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ABSTRACT
Air temperature significantly affects the processes involving agricultural and human activities. The knowledge of the temperature of 
a given location is essential for agricultural planning. It also helps to make decisions regarding human activities. However, it is not 
always possible to determine this variable. It is necessary to make a precise estimate, using methods that are capable of detecting the 
existing variations. The aim of this study was to develop models of multiple linear regression (MLR), artificial neural network (ANN), 
and random forest (RF) to estimate the mean (Tmean), maximum (Tmax), and minimum (Tmin) monthly air temperatures as a function 
of geographic coordinates and altitude for different localities in Minas Gerais state, Brazil, with climatic classification Cwa or Cwb. The 
average monthly data (Tmean, Tmax, and Tmin), over a period of 30 years, were collected from 20 climatological stations. The MLR 
was able to estimate the Tmax with accuracy. However, the predictive capacity of estimating Tmean and Tmin was low. The algorithms 
RF and ANN were used to estimate Tmean, Tmax, and Tmin with high accuracy. The best results were obtained using the RF model.

Index terms: Artificial neural network; random forest; multiple linear regression; geographic coordinates.

RESUMO
A temperatura do ar afeta significativamente os processos que envolvem atividades agrícolas e humanas. O conhecimento da temperatura 
de um determinado local é fundamental para o planejamento agrícola. Também ajuda a tomar decisões sobre as atividades humanas. No 
entanto, nem sempre é possível determinar essa variável. É necessário fazer uma estimativa precisa, utilizando métodos que sejam capazes 
de detectar as variações existentes. O objetivo deste estudo foi desenvolver modelos de regressão linear múltipla (RLM), rede neural artificial 
(RNA) e floresta aleatória (FA) para estimar a temperatura média (Tmean), máximo (Tmax), e mínimo (Tmin) mensal do ar em função de 
coordenadas geográficas e altitude para diferentes áreas do Estado de Minas Gerais, Brasil, com classificação climática Cwa ou Cwb. Os 
dados médios mensais (Tmean, Tmax e Tmin), ao longo de um período de 30 anos, foram coletados em 20 estações climatológicas. O RLM 
foi capaz de estimar o Tmax com precisão. Porém, a capacidade preditiva de estimar Tmean e Tmin foi baixa. Os algoritmos FA e RNA foram 
usados ​​para estimar Tmean, Tmax e Tmin com alta precisão. Os melhores resultados foram obtidos com o modelo RF.

Termos para indexação: Rede neural artificial; floresta aleatória; regressão linear múltipla; coordenadas geográficas.

INTRODUCTION
It is important to monitor the meteorological 

elements to achieve proper growth and yield of crops. 
Efficient monitoring can help in evapotranspiration 
estimates, irrigation planning, pest and disease risk 
zoning, animal comfort index mapping, etc. One of 

the most important meteorological elements is air 
temperature, which influences plant physiology. Changes 
in air temperature can lead to change in the growth 
and development of plants (Benlloch-González et al., 
2016; Cardoso et al., 2012; Wahid et al., 2007). The air 
temperature influences various physiological processes 
occurring in a plant, such as the speed of chemical reactions 
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(Benavides et al., 2007) that occur in the temperature range 
of 0 – 40 °C. The extent of influence exerted depends on the 
plant species. When the air temperature exceeds the ideal 
range for each species, morphological, physiological, and 
biochemical changes may be induced, leading to adverse 
effects on plant growth (Wahid et al., 2007). Studies on 
the characterization of air temperature, precipitation, and 
the climatic classification of the regions where agriculture 
predominates should be conducted to improve crop yields 
(Cardoso et al., 2015; Costa et al., 2012).

In coffee crop science, one of the main crop types 
grown in the Minas Gerais State, Brazil (Compahia Brasileira 
de Abastecimento - CONAB, 2020), the optimum mean 
annual temperature falls in the range of 18 – 23 °C for 
the proper growth of C. Arabica specie. The optimum 
temperature falls in the range of 22 – 26 °C for the proper 
growth of C. Canephora (Damatta et al., 2018). Temperatures 
that fall outside this range influence the growth and yields 
of the crops. When the temperature is extremely low, the 
activity of the coffee crop reduces, and the photosynthetic 
performance is noticeably affected. The net photosynthetic 
activity ceases almost completely (Batista-Santos et al., 
2011; Partelli et al., 2009). On the other hand, very high 
temperatures may cause a decrease in the net photosynthetic 
rates of the leaves (Cannell, 1985). The ideal temperature 
interval produces a high crop yield over the years. The 
temperature outside the optimal range results in reduced crop 
yield. Therefore, it is important to determine the mean air 
temperature and the extreme temperatures (maximum and 
minimum). Furthermore, considering the characteristics of 
the relief and location of the Minas Gerais State, the accurate 
estimation of extreme temperatures is important because the 
state exhibits topographic conditions that allow the formation 
of frosts on an annual basis in the southern region. The 
maximum temperatures (40 – 42 °C) are recorded in the 
northern regions of the state.

