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Abstract. In this paper, we implement the tanh-coth function method to construct the travelling

wave solutions for (N + 1)-dimensional nonlinear evolution equations. Four models, namely

the (N + 1)-dimensional generalized Boussinesq equation, (N + 1)-dimensional sine-cosine-

Gordon equation, (N+1)-double sinh-Gordon equation and (N+1)-sinh-cosinh-Gordon equation,

are used as vehicles to conduct the analysis. These equations play a very important role in

mathematical physics and engineering sciences. The implemented algorithm is quite efficient and

is practically well suited for these problems. The computer symbolic systems such as Maple and

Mathematica allow us to perform complicated and tedious calculations.
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1 Introduction

It is well known that nonlinear evolution equations arise in number of scien-

tific models including the propagation of shallow water waves, hydrodynamic,

plasma physics, fluid mechanics, solid state physics, chemical kinematics, chem-

ical chemistry, optical fiber and geochemistry. The investigation of travelling

wave solutions of nonlinear evolution equations have been widely studied due
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to the significant applications in mathematical theory and other practical fields.

A variety of powerful and direct methods have been proposed to obtain ex-

act solutions of nonlinear evolution equations such as exp-function method

[1, 11, 12, 18, 20, 26], Homotopy perturbation method [3, 4], variational it-

eration method [5, 15], Hirota’s method [24], auxiliary equation method [10],

Jacobi elliptic function method [14], hyperbolic function method [2] and so on.

However, practically there is no unified method that can be used to handle all

types of nonlinearity. Another important method used to obtain exact solutions

of nonlinear problem is the tanh function method [16]. The basic tanh-function

method was introduced in the early 1990s (see [8, 23] and references therein).

The tanh function method with the help of Matlab or Mathematica is simple

and effective, and it has been successfully applied to many kinds of nonlinear

evolution equations [8, 9, 13, 27] for finding generalized solitary wave solutions

and periodic solutions. Since then the method has been extended and generalized,

the motivation being to obtain more solutions than are delivered by the basic tanh-

function method. Recently, El-Wakil et al. [6, 7] proposed a modified tanh-coth

function method for constructing soliton and periodic solutions of nonlinear

problems. Subsequently, Wazzan [22] used modified tanh-coth function method

and obtained new solutions for some important nonlinear partial differential

equations. More recently, Lee and Sakthivel [19] implemented modified tanh-

coth function method for obtaining travelling wave solutions of two dimensional

coupled Burger’s equations.

Further, in recent years, much attention has been paid on the study of solutions

of nonlinear wave equations in low dimensions. But there is little work on

the high dimensional equations. Motivated by this consideration, in this paper

we obtain the travelling wave solutions of high dimensional equations. The

(N + 1)-dimensional equations such as generalized Boussinesq equation, sine-

cosine-Gordon equation, double sinh-Gordon equation and sinh-cosinh-Gordon

equation have significant applications in real world problems [21, 25]. Therefore,

the search for exact solutions of these equations is of great importance and

interest. The purpose of this paper is to obtain new travelling wave solutions of

these (N +1)-dimensional equations by applying the tanh-coth function method.
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2 Modified tanh-coth function method

In this section, we will present briefly the modified tanh-coth function method in

its systematized form [6, 7]. Suppose we are given a nonlinear evolution equation

in the form of a partial differential equation (PDE) for a function u(t, x). First,

we seek travelling wave solutions by taking u(x, t) = u(η), η = kx − ωt ,

where k and ω represent the wave number and velocity of the travelling wave

respectively. Substitution into the PDE yields an ordinary differential equation

(ODE) for u(η). The ordinary differential equation is then integrated as long as

all terms contain derivatives, where the integration constants are considered as

zeros. The resulting ODE is then solved by the tanh-coth method which admits

the use of a finite series of functions of the form

u(η) = a0 +
M∑

n=1

anY n(η) +
M∑

n=1

bnY −n(η), (1)

and the Riccati equation

Y ′ = A + CY 2, (2)

where A and C are constants to be prescribed later. Here M is a positive integer

that will be determined. The parameter M is usually obtained by balancing

the linear terms of highest order in the resulting equation with the highest order

nonlinear terms. Substituting (1) in the ODE and using (2) results in an algebraic

system of equations in powers of Y that will lead to the determination of the

parameters an, bn(n = 0, . . . , M), k and ω.

In this paper, we will consider the following special solutions of the Riccati

equation (2)

(i) A = 1
2 , C = − 1

2 , Eq. (2) has solutions Y = tanh η ± i sechη and Y =

coth η ± cschη.

