇ = τ − J(q)Th (2)

whereq = [qT
1 qT

2 . . . qT
m ]T, τ = [τT

1 τT
2 . . . τT

m ]T, h =
[hT

1 hT
2 . . . hT

m ]T, M(q) is formed by the individual inertia
matrices of the arms,C(q, q̇) is formed by the individual
centrifugal and Coriolis matrices of the arms,g(q) is formed
by the individual gravitational terms of the arms, andJ(q) is
formed by the termsJi(qi ) for i = 1, . . . ,m.

The equation of motion for the manipulated object (load) is
given by

Mov̇o + bo(xo,vo) = Jo(xo)Th (3)

wherexo = [pT
o

φT
o
]T is thek-dimensional vector of po-

sition and orientation at the origin of the frame attached to
the center of mass of the load (frame CM),po is the vector
of load position,φ

o
is the minimal representation of orienta-

tion of the load,vo = [ṗT
o

ωT
o
]T is the vector of linear and

angular velocities of the load,bo is the vector of centrifu-
gal, Coriolis, and gravitational terms,Mo is the load inertia

matrix, andJo(xo) =
[

Jo1 (xo)T . . . Jom(xo)T
]T

,
whereJoi(xo) converts velocities of the load into velocities
of the end-effector of armi. In the three-dimensional space,
po= [xo yo zo]

T, and either Euler angles or RPY (Roll-
Pitch-Yaw) angles can be chosen as the minimal representa-
tion of the load orientation, i.e.,φ

o
= [ϕo υo ψo]

T. The ve-
locitiesvo can be calculated byvo = T(xo)ẋo (Sciavicco
and Siciliano, 1996), whereT(xo) is a transformation ma-
trix used to relate the angular velocities to the derivative of
the minimal representation of the orientation (euler angles
or RPY angles) in the 3-dimensional space (T(xo) = I for
planar manipulators, whereI is the identity matrix).

As it is possible to compute the positions and orientations
of the load using the positions of the joints of any arm of
the cooperative system, the following kinematic constraint
appears

xo = ϕ1 (q1 ) = ϕ2 (q2 ) = . . . = ϕm(qm) (4)

whereϕi(qi) is the vector of the position and orientation of
the load computed via the joint positions of armi, i.e., the
direct kinematics of armi. The velocities of the load are
constrained by

vo = D1 (q1 )q̇1 = D2 (q2 )q̇2 = . . . = Dm(qm)q̇m (5)

whereDi(qi ) = Joi(xo)−1Ji(q) is the Jacobian relating
joint velocities of armi and load velocities. It is important to
observe that the matrixJoi(xo) is nonsingular.
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The squeeze forces are given by (Wen and Kreutz-Delgado,
1992)

hos = Ps(xo)h (6)

where the matrixPs(xo) transforms forces and torques in
the end-effectors into squeeze forces in the load.

Several solutions have been proposed to deal with the control
problem in fault-free cooperative manipulators rigidly con-
nected to an undeformable load as the master/slave strategy
(Luh and Zheng, 1987), the optimal division of the load con-
trol (Carignan and Akin, 1988), (Nahon and Angeles, 1992),
the definition of new task objectives or variables (Koivo and
Unseren, 1991), (Caccavale, 1997), and the hybrid control of
motion and squeeze in the object (Uchiyama, 1998), (Wen
and Kreutz-Delgado, 1992), (Bonitz and Hsia, 1996).

3 FDI SYSTEM

The FDI system is proposed based on the following faults:
FSJF, where an actuation loss occurs in one arm joint
(English and Maciejewski, 1998); LJF, where one arm joint
is locked (Goel et al., 2004); JPF, where the measurement
of the joint position is not correct (Notash, 2000), and JVF,
where the measurement of the joint velocity is not correct.
JPFs and JVFs generally occur due to sensor faults. By sim-
plicity, the occurrence of only one fault at a time is consid-
ered. A three step FDI system is applied here in each sample
time. First, JPFs are detected by analyzing the position con-
straints (Eq. 4). Then, JVFs are detected by analyzing the
velocity constraints (Eq. 5). The last step is the detection of
FSJFs and LJFs via ANNs. This sequence is important be-
cause undetected JPFs can cause the false detection of other
faults as joint position measurements are used in Eq. (5) and
as inputs of the ANNs. The same occurs for undetected JVFs
in FSJFs and LJFs as joint velocity measurements are used
as inputs of the ANNs.