The mean, maximum, and minimum air temperatures 
can be monitored on a daily basis in weather stations. 
However, in the Minas Gerais region, the coverage of the 
official network of surface weather stations is limited. 
Besides, interruptions and errors in the database generated 
by these stations are quite common. The errors can be 
attributed to reading errors, damaged devices, and other 
unintended observational problems (Dumedah; Coulibaly, 
2011; Mwale; Adeloye; Rustum, 2012). These factors limit 
climatic studies, e.g., studies on the climatic characterization 
of the region and studies on meteorological elements that 
slow down the development of agriculture.

Considering the fact that the average monthly 
air temperature varies with geographic coordinates and 

altitude, several researchers working in different regions of 
Brazil have been trying to develop techniques and models 
for estimating the air temperature. The multiple linear 
regression (MLR) model considers the latitude, longitude, 
and altitude of the location as independent variables 
(Alvares et al., 2013; Cargnelutti Filho; Maluf; Matzenauer, 
2008; Pezzopane et al., 2004; Sediyama; Melo Júnior, 1998). 
These estimates have been made with different levels of 
precision and accuracy. However, the development of new 
tools such as the Artificial Neural Network and Random 
Forests technique can maximize the performance, precision, 
and accuracy of estimating the air temperature. 

The new techniques have been developed with the aim 
of achieving higher accuracy during the estimation of variables. 
The Artificial Neural Network (ANN) is a promising and 
effective tool for non-linear modeling and complex time-series. 
It has been used in different fields of science such as medicine 
(Muhammad et al., 2019), hydrology (Asadi et al., 2019), and 
agriculture (De Oliveira Aparecido et al., 2020). The ANN 
model is a mathematical model in which the architecture is 
analogous to brain functioning. The interconnecting processing 
elements are arranged in several layers (Kumar; Raghuwanshi; 
Singh, 2011). The ANN method helps understand and 
generalize the relationships between complex datasets. This 
expands the scope of the application of the method (Wu; 
Dandy; Maier, 2014). 

ANNs have been used for the estimation of 
meteorological variables with good accuracy. Estimation 
of reference evapotranspiration (Antonopoulos; 
Antonopoulos, 2017; Kumar; Raghuwanshi; Singh, 
2011), solar radiation (Bou-Rabee et al., 2017), and air 
temperature (Moreira; Cecílio, 2016) have been carried out 
using this technique. It is important to conduct this study to 
verify the applicability of the ANN method for estimating 
the mean, maximum, and minimum air temperature. The 
efficiency of the technique has been investigated. Reports 
on the use of ANNs (used to estimate the temperature in 
the region under study) are scarce.

The Random Forest (RF) is non-parametric 
statistical data modeling methods (Breiman, 2001). The 
models have been used to analyze data in different fields 
of science, such as medicine (Xie et al., 2020), biology 
(Fabris et al., 2018), and geoprocessing (Vogels et al., 
2017). According to James et al. (2013), decision trees 
detect non-linear relationships in the evaluated system 
when the use of linear relationships, e.g., linear regression 
analysis, is restricted. According to Seyedhosseini and 
Tasdizen (2015), RF is a classification and regression 
technique used to grow ensemble decision trees such 
that the correlation between the trees remains as low as 
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possible. This condition can be achieved by the method 
of bootstrap sampling. In this method, resamples are 
replaced by simulating a single random sample. It must 
represent samples taken from the original population. 
Data from previously conducted analytical experiments 
are required to enhance the predictive and generalization 
abilities (Hesterberg et al., 2002).

RF has also been adopted to predict meteorological 
variables such as solar radiation (Benali et al., 2019) and 
air temperature (Noi; Degener; Kappas, 2017). RF has 
been found to be a more efficient predicting tool compared 
to other tools like ANN (Benali et al., 2019; Zhou et al., 
2016). The RF is still little applied, and the interest in this 
predictive tool is increasing as it exhibits a good practical 
performance (Scornet, 2016). Therefore, it is important to 
evaluate the RF potential for estimating air temperature 
and to compare it with different methods.

The objective of this study was to develop and 
compare the performances of multiple linear regression 
(MLR), Artificial Neural Networks (ANN), and Random 
Forests (RF) models for estimating the mean, maximum, 
and minimum monthly air temperatures using input 
variables such as geographical coordinates and altitude 
for different areas in the Minas Gerais State with climatic 
classification Cwa or Cwb (Köppen; Geiger, 1928).

MATERIAL AND METHODS

Study area and data sources

The present study was developed for municipalities 
in the Minas Gerais state that are within the regions 
classified as Cwa (humid temperate climate with dry winter 
and hot summer) and Cwb (humid temperate climate with 
dry winter and moderately hot summer). This classification 
was proposed by Köppen and Geiger (1928) (Figure 1). This 
Climatic Classification Systems (CMS) was developed by 
Köppen in 1918, and its most popular version was published 
in 1928 in collaboration with Rudolf Oskar Robert Williams 
Geiger. The Köppen and Geiger (1928) CMS a simple and 
comprehensive system, and hence it is widely used. The 
mean annual rainfall recorded in the region under study is 
1379 mm (Brasil, 1992). The study was limited to the areas 
classified as Cwa and Cwb. The aim was to determine the 
maximum efficiency of the models tested. Highly accurate 
data were obtained when the models were used in regions 
exhibiting similar climatic characteristics. 