3.1 Incorrectly Measured Joint Position
Faults (JPFs)

In (Notash, 2000), the direct kinematics is used to detect joint
position sensor faults in parallel manipulators. The direct
kinematics problem (knowing the joint positions, identify the
position and orientation of the load) is not trivial in paral-
lel manipulators because they have one or more unsensed
joints. The direct kinematics problem is, however, easier in
cooperative manipulators because all joints are assumed to
be equipped with sensors. The problem of fault tolerance in
parallel manipulators is still addressed in (Hassan and No-
tash, 2004) and (Hassan and Notash, 2005).

In this work, the direct kinematics and the kinematic con-
straints imposed by the closed chain are used to detect JPFs

in cooperative manipulators. Two cases are considered:
whenm = 2 or m > 2, i.e., there are two or more than
two manipulators in the cooperative system.

3.1.1 JPFs when m > 2

As xo can be calculated using the joint positions of any arm
(Eq. 4), it is possible to identify the armf with the wrong
joint position measurements ifm > 2. A wrong estimate of
the load positionxo is produced by the arm with the wrong
measurements, which differs from the estimate of the other
m− 1 arms. A JPF is detected in armf if

‖x̂of (θf ) − x̂oi(θi)‖ > γp1

for all i = 1, . . . ,m andi 6= f (7)

wherex̂oi(θi) is the estimate ofxo using the measurements
θi of the joint positionsqi in arm i, θf is the vector of the
measured positions of the joints in armf , ‖ . ‖ represents the
Euclidean norm, and the thresholdγp1 is adjusted by the de-
signer to avoid that false alarms appear due to the presence of
noise in the joint measurements. The next step is to estimate
the position of each jointj = 1, . . . , nf of armf

q̂fj = ψpj
(θf , x̂o) (8)

whereψpj
is the kinematic function used to estimate the po-

sition of joint j, and

x̂o =
1

m − 1

m
∑

i=1,i 6=f

x̂oi(θi).

Calculating again the estimate of vectorxo for arm f for
each new estimatêqfj , the JPF in jointj of armf is detected
when

‖x̂o − x̂of (θf , q̂fj )‖ < γp2 (9)

wherex̂of (θf , q̂fj ) is the vector of positions and orientations
of the load estimated for armf substituting the measured po-
sition of joint j by its estimatêqfj and using the measured
positions of the other joints. The thresholdγp2 is adjusted by
the designer to avoid that faults are hidden due to the pres-
ence of noise in the joint measurements.

The procedure to detect and to isolate JPFs whenm > 2 can
be summarized as follows: compare the estimate ofxo for all
arms (Eq. 7); if all values are close, a JPF is not announced,
otherwise, calculate for all joints of the faulty arm the esti-
mate of the joint positions (Eq. 8), and test Eq. (9) for all
joints; if the test is satisfied for jointj, announce a JPF in
this joint.

3.1.2 JPFs when m = 2

If m = 2, the faulty arm cannot be identified just by checking
the estimates ofxo. However, it is possible to detect a JPF
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by comparing the two estimates ofxo. In this way, a JPF is
detect whenm = 2 if

‖x̂o1 (θ1 ) − x̂o2 (θ2 )‖ > γp1 . (10)

As it is not possible to identify the arm with the fault, the joint
positions estimate (Eq. 8) should be done for all joints in the
two arms using, instead of the the value ofx̂o, the estimate
obtained using the joint positions of the other arm. For arm
1, the position of the jointj = 1, . . . , n1 is estimated by

q̂1j = ψpj
(θ1 , x̂o2 (θ2 )) (11)

and, for arm2, the position of the jointj = 1, . . . , n2 is
estimated by

q̂2j = ψpj
(θ2 , x̂o1 (θ1 )). (12)