According to De Sá Júnior et al. (2012), the regions 
classified as Cwa and Cwb represent 21% and 11% of the 
area of the Minas Gerais state, respectively. There are 20 
climatological stations located in the region under study. 

The regions fall under the realm of the national network of 
climatological stations (National Institute of Meteorology 
(INMET)). The respective geographical coordinates and 
climatic classification have been presented in Table 1. The 
average monthly data (mean (Tmean), maximum (Tmax), 
and minimum (Tmin) air temperature) over a period of 30 
years, from 1987 to 2017, of each conventional station 
were used for the studies. The data were extracted from 
the Meteorological Database for Teaching and Research - 
BDMEP of INMET. Although some locations do not have 
a record of 30 years of data (Table 1), all stations presented 
more than 90% of the consistent data.

Multiple linear regression (mlr) method

Based on the independent variables (geographic 
coordinates and altitude), MLR was developed to estimate 
the mean, maximum, and minimum average temperature 
of each month of the year for each location. The average 
temperatures were calculated as follows (Equation 1):

                                                                                          (1) 0 1 2 3 .iY ALT LAT LON      

where Yi is Tmean, Tmax, or Tmin in °C and is the 
dependent variable. ALT represents the altitude in m, LAT 
represents the latitude in degrees, and LON represents the 
longitude in degrees, which are indepedent variables. β0, 
β1, β2, and β3, are the regression coefficients. MLR was 
implemented using the data analysis tool in Microsoft 
Excel®. Contrary to the methodology applied for ANN 
and RF, the month was not used as an input variable. 
Therefore, the data for Tmean, Tmax, and Tmin were 
classified based on the month. Subsequently, the MLRs 
were adjusted. Each month had a characteristic equation 
generating a specific statistical result. The methodology 
reported by Sediyama and Melo Júnior (1998) were used 
for the studies. This methodology increases the predictive 
capacity of MLR and facilitates the analysis of each 
independent variable in the month. The influence of each 
variable on the result can also be analyzed. 

Artif icial  Neural  Networks (ANNs) model 
development

ANN was implemented using the Waikato 
Environment for Knowledge Analysis (WEKA; version 
3.8.2 © 1999–2017) developed by the University of Waikato, 
Hamilton, New Zealand. The algorithm used for ANN was 
the Multilayer Perceptron (MLP) algorithm (Fausett, 1994). 
The architecture consisted of the input layer, hidden layers 
(where the data are processed), and output layer (where the 
results of processing are compiled) (Figure 2).
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Table 1: Principal climatological station of the INMET used to estimate the mean, maximum, and minimum air 
temperature.

ID Climatological station 
location 

Latitude
(S°)

Longitude
(W°)

Altitude
(m) Climatic classes Period

(years)
1 Araxá 19.56 46.93 1004 Cwa 1887 - 2017
2 Bambuí 20.00 45.98 661 Cwa 1887 - 2017
3 Barbacena 21.25 43.76 1126 Cwb 1890 - 2017
4 Bom Despacho 19.68 45.36 695 Cwa 1887 - 2017
5 Caparaó 20.51 41.86 843 Cwb 1890 - 2017
6 Caratinga 19.80 42.15 609 Cwa 1887 - 2017
7 Coronel Pacheco 21.58 43.25 453 Cwa 1887 - 2009
8 Conceição do Mato Dentro 19.03 43.43 652 Cwa 1887 - 2017
9 Diamantina 18.25 43.60 1296 Cwb 1887 - 2017

10 Florestal 19.88 44.41 760 Cwa 1887 - 2017

Figure 1: Climate zoning in the state of Minas Gerais. Zoned according to the Köppen and Geiger (1928) climatic 
classification. Codes of the climatological stations of the National Institute of Meteorology. Source: Adapted from 
De Sá Júnior et al. (2012).

Continue...
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11 Ibirité 20.01 44.05 815 Cwa 1887 - 2015
12 Itamarandiba 17.85 42.85 1097 Cwb 1887 - 2017
13 Juiz de Fora 21.76 43.35 940 Cwa 1887 - 2017
14 Lavras 21.23 45.00 919 Cwa 1888 - 2017
15 Machado 21.66 45.91 874 Cwa 1891 - 2017
16 Poços de Caldas 21.91 46.38 1150 Cwb 1892 - 2015
17 São Lourenço 22.10 45.01 900 Cwa 1887 - 2017
18 São Sebastião do Paraíso 20.91 47.11 820 Cwb 1887 - 2013
19 Sete Lagoas 19.46 44.25 732 Cwa 1892 - 2015
20 Viçosa 20.75 42.85 690 Cwa 1890 - 2017

Source: Adapted from De Sá Júnior et al. (2012).

Table 1: Continuation.

Figure 2: Network structure scheme consisting of five neurons in the hidden layer built by WEKA (ANN2) to 
estimate Tmax.

The input data consisted of the month, latitude, 
longitude, and altitude of each evaluated location. Each 
ANN setting estimated the Tmean, Tmax, or Tmin for all 
the months. There are good reasons behind using these 
variables for these studies. The temporal variable consists 
of the cumulative month component, which is required to 
execute the projections. The latitude and longitude are the 
variables related to the position. The temperature changes 
with the position as the position changes from the Poles 
to the Equator Line. The temperature gradually increases 
from the poles to the equator. The altitude variable is 
regarded as the surface component. It can be stated that 
the higher the altitude, the lower the temperature. The 
ANN follows a mathematical structure connecting the 
processing nodes (neurons). The output of a neuron is the 

input of the subsequently combined neurons. The final 
model is built based on various assumptions on activation 
function (Equations 2, 3, 4, 5, 6, 7 and 8). The equations 
are as follows:

(2) 1,1 2,1 3,1 4,1 5,1
1 n(1

LAT LON ALT MONTH Bw w w w w
N L e         

 



(3) 1,2 2,2 3,2 4,2 5,2
2 n(1

LAT LON ALT MONTH Bw w w w w
N L e         

 



(4) 1,3 2,3 3,3 4,3 5,3
3 n(1

LAT LON ALT MONTH Bw w w w w
N L e         

 



(5) 1,4 2,4 3,4 4,4 5,4
4 n(1

LAT LON ALT MONTH Bw w w w w
N L e         

 



(6) 1 2 3 41,5 2,5 3,5 4,5 5,5n(1max
N N N N Bw w w w w

LT e         



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Equations 2–5 represent the mathematical 
abstraction of the ANN built in Figure 2 extracting the 
neurons equations. Equations 6 – 8 are the estimate vectors 
of each output. Wi,j represents the weights estimated using 
the backpropagation algorithm during ANN processing. 
The value of Bi,j represents the bias associated with each 
measurer. The activation function applied was sigmoidal 
with non-linear output.

All adjustments were cross-assessed. Twenty 
folds of the sample set were used for the assessment 
for training to compensate for the reduced number of 
instances. Two different configurations were evaluated 
(Table 2). Results from the preliminary tests indicated 
that changes in the number of training epochs and the 
number of neurons present in the hidden layer interfered 
with the performance of the models. However, changes 

Table 2: WEKA configuration in the ANN implementation.

Tmean Tmax Tmin

ANN1 ANN2 ANN1 ANN2 ANN1 ANN2

Learning rate 0.3 0.3 0.3 0.3 0.3 0.3

Momentum 0.2 0.2 0.2 0.2 0.2 0.2

Number of training epochs 500 1000 500 500 500 1000

Number of hidden layers 1 1 1 1 1 1

Number of neurons into the hidden layer 5 6 6 5 6 6

Figure 3: Schematic representation of the steps used in the RF model following the resampling strategy (Source: 
Wang et al., 2019).

(7)

(8)

 1 2 3 41,5 2,5 3,5 4,5 5,5n(1min
N N N N Bw w w w w

LT e         




 1 2 3 41,5 2,5 3,5 4,5 5,5n(1
N N N N Bw w w w w

LmeanT e         




in the other parameters did not significantly influence the 
model performances.

Development of the Random Forest (RF) model

The implementation of RF in WEKA has its basis 
on a previously reported study (Breiman, 2001). Two 
configurations of RF were used, with the input variables 
being month, latitude, longitude, and altitude of each 
evaluated location. Thus, each RF setting could be used 
to estimate Tmean, Tmax, or Tmin for all the months 
under study. The steps followed has been presented in 
Figure 3.

In this study, preliminary examinations were 
conducted for several configurations. The configurations 
with 100 and 500 interactions exhibited better performance 
compared to other values obtained in the preliminary 
analysis. The preliminary tests revealed that the changes 
in the other parameters did not positively influence the 
model performance. The tests exhibited two distinct 
configurations for better results (Table 3).
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Table 3: WEKA configuration in the RF implementation process.

Tmean Tmax Tmin

RF1 RF2 RF1 RF2 RF1 RF2

Break ties randomly when several attributes look equally good x x x x

Size of each bag, as percentage of the training set size 100 100 100 100 100 100

Number of iterations 500 500 500 500 100 500

Minimum number of instances per leaf 1 1 1 1 1 1

Maximum depth of the tree unl. unl. unl. unl. unl. unl.

Statistical tests

Various statistical indices were used to assess 
the predictive quality of each technique in terms of 
variation, precision, accuracy, and performance. The 
mean absolute error (MAE) and root mean square error 
(RMSE) indicates revealed how close the predicted 
values were to the observed value. Thus, the accuracy 
of each model could be predicted. The variation 
was quantified by the determination coefficient (R²), 
which represents the percentage of the variation of 
the dependent variable explained by the independent 
variable. The best model should produce an R² value close 
to unity. The precision of the models was quantified based 
on Pearson’s correlation coefficient (r), which indicates 
the degree of dispersion of the data obtained in terms 
of the mean. Accuracy was quantified using Willmott’s 
index of agreement (d) and the performance index (c) 
(Camargo; Sentelhas, 1997). The performance index was 
calculated using the equation c = r. d. This equation was 
also used to quantify the performance of the model. The 
performances were classified as: Excellent (1 – 0.85), 
Very good (0.85 – 0.76), Good (0.76 – 0.66), Average 
(0.66 – 0.61), Poor (0.61 – 0.51), Bad (0.51 – 0.41), and 
Terrible (less than 0.41). 