Calculating again the estimate of vectorxo for each new es-
timate of joint position (eqs. 11 and 12), the JPF in jointj of
arm1 is detected when

‖x̂o1 (θ1 , q̂1j ) − x̂o2 (θ2 )‖ < γp2 (13)

where x̂o1 (θ1 , q̂1j ) is the vector of positions and orienta-
tions of the load estimated for arm1 substituting the mea-
sured position of jointj by its estimatêq1j and using the
measured positions of the other joints, and the JPF in jointj

of arm2 is detected when

‖x̂o1 (θ1 ) − x̂o2 (θ2 , q̂2j )‖ < γp2 (14)

where x̂o2 (θ2 , q̂2j ) is the vector of positions and orienta-
tions of the load estimated for arm2 substituting the mea-
sured position of jointj by its estimatêq2j and using the
measured positions of the other joints

3.2 Incorrectly Measured Joint Velocity
Faults (JVFs)

As it is possible to calculate the velocity of the load by using
the joint velocities of any arm (Eq. 5), JVFs can be detected
in a similar way of JPFs.

3.2.1 JVFs when m > 2

By using Eq. (5), it is possible to identify the armf with
the wrong joint velocity measurements ifm > 2. A JVF is
detected in armf if

‖v̂of (θ̇f ,θf ) − v̂oi(θ̇i ,θi)‖ > γv1

for all i = 1, . . . ,m andi 6= f (15)

wherev̂oi(θ̇i ,θi) is the estimate ofvo using the measured
velocitiesθ̇i and the measured positionθi of the joints in arm

i, θ̇f is the vector of the measured velocities of the joints in
arm f , and the thresholdγv1 is adjusted by the designer to
avoid that false alarms appear due to the presence of noise
in the joint measurements. The next step is to estimate the
velocity of each jointj = 1, . . . , nf of armf

ˆ̇qfj = ψvj
(θ̇f ,θf , v̂o) (16)

whereψvj
is the kinematic function used to estimate the ve-

locity of joint j, and

v̂o =
1

m − 1

m
∑

i=1,i 6=f

Di(θi)θ̇i .

Calculating again the estimate of vectorvo for arm f for
each new estimatė̂qfj , the JVF in jointj of armf is detected
when

‖v̂o − v̂of (θ̇f ,θf , ˆ̇q fj )‖ < γv2 (17)

wherev̂of (θ̇f ,θf , ˆ̇q fj ) is the vector of velocities of the load
estimated for armf substituting the measured velocity of

joint j by its estimatê˙̇qfj and using the measured veloci-
ties of the other joints. The thresholdγv2 is adjusted by the
designer to avoid that faults are hidden due to the presence
of noise in the joint measurements.

The procedure to detect and to isolate JVFs whenm > 2
can be summarized as follows: compare the estimate ofvo

for all arms (Eq. 15); if all values are close, a JVF is not
announced, otherwise, calculate for all joints of the faulty
arm the estimate of the joint velocities (Eq. 16), and test Eq.
(17) for all joints; if the test is satisfied for jointj, announce
a JVF in this joint.

3.2.2 JVFs when m = 2

If m = 2, the faulty arm cannot be identified just by checking
the estimates oḟxo. However, it is possible to detect a JVF
by comparing the two estimates ofẋo. In this way, a JVF is
detect whenm = 2 if

‖v̂o1 (θ̇1 ,θ1 ) − v̂o2 (θ̇2 ,θ2 )‖ > γv1 . (18)

As it is not possible to identify the arm with the fault, the
joint velocities estimate (Eq. 16) should be done for all joints
in the two arms using, instead of the the value ofˆ̇xo, the
estimate obtained using the joint velocities of the other arm.
For arm1, the velocity of the jointj = 1, . . . , n1 is estimated
by

ˆ̇q1j = ψvj
(θ̇1 ,θ1 , v̂o2 (θ̇2 ,θ2 )) (19)

and, for arm2, the velocity of the jointj = 1, . . . , n2 is
estimated by

ˆ̇q2j = ψvj
(θ̇2 ,θ2 , v̂o1 (θ̇1 ,θ1 )). (20)
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Calculating again the estimate of vectorẋo for each new es-
timate of joint velocity (eqs. 19 and 20), the JVF in jointj of
arm1 is detected when