Weka provides a tool to compare different 
combinations and different algorithms called WEKA 
Experiment Environment (Figure 4). This tool was 
used to compare the performance of each algorithm and 
configuration used in the present study conducted using 
the cross-validation technique. According to Noi, Degener, 
and Kappas, (2017), cross-validation is one of the most 
popular validation methods used to compare different 
combinations and different algorithms. In the cross-
validation method, the dataset is divided into k groups 
(k-fold) of approximately the same size. Due to the number 
of observations, a 20-fold cross-validation method was 
used. The algorithms were applied for each fold, generating 
statistical performance values. Later, these average 

performance values were compared by Tukey’s test at 
5% probability. The statistical software Sisvar (Ferreira, 
2019) was used for analysis. The MLR method was not 
implemented in WEKA. The approach was different from 
that was used in the ANN and RF methods. Hence, it was 
not possible to compare the MLR method with the other 
techniques using Tukey’s test. The comparison between 
MLR and other techniques was made by comparing the 
statistical performance indicators.

RESULTS AND DISCUSSION
The MLR method coefficients were adjusted 

to estimate the Tmean, Tmax, and Tmin monthly air 
temperatures. The respective mean absolute errors (MAE), 
root mean square errors (RMSE), determination coefficient 
(R²), Pearson’s correlation coefficient (r), Willmott’s index 
of agreement (d), and the consistency index (c) are shown 
in Table 4.

The models used to estimate Tmean (Table 4) 
reveal that R² values were in the range of 0.38 – 0.93 
and the r valued ranged from 0.62 to 0.97. The models 
for estimating the data for the months of July and August 
exhibited a “bad” and “poor” performance (Camargo; 
Sentelhas, 1997), respectively. For these months, these 
models are not recommended to estimate the Tmean 
values. The model performances were “Good” when 
the other months were analyzed. The linear coefficients 
altitude (β1) and latitude (β2) were significant. A negative 
correlation was observed between altitude and Tmean 
and between latitude and Tmean, exhibiting a decrease 
in Tmean values with increasing altitude and latitude. 
These results were expected and in accordance with the 
vertical thermal gradient in the troposphere. Cargnelutti 
Filho, Maluf and Matzenauer (2008) and Gomes et al. 
(2014) reported a negative correlation between altitude 
and Tmean (Rio de Janeiro state and the Rio Grande do 
Sul state, respectively). However, there was no significant 
influence in latitude. 
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Table 4: Coefficients of the monthly air temperature models and statistical performance indicators.

Month
MLR method coefficients MAE RMSE R² r d c

(β0) Alt (β1) Lat (β2) Lon (β3) (°C) (°C)

Tmean 

Jan 26.18 0.2980* -0.144* 0.004* 0.25 0.33 0.88 0.94 0.97 0.90

Feb 26.41 -0.0030* -0.346* 0.143ns 0.33 0.41 0.75 0.86 0.92 0.80

Mar 27.05 -0.0040* -0.311* 0.114ns 0.28 0.34 0.85 0.92 0.96 0.89

Apr 22.87 -0.0046* -0.363* 0.214* 0.38 0.45 0.82 0.90 0.95 0.86

May 28.84 -0.0026* -0.760* 0.162ns 0.47 0.56 0.75 0.87 0.92 0.80

Jun 33.19 -0.0011ns -0.917* 0.080ns 0.62 0.72 0.65 0.80 0.88 0.71

Jul 25.62 -0.0011ns -0.718* 0.156ns 0.86 0.99 0.38 0.62 0.73 0.45

Aug 21.73 -0.0014ns -0.779* 0.307ns 0.75 0.87 0.51 0.71 0.81 0.58

Sep 17.94 -0.0028* -0.828* 0.491* 0.63 0.72 0.71 0.84 0.91 0.77

Oct 18.72 -0.0046* -0.613* 0.442* 0.44 0.49 0.85 0.92 0.96 0.88

Nov 18.29 -0.0061* -0.409* 0.387* 0.27 0.32 0.93 0.97 0.98 0.95

Dec 21.63 -0.0053* -0.173* 0.205* 0.23 0.30 0.91 0.95 0.98 0.93

Tmax

Jan 35.07 -0.0051* -0.468* 0.179ns 0.52 0.61 0.76 0.87 0.93 0.81

Feb 36.87 -0.0037* -0.483* 0.141ns 0.60 0.70 0.63 0.80 0.88 0.70

Mar 31.98 -0.0058* -0.332* 0.199ns 0.46 0.51 0.83 0.91 0.95 0.87

Apr 25.54 -0.0061* -0.511* 0.407* 0.50 0.58 0.83 0.91 0.95 0.87

May 25.88 -0.0055* -0.885* 0.509* 0.49 0.58 0.86 0.93 0.96 0.89

Jun 23.46 -0.0068* -0.753* 0.514* 0.62 0.69 0.83 0.91 0.95 0.87

Jul 20.14 -0.0059* -0.747* 0.577* 0.55 0.66 0.82 0.91 0.95 0.86

Aug 13.30 -0.0067* -0.704* 0.762* 0.53 0.64 0.86 0.93 0.96 0.89

Sep 15.71 -0.0054* -0.992* 0.855* 0.64 0.74 0.84 0.91 0.95 0.87

Figure 4: WEKA Experiment Environment workflow of the experiment.

Continue.
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Month
MLR method coefficients MAE RMSE R² r d c

(β0) Alt (β1) Lat (β2) Lon (β3) (°C) (°C)

Oct 15.63 -0.0069* -0.690* 0.753* 0.61 0.69 0.84 0.92 0.95 0.88

Nov 17.02 -0.0071* -0.480* 0.609* 0.52 0.60 0.85 0.92 0.96 0.88

Dec 22.13 -0.0071* -0.101* 0.336* 0.45 0.51 0.84 0.92 0.96 0.88

Tmin

Jan 19.08 -0.0038* -0.071ns 0.090ns 0.35 0.42 0.71 0.84 0.91 0.77

Feb 22.79 -0.0025* -0.188ns 0.031ns 0.49 0.56 0.47 0.69 0.80 0.55

Mar 25.67 -0.0023 ns -0.241ns 0.019ns 0.51 0.66 0.43 0.66 0.78 0.51

Apr 30.60 -0.0032 ns -0.222ns 0.164ns 0.77 0.97 0.41 0.64 0.78 0.50

May 39.19 -0.0005 ns -0.690ns 0.262ns 0.92 1.16 0.37 0.60 0.73 0.44

Jun 40.56 0.0004 ns -0.653ns 0.362ns 1.17 1.49 0.25 0.50 0.62 0.31

Jul 33.88 0.0015 ns -0.577ns 0.287ns 1.52 1.92 0.10 0.32 0.40 0.13

Aug 30.86 0.0001 ns -0.578ns 0.173ns 1.43 1.71 0.12 0.35 0.47 0.17

Sep 30.06 -0.0002 ns -0.733ns 0.021ns 1.20 1.37 0.22 0.47 0.61 0.29

Oct 26.21 -0.0028 ns -0.506ns 0.067ns 0.66 0.81 0.50 0.71 0.81 0.57

Nov 23.23 -0.0049* -0.344ns 0.126ns 0.31 0.40 0.86 0.93 0.96 0.89

Dec 22.09 -0.0039* -0.133ns 0.054ns 0.29 0.36 0.82 0.91 0.94 0.86
ns no significant. *significant at 5% probability by F-test.

During the estimation of Tmax, RMSE was found to 
be in the range of 0.51 – 0.74. The R² values ranged between 
0.63 and 0.86, and the r values ranged between 0.80 and 
0.93 (Table 4). The model for February exhibited the lowest 
statistical indicators, and the model’s performance was 
“Good” (Camargo; Sentelhas, 1997). The linear coefficient 
of altitude (β1) was significant in all models. There was 
no significant influence of the linear coefficients longitude 
(β3) on the months of January, February, and March. In 
the other months, a significant influence of β2, β3, and β4 
was observed. Gomes et al. (2014) analyzed the models to 
estimate the maximum monthly air temperature of Rio de 
Janeiro. R² values ​​were found to be in the range of 0.51 
– 0.71. A significant influence of the altitude and latitude 
was observed. However, the linear coefficient of longitude 
did not significantly affect the data of most months. This 
difference can be explained by the small longitudinal 
difference between the meteorological stations in Rio 
de Janeiro state compared to the region evaluated in this 
study. The meteorological stations under consideration are 
at a sufficient longitudinal distance to be influenced by the 
continentality effect. 

While estimating Tmin, it was observed that the 
r values ranged between 0.32 and 0.93. The R² values 

ranged between 0.10 and 0.86, and the RMSE values 
ranged between 0.36 –1.92 (Table 4). The models 
used for estimating the Tmin values for the months 
between February and October exhibited a “Poor”, 
“Bad”, or “Terrible” performance index (Camargo; 
Sentelhas, 1997), reflecting the low precision and 
degree of accuracy. Furthermore, significant β1, β2, 
and β3 values were not recorded when these models 
were used to study the data corresponding to the 
abovementioned months.

The Tmin, corresponding to these months, varied 
due to the variation in other factors, such as wind, ocean 
currents, local topographic conditions, rain, cloudiness, 
and passage of the cold front (Aguado; Burt, 2010). 
According to Silveira et al. (2019), in addition to the 
statistical factors (vegetation, maritime, continentality, 
geographic coordinates, etc.), climatic conditions are 
influenced by dynamic atmospheric systems such as cold 
fronts. After the passage of the cold front, under conditions 
of clear skies and low atmospheric humidity, the heat loss 
by irradiation during the night is very high. This results 
in a drop in temperature, mainly during winter, autumn, 
and spring. In some cases, this facilitates the occurrence 
of radioactive frosts (Escobar, 2007).