‖v̂o1 (θ̇1 ,θ1 , ˆ̇q1j ) − v̂o2 (θ̇2 ,θ2 )‖ > γv2 . (21)

wherev̂o1 (θ̇1 ,θ1 , ˆ̇q1j ) is the vector of velocities of the load
estimated for arm1 substituting the measured velocity of
joint j by its estimatê̇q1j and using the measured velocities
of the other joints, and the JVF in jointj of arm2 is detected
when

‖v̂o1 (θ̇1 ,θ1 ) − v̂o2 (θ̇2 ,θ2 , ˆ̇q2j )‖ > γv2 . (22)

wherev̂o2 (θ̇2 ,θ2 , ˆ̇q2j ) is the vector of velocities of the load
estimated for arm2 substituting the measured velocity of
joint j by its estimatê̇q2j and using the measured velocities
of the other joints.

3.3 Free-Swinging Joint Faults (FSJFs)
and Locked Joint Faults (LJFs)

As FSJFs and LJFs introduce dynamic effects in the coop-
erative system, the residual generation and analysis concept
can be used to detect and isolate these faults (Isermann and
Ballé, 1997). In the residual generation, the mathematical
model is generally used to reproduce the dynamic behavior of
the fault-free system. The deviation of the output predicted
by the model from actual output measurements forms the
so-called residuals which, when properly analyzed, provides
valuable information about the failures. Modeling errors,
however, may obscure the effects of some faults and can be a
source of false alarms (Gertler, 1997). To solve this problem,
robust FDI schemes have been proposed (Mangoubi, 1998),
(Chen and Patton, 1999).

Alternatively, one may resort to artificial intelligence tech-
niques like knowledge-based systems, fuzzy logic, and
ANNs. ANNs have been employed for FDI mainly in static
systems, and less intensively in dynamic systems (Korbicz,
1997). In most applications, ANNs are used as classifiers
based on measurements of the process output. In dynamic
systems, however, the outputs are affected by the inputs and,
therefore, this procedure generally is not valid. An alter-
native is to employ the residual generation concept, where
one ANN is used as a classifier based on the residuals pro-
duced by the system mathematical model or by another ANN
(Köppen-Selinger and Frank, 1996).

FDI for individual manipulators has been typically pursued
employing the robot mathematical model for residual gen-
eration (Visinsky et al., 1994). For residual analysis, fixed
thresholds can be used. However, the effects of model-
ing errors and sensor noise fluctuate dynamically with the
robot motion and with the faults, resulting in false alarms

and detection errors. To avoid this problem, (Visinsky
et al., 1995) employs time-varying state-dependent thresh-
olds to achieve robustness in parity relations. In (Schneider
and Frank, 1996), a robust observer is used for residual gen-
eration and fuzzy logic is used to produce dynamic thresh-
olds to mask the effects of unmodeled friction. In (McIntyre
et al., 2005), a nonlinear observer is proposed to identify a
class of actuator faults after the detection of the fault by some
other method. In (Naugthon et al., 1996), a robust observer
is employed for residual generation and an MLP classifies
the residual vector. In an interesting approach, (Vemuri and
Polycarpou, 2004) maps the fault vector employing an ANN
trained using a robust observer. Overall, one problem with
FDI methods which rely on the system mathematical model
is that, for some kinds of robots, detailed modeling is diffi-
cult.

In (Terra and Tinós, 2001), the mathematical model of the
robot is not used. An MLP is used to map the dynamics
of the arm and an RBFN classifies the residual vector. The
MLP mapping is static, which is possible because states are
considered measurable, the sample time is small, and con-
trol signals are used in the MLP inputs. In fact, this proce-
dure is valid only if the states are measurable. If the states
are not measurable, but the measured outputs have sufficient
information about the states (i.e., if the system is observ-
able), static ANNs with delayed values of process outputs
and control signals as inputs (Sorsa and Koivo, 1993) or dy-
namic ANNs (static ANNs provided with dynamic elements)
(Marcu and Mirea, 1997) should be employed. Observe that
the Multi-Input Multi-Output scheme is used to map the dy-
namics of the fault-free system. A Multi-Input Single-Output
scheme could be used to reproduce the dynamics of the sys-
tem instead of the Multi-Input Multi-Output scheme, but the
second approach was chosen because it results in a smaller
time of processing for this problem.