Table 4: Continuation.
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Therefore, the Tmin values could not be 
estimated with high precision using these models. In 
the other months (November, December, and January), 
the models performed well, and a significant influence 
of altitude was observed. Medeiros et al. (2005) (the 
Northeast region of Brazil) Cargnelutti Filho et al. 
(2006) (the Rio Grande do Sul state), and Gomes et 
al. (2014) (the Rio de Janeiro state), observed similar 
results. The altitude influenced the Tmin values the 
most. 

The ANN and RF statistical performance 
indicators for estimating Tmean, Tmax, and Tmin in 
the regions classified as Cwa and Cwb (Minas Gerais 
state) are shown in Table 5. Contrary to the MLR model, 
which used separate equations for each month, the 
architectures chosen for the ANN and RF models could 
be used to estimate the Tmean, Tmax, and Tmin of all 
months together. Thus, to estimate the Tmean, Tmax, or 
Tmin of a given location, latitude, longitude, altitude, 
and the month were used as the input data. Moreover, 
the statistics for each configuration (Table 5) refer to all 
the months of the year. The model performance indices 
for each month need not be distinguished (unlike the 
MLR model).

Table 5: Summary of the statistical tests conducted 
using the ANN and RF models.

Tmean
MAE RMSE R² r d c

RF1 0.47 a 0.61 a 0.94 0.97 a 0.98 0.95
RF2 0.43 a 0.57 a 0.95 0.98 a 0.99 0.96

ANN1 0.67 b 0.80 b 0.90 0.96 a 0.97 0.92
ANN2 0.64 b 0.78 b 0.91 0.96 a 0.98 0.93

Tmax
RF1 0.46 a 0.55 a 0.94 0.97 a 0.98 0.95
RF2 0.44 a 0.56 a 0.94 0.97 a 0.98 0.95

ANN1 0.73 b 0.86 b 0.85 0.93 b 0.96 0.88
ANN2 0.65 b 0.79 b 0.87 0.94 b 0.97 0.90

Tmin
RF1 0.59 a 0.77 a 0.94 0.96 a 0.98 0.95
RF2 0.58 a 0.76 a 0.94 0.97 a 0.98 0.95

ANN1 0.88 b 1.07 b 0.89 0.94 a 0.97 0.91
ANN2 0.87 b 1.03 b 0.89 0.94 a 0.97 0.92

Mean values followed by the same letter in a column do not 
differ significantly (Tukey’s test (p≤0.05)).

The lower RMSE and MAE were observed when 
the RF technique was used (compared to the case when 
ANN was used). A significant difference was observed in 
the results obtained using these techniques (ANN and RF). 
There was no significant difference between the different 
configurations tested within each technique. The RMSE 
and MAE were higher estimating Tmin values compared 
to the Tmax and Tmean values, suggesting more variation 
within the Tmin estimates. The r values, calculated using 
the RF method, ​​were higher than those calculated using 
the ANN method during the calculation of the Tmean, 
Tmax, and Tmin values. The values of the coefficient r 
did not differ significantly when these two techniques 
(and different configurations of the techniques) were used 
to determine the Tmean and Tmin values. Nevertheless, 
a significant difference was observed in the Tmax values 
when these two techniques were used. The other indices 
indicate that the RF model was superior to the ANN model. 
However, both the techniques could be used to estimate the 
Tmean, Tmax, and Tmin values with very high accuracy 
(Table 5). The fit quality of both models can be confirmed 
by the high values ​​of the performance index (c). These 
values were “Excellent” according to the evaluation 
criteria proposed by Camargo and Sentelhas (1997).

There was no significant difference between the 
RF configurations. However, the use of the concept of 
Break ties randomly when several attributes look equally 
good, a WEKA solution, increased the predictive capacity 
of the model. That option gets triggered when the output 
reaches a local optimum. When this condition becomes 
true, the algorithm initializes a random process to escape 
from a local optimal spot to reach the bests solutions. 
This procedure has been explained in detail by Breiman 
(2001). The previous studies suggest the execution of 100 
interactions; however, 500 interactions were required to 
improve the RF performance. Were et al. (2015) reported 
more stable results using a higher number of interactions.

The changes made to the ANN parameters did not 
significantly influence the Tmean, Tmax, and Tmin values. 
However, increasing the Number of Training Epochs from 
500 to 1000 improved the Tmean and Tmin predictive 
capacity of ANN. This Number of Training Epochs is 
a hyperparameter that defines the number of times the 
learning algorithm works through the entire training 
dataset. The best results were obtained when six neurons 
were integrated into one hidden layer during the estimation 
of Tmean and Tmin. However, the best result was obtained 
when five neurons were integrated into the hidden layer 
during the estimation of Tmax. The choice of the size of 
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Figure 5: Attribute importance plots for the RF1, RF2, ANN1, and ANN2 models (Source: The Authors).

the hidden layer is very important because underestimated 
numbers of neurons can lead to poor approximation and 
generalization capabilities, while the use of excessive 
neurons can potentially result in overfitting. This can 
eventually make the search for the global optimum more 
difficult (Lee; Lam, 1995). 