To the best of the authors knowledge, only in (Tinós et al.,
2001) an FDI system for cooperative manipulators was pre-
sented. There, only one MLP is trained to reproduce the
dynamics of all arms (Eq. 2). As the end-effector forces
are functions of the joint variables, the inputs of the MLP
are the joint positions, velocities and torques in the arms at
instantt. The outputs of the MLP are the estimated joint
velocities at instantt + ∆t, which are compared with the
measured joint velocities at instantt+ ∆t in order to gener-
ate the residual vector. The residual vector is then classified
by a Radial Basis Function Network (RBFN) that gives the
fault information. The use of only one MLP is an interest-
ing approach when the end-effector forces are not measured.
However, most of the controllers for cooperative manipu-
lators use force sensors to minimize the squeeze forces on
the load, and these variables can be very useful to map the
system dynamics. Furthermore, the mapping of the MLP in
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(Tinós et al., 2001) is dependent on the load parameters, such
as the load mass. If the system manipulates another object,
the ANN have to be trained again.

Here, the fault-free dynamic behavior of each arm is mapped
by a different MLP. This scheme is interesting because the
mapping is not dependent on the load parameters. The inputs
of the MLP i are the joint positions, velocities, torques, and
end-effector forces of armi at instantt (Figure 1).

If the sampling period∆t is sufficiently small, the dynamics
of the fault-free roboti (Eq. 1) can be represented by

q̇i(t + ∆t) = f
(

q̇i(t),qi(t),hi(t), τ i(t)
)

(23)

wheref(.) is a nonlinear function vector representing the dy-
namics of the fault-free armi. If there is a faultφ at the arm
i

q̇i(t + ∆t) = fφ

(

q̇i(t),qi(t),hi(t), τ i(t)
)

(24)

wherefφ(.) is a nonlinear function vector representing the
dynamics of the armi with the faultφ. The function of the
fault φ is defined as

ri(t + ∆t) = f
(

q̇i(t),qi(t),hi(t), τ i(t)
)

+

−fφ

(

q̇i(t),qi(t),hi(t), τ i(t)
)

. (25)

The outputs of the MLPi should reproduce the joint veloc-
ities of the fault-free armi at time t + ∆t and can be ex-
pressed as

ˆ̇qi(t + ∆t) = f
(

q̇i (t),qi(t),hi(t), τ i(t)
)

+

+e(q̇i(t),qi(t),hi(t), τ i(t)) (26)

wheree(.) is the vector of the mapping errors. The residual
vector of armi is defined as

r̂i(t + ∆t) = q̇i(t + ∆t) − ˆ̇qi(t + ∆t). (27)

By Eq. (23-27), it can be observed that the residual vector of
arm i is equal to the mapping error vector for the fault-free
case. The mapping error vector must be sufficiently small
when compared to the fault function vector in order to allow
the detection of the fault. The residual vector from all arms
r̂(t + ∆t) = [̂r1 (t + ∆t)T . . . r̂m(t + ∆t)T]T are then
classified by an RBFN trained by the Kohonen Self Organiz-
ing Map (Terra and Tinós, 2001). As the residual vector of
FSJFs and LJFs occurring in the same joint can occupy the
same region in the input space of the RBFN, an auxiliary in-
put vectorζ that gives information about the velocity of the
joints is used. The use ofζ is motivated by the fact that the
velocity of the faulty joint is zero in LJFs. Due to the noise
in the measurement of the joint velocity, the componentj

(j = 1, . . . , n , wheren is the sum of the number of joints of
all arms) ofζ is defined as

ζj (t) =

{

1 if
∣

∣

∣
q̇(t)[j ]

∣

∣

∣
< δj

0 otherwise
(28)

whereq̇(t)[j ] is thej-th component of vectoṙq(t) andδj is
a threshold. The fault criteria, which is shown at Figure 2, is
employed to avoid false alarms due to misclassified individ-
ual patterns and it is defined as
{

fault i = 1 if ψi(t) = maxq
j=1(ψj(t)) for d samples

fault i = 0 otherwise

whereq is the number of outputs of the RBFN,ψi(t) is the
outputi of the RBFN at timet, andi = 1, . . . , (q − 1) (the
outputq refers to the normal operation). For example, if the
output 2 is higher than the other outputs duringd consecutive
samples, fault 2 is announced.