Although the MLR model could be used to estimate 
the Tmean, Tmax, and Tmin for some months of the year, 
in general, the RF and ANN models exhibited superior 
predictive abilities (for all the analyzed statistical indices) 
than the MLR models. The RF model was found to be 
superior to the ANN model. Moreover, the low MLR 
predictive capacity (Tmin estimation) can cause problems 
for producers who need this information because the 
regions categorized as Cwa and Cwb are more suitable 
for the development of agricultural activities that require 
lower temperatures and average temperatures during the 
winter (below 20 °C; De Sá Júnior et al., 2012). Therefore, 
RF and ANN methods are more suitable for this region. 

Several literature reports (reporting various 
applications) have indicated the superiority of the RF 
model in the regression estimation (Benali et al., 2019; 
Noi; Degener; Kappas, 2017; Rodríguez-Lado et al., 
2015). The superiority of the RF model can be attributed 
to the advantages of the method, which include not 
making distributive assumptions about the predictors. 

The importance of each variable can be determined using 
this model, and the method is less sensitive to noise or 
overfitting (Armitage; Ober, 2010; Ismail; Mutanga, 2010). 
Even though RF is superior to ANN, the ANN method can 
be used to determine the Tmean, Tmax, and Tmin values 
with high accuracy. This has also been reported by Hasni 
et al. (2012). They concluded that the ANN technique 
could be reliably used for determining the temperatures. 

The plot, shown in Figure 5, indicates the importance 
of each input attribute in the response variable of the 
evaluated algorithms. The most important contribution 
toward the estimation of the Tmean value was for the month. 
This was followed by the effect of the altitude (for all the 
evaluated models). In the estimate of Tmax by RF1 and RF2, 
the altitude exerted the maximum effect. However, when 
the ANN1 and ANN2 methods were used, the month was 
found to exert the maximum effect on the results. This was 
followed by the contribution of the altitude. The trend was 
similar to the trend observed when the MLR method was 
used. A significant influence of the altitude was observed 
for all months when the MLR model was used for the 
calculations. The month attribute had the largest contribution 
to the Tmin estimate. This contribution was the maximum. 
These results can potentially explain the low capacity of the 
MLR model toward the estimation of Tmin as the month is 
not considered a variable in this model.
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The results revealed that, for locations where it 
is difficult to collect data from weather stations (due to 
lack of infrastructure, reading errors, or use of damaged 
devices), the use of RF and ANN models is recommended 
for estimating the Tmean, Tmax, and Tmin values. In 
addition, researchers and producers can use such methods 
to create a risk zoning of pests and diseases, develop works 
related to plant growth, and develop crop varieties based 
on the temperature of the region. 

An estimation of the Tmin values can help prevent 
the formation of frost in all the locations under study. 
This is because the region under analysis is susceptible 
to the occurrence of this phenomenon. According to 
Pimenta, Angélico and Chalfoun (2018), adverse weather 
conditions (such as the formation of frost) can harm the 
production of the coffee fruit, affecting productivity and 
thereby changing the market value of the product. It is 
important to develop an efficient technique to determine 
the Tmax and Tmin values to develop a more accurate 
agricultural zoning of climatic risk. This can assist the 
producers in the choice of sowing time and harvest 
planning. Extreme weather conditions, especially in 
less developed regions, can be avoided. However, no 
statistical method can produce results that are exactly the 
same as the observed and/or recorded data. Hence, it is 
important that the weather stations function continuously 
(Alves et al., 2020).  Furthermore, it is important to have 
computational knowledge to implement the RF and ANN 
models, therefore, mobile applications are needed to 
facilitate the use of these techniques. Further studies in 
the area are needed, and the results of the present study 
may support future forecasts.

CONCLUSIONS
The results of this study can help farmers, 

researchers, technicians, and local government officials in 
urban planning. Urbanization is characterized by surface 
alterations. Vegetated areas are replaced with impervious 
surfaces and buildings. This surface change alters the 
energy balance, increasing absorption and heat transfer 
between the earth’s surface and the lower atmosphere, 
resulting in increased surface air temperatures (Song; Wu, 
2016). Accelerated urban growth has been observed in 
the region under study. An effective tool for estimating 
the air temperature can assist in the application of new 
technologies that can potentially reduce the surface 
heating process. The RF model exhibited a greater 
predictive performance compared to the ANN and 
MLR models for estimating the Tmean, Tmax, and 
Tmin values. The RF model explains at least 94% of 

the variability of the variables estimated using the 
independent dataset, i.e., only 6% of the response variable 
could not be predicted by the model. The RF is the most 
suitable technique for estimating the air temperature. 
The input attributes were sufficient for the estimation. 
Therefore, this model is recommended for conducting 
studies in this specific region.
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