Figure 1:Residual generation.

Figure 2:Residual analysis.

4 RESULTS

The FDI system was firstly tested in the simulation of two
three-dof planar cooperative arms with passive joints ma-
nipulating an object with mass equal to 2.5kg in an x-y
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plane. The gravity was parallel to the y-axis (the x-axis
passes through the bases of the two arms). The parameters
of the simulated system are presented in the Appendix. The
controller proposed in (Wen and Kreutz-Delgado, 1992) was
used to control the cooperative arms. The simulations were
performed in the Cooperative Manipulators Control Environ-
ment (CMCE), which runs in Matlab and is still employed to
control the actual cooperative system presented later. The
CMCE allows one to change the parameters of the system
(kind and time of faults, controller parameters, etc.) and to
generate graphics with the variables of the robots, load, and
faults. The main GUI of the CMCE is shown in Figure 3.

In the simulations, the sampling period adopted was 0.008s
and measurement noise with normal distribution was added
to joint positions, joint velocities, and end-effector forces.

Figure 3:Cooperative Manipulators Control Environment.

Two MLPs were utilized: each one with 12 inputs, 27 neu-
rons in the hidden layer, and 3 outputs. The Backpropagation
Algorithm was used to train the MLP´s and their weights
were initialized by the Nguyen-Widrow-Russo Algorithm
(Looney, 1997). The MLPs were trained with 7400 patterns
obtained in the simulation of 100 trajectories. The RBFN had
12 inputs and 13 outputs (6 FSJFs, 6 LJFs, and normal oper-
ation) and it was trained with 2691 patterns. It was adopted
d = 3 samples in the fault criteria. The parameters of the
FDI system wereγp1 = γp2 = 0.05, γv1 = γv2 = 1.5,
and δj = 4 × 10−3. Figure 4 shows the detection of a
JPF in a trajectory with a fault occurring att=0.1s. The
norm‖x̂o1 (θ1 ) − x̂o2 (θ2 )‖ (Eq. 10) used to detect JPFs is
shown on the left (Figure 4), and the norms‖x̂o1 (θ1 , q̂1j )−
x̂o2 (θ2 )‖ (Eq. 13) and‖x̂o1 (θ1 ) − x̂o2 (θ2 , q̂2j )‖ (Eq.
14) used to isolate JPFs is shown in the right for the joints
j = 1, . . . , n.

Table 1:Results: simulation of two three-dof arms.

Set Detected Faults Isolated Faults
False

Alarms
MTD(s)

1 958 (99.79%) 938 (97.71%) 0 (0%) 0.0165

2 960 (100.0%) 920 (95.83%) 0 (0%) 0.0180

3 899 (93.65%) 805 (83.85%) 0 (0%) 0.0185

4 926 (95.42%) 817 (85.10%) 0 (0%) 0.0195

Table 2:Results (faults): simulation of two three-dof arms.

Set Fault Detected Faults Isolated Faults
1 FSJF 240 (100.0%) 236 (98.33%)
1 LJF 238 (99.17%) 228 (95.00%)
1 JPF 240 (100.0%) 235 (97.92%)
1 JVF 240 (100.0%) 238 (99.17%)
2 FSJF 240 (100.0%) 238 (99.17%)
2 LJF 240 (100.0%) 209 (87.08%)
2 JPF 240 (100.0%) 238 (99.17%)
2 JVF 240 (100.0%) 236 (98.33%)
3 JPF 240 (100.0%) 238 (99.17%)
3 JVF 180 (75.00%) 098 (40.83%)
4 JPF 240 (100.0%) 236 (98.33%)
4 JVF 196 (81.67%) 135 (56.25%)

The FDI system was tested considering four trajectory sets,
each one with 960 trajectories with faults occurring in dif-
ferent joints and 40 without faults. The first and the second
sets had the same desired trajectories, but with faults starting
at 0.15 s. and 0.3 s. respectively. The four faults previously
presented were simulated. In JPFs and JVFs for sets 1 and
2, the correct sensor reading were changed by random num-
bers. The desired trajectories and initial time of fault of sets
3 and 4 were the same of sets 1 and 2 respectively, but the
correct sensor measurements were changed by zeros in JPFs
and JVFs. The results of the FDI system are summarized in
table 1. The second and third columns present the number
of detected faults and the number of correctly isolated faults
respectively. The fourth column shows the number of false
alarms in fault-free trajectories. The last column presents the
Mean-Time-to-Detection (MTD): the mean time that the FDI
system takes to isolate a fault after its occurrence.

The results of the FDI for each fault are summarized in table
2. The results of FSJFs and LJFs for the sets 3 and 4 are not
shown (the desired trajectories in sets 3 and 4 were the same
of sets 1 and 2). The number of correctly isolated JVFs was
smaller in sets 3 and 4 because this fault was mistaken with
LJFs. This occurred because, as the joint velocities measure-
ments were changed by zeros in sets 3 and 4, JVFs generally
did not present consequences in the control of the load for
this controller (the load could be controlled even with the
joint velocity measurements equal to zeros). This explain the
small number of isolated JVFs in sets 3 and 4.

The following step was the simulation of two Puma560 arms
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Figure 4:FDI in a trajectory of the simulated system (three-dof planar cooperative arms) with JPF in joint 2 of arm 2 occurring att=0.1s.
Left: ‖x̂o1 (θ1 )− x̂o2 (θ2 )‖ (Eq. 10) ; Right:‖x̂o1 (θ1 , q̂1j )− x̂o2 (θ2 )‖ (Eq. 13) and‖x̂o1 (θ1 )− x̂o2 (θ2 , q̂2j )‖ (Eq. 14) for the joints
j = 1, . . . , n. The dashed lines show the thresholdγp2 .

Table 3: Results of the FDI system: simulation (Puma560
arms).

Set Detected Faults Isolated Faults
False

Alarms
MTD(s)

1 718 (99.72%) 689 (95.69%) 0 (0.0%) 0.117

2 715 (99.31%) 656 (91.11%) 0 (0.0%) 0.118

manipulating a cylinder with mass equal to 2.5kg and 0.3m
of length in a 3-dimensional space. The Robotics Toolbox for
Matlab (Corke, 1996) was used to simulate the terms of Eq.
(1) and the friction torques. The sampling period was 0.018s
and measurement noise with normal distribution was added
to joint positions, joint velocities, and end-effector forces.

Two MLPs were utilized: each one with 24 inputs, 49 neu-
rons in the hidden layer, and 6 outputs. The MLPs were
trained with 6804 patterns obtained in the simulation of 50
trajectories. The RBFN had 24 inputs and 25 outputs (12
FSJFs, 12 LJFs, and normal operation) and it was trained
with 5291 patterns. The parameters of the FDI system were
d = 3 samples,γp1 = γp2 = 0.01, γv1 = γv2 = 0.8, and
δj = 4 × 10−3.

The FDI system was tested considering two trajectory sets,
each of them with 720 trajectories with faults and 15 with-
out faults. The first and the second sets have the same de-
sired trajectories but with the faults starting at 0.3s and 1.3s
respectively. The four faults previously presented were sim-
ulated. In JPFs and JVFs, the correct sensor measurements
were changed by random numbers. The results of the FDI
system are summarized in table 3.

Finally, the FDI system was applied in an actual cooperative

system with two arms UARMII (Figure 5). Each UARMII is
a 3-joint, planar manipulator that floats on a thin air film on
an “air table”. The two arms are equal and the longitudinal
axis of each joint is parallel to the gravity force. The coop-
erative system is controlled by a PC running Matlab. This
is possible because the drivers for the UARMII servo board
are written as Matlab mex-files. Each joint of the UARMII
contains a brushless DC direct-drive motor, an encoder, and
a pneumatic brake, which allows one to simulate all faults
discussed here. The CMCE, which was used to simulate the
cooperative system with 3-dof arms, is used to control and to
monitor the actual system. The robot parameters are the same
of the simulated system and the sampling period was chosen
as 0.05s. The joint velocities are obtained by encoder mea-
surements (the adaptive filter presented in (Wijngaard, 1996)
is used), and force sensors are not used (the end-effector
forces are estimated using the kinematic and dynamic mod-
els).

Two MLPs were utilized to reproduce the model of the ac-
tual robots: each one with 12 inputs, 37 neurons in the
hidden layer, and 3 outputs. The MLPs were trained with
3250 patterns obtained in the simulation of 50 trajectories.
The RBFN had 12 inputs and 13 outputs (6 FSJFs, 6 LJFs,
and normal operation) and it was trained with 2506 patterns.
The parameters of the FDI system wered = 4 samples,
γp1 = γp2 = 0.05, γv1 = γv2 = 1.5, andδj = 4 × 10−3.
The FDI system was tested considering three trajectory sets,
each of them with 360 trajectories with faults and 15 without
faults. The second and third sets had the same desired trajec-
tories but an object of mass equal to 0.025 kg was manipu-
lated in the second set and an object of 0.45 kg was manipu-
lated in the third set. The first set had different desired trajec-
tories, and the mass of load was equal to 0.45 kg. The results
of the FDI system considering the four faults described here

Revista Controle & Automaç ão/Vol.19 no.4/Outubro, Novembro e Dezembro 2008 413



Table 4:Results: actual system.

Set Det. Faults Is. Faults False Al. MTD(s)
1 337 (93.6%) 260 (72.2%) 1 (6.7%) 0.469
2 333 (92.5%) 247 (68.6%) 0 (0.0%) 0.419
3 325 (90.3%) 268 (74.3%) 0 (0.0%) 0.458

occurring in each joint are summarized in Table 4. Figures 6,
7, and 8 show respectively the torques of arm 1, the residuals,
and the outputs of the RBFN in a trajectory with an FSJF.

The number of correctly isolated faults was smaller in the ac-
tual system mainly because FSJFs were sometimes mistaken
with LJFs. This occurs because sometimes the velocities of
the faulty vectors were small due to the small gravitational
torques at the joints. However, in these cases, even with
FSJFs, the load converged to the desired positions and the
fault does not present significant effects in the system. This
occurred, for example, when it was not necessary to apply
high torques at the faulty joint during the given trajectory.

Figure 5:Actual system: arm 1 (left); arm 2 (right).

5 CONCLUSIONS

This work presents an FDI system for cooperative manipu-
lators. Four faults were considered: FSJFs, LJFs, JPFs, and
JVFs. The first two are detected by ANNs: MLPs to re-
produce the dynamics of the arms and an RBFN to classify
the residual vector. The remaining faults are detected using
the kinematic constraints of the system. Tests of the FDI
system applied to simulated cooperative arms and to actual
robots were presented. As the number of correctly detected
faults is greater than the number of correctly isolated faults,
additional tests can be done after the detection of a fault to
confirm the isolated fault. If a LJF is isolated in the jointi
for example, a simple test to confirm this fault is to apply a
torque in this joint and to check if the jointi moves after ap-
plying the brakes in all joints. Tests to confirm the isolation
of the other faults can be done in similar ways.

Figure 6:Joint torques of arm 1 in a trajectory of the actual system
with FSJF in joint 1 (arm 1) occurring att=1s.
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Figure 7:Residuals in a trajectory of the actual system with FSJF
in joint 1 (arm 1) occurring att=1s.
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APPENDIX

Table 5:Parameters of the simulated system (3-dof arms).

Mass of links 1 and 2 0.85 kg
Mass of link 3 0.625 kg
Link length 0.203 m

Load length (between contact points) 0.1 m
Load mass 2.5 kg

Load moment of inertia 0.0022 kg m2

Gravity 9.8 m/s2
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