(ii) A = 1, C = −4, Eq. (2) has solutions Y = 1
2 tanh 2η and Y = 1

4 (tanh η+

coth η).

(iii) A = 1, C = 4, Eq. (2) has solutions Y = 1
2 tan 2η and Y = 1

4 (tan η −

cot η).
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3 Solution of (N + 1)-dimensional generalized Boussinesq equation

In this section, modified tanh-coth method will be applied to handle the (N +

1)-dimensional generalized Boussinesq equation. The (N + 1)-dimensional

generalized Boussinesq equation is given by [25]

utt = uxx + λ(un)xx + uxxxx +
N−1∑

j=1

uy j y j (3)

where λ 6= 0 is constant and N > 1 is an integer. To solve the Eq. (3), consider

the wave transformation

u(x, y1, y2, . . . , yN−1, t) = u(η), η = τ



x +
N−1∑

j=1

y j − ct



 ,

here τ 6= 0 and c 6= 0 are constants. Now the Eq. (3) can be written as

(N − c2)u′′ + λ(un)′′ + τ 2u′′′′ = 0, (4)

where the prime denotes derivative with respect to η. Integrating Eq. (4) with

respect to η and ignoring the constant of integration, we obtain

(N − c2)u′ + λ(un)′ + τ 2u′′′ = 0. (5)

Next, we introduce the transformation un−1 = v, then we have

u′ =
1

n − 1
v

1
n−1 −1v′, (un)′ =

n

n − 1
v

1
n−1 v′, (6)

u′′′ =
(n − 2)(2n − 3)

(n − 1)3
v

1
n−1 −3(v′)3 +

3(2 − n)

(n − 1)2
v

1
n−1 −2v′v′′

+
1

n − 1
v

1
n−1 −1v′′′. (7)

Substituting these transformations (6) and (7) in Eq. (5), we can rewrite the

(N + 1)-dimensional generalized Boussinesq Eq. (3) in the following nonlinear

ordinary differential equation of the form

(N − c2)(n − 1)2v2v′ + λn(n − 1)2v3v′ + τ 2(n − 2)(2n − 3)(v′)3

+ 3τ 2(n − 1)(2 − n)vv′v′′ + τ 2(n − 1)2v2v′′′ = 0. (8)
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To determine the parameter M , we balance the linear terms of highest order in

Eq. (8) with the highest order nonlinear terms. This in turn gives M = 2. As a

result, the modified tanh-coth method (1) admits the use of the finite expansion

v(η) = a0 + a1Y + a2Y 2 +
b1

Y
+

b2

Y 2
. (9)

Substituting Eq. (9) in the reduced ODE (8) and using Eq. (2) collecting the

coefficients of Y , yields a system of algebraic equations for a0, a1, a2, b1, b2, τ

and c.

Case (I): If we set A = 1
2 and C = − 1

2 in equation (2), and solving the

system of algebraic equations using Maple, we obtain the following three sets

of nontrivial solutions:
{

a0 =
(n + 1)(c2 − N )

2λ
, a1 = 0, a2 = −

(n + 1)(c2 − N )

2λ
,

b1 = 0, b2 = 0, τ = ±(n − 1)
√

c2 − N , c = c
}
, (10)

{
a0 =

(n + 1)(c2 − N )

2λ
, a1 = 0, a2 = 0,

b1 = 0, b2 = −
(n + 1)(c2 − N )

2λ
, τ = ±(n − 1)

√
c2 − N , c = c

}
, (11)

{
a0 =

(n + 1)(c2 − N )

4λ
, a1 = 0, a2 = −

(n + 1)(c2 − N )

8λ
,

b1 = 0, b2 = −
(n + 1)(c2 − N )

8λ
, τ = ±

(n − 1)
√

c2 − N

2
, c = c

}
. (12)

Substituting Y = tanh η ± isechη and Y = coth η ± cschη in equation (9), the

first two sets (10) and (11) gives the wave solutions

u1,1(x, ỹ, t) =
[
(n + 1)(c2 − N )

2λ

{
1 − (tanh η ± isechη)±2

}
] 1

n−1

, (13)

u1,2(x, ỹ, t) =
[
(n + 1)(c2 − N )

2λ

{
1 − (coth η ± cschη)±2

}
] 1

n−1

, (14)
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where ỹ = y1, y2, ∙ ∙ ∙ , yN−1 and η = ±(n − 1)
√

c2 − N
(

x +
∑N−1

j=1 y j − ct
)

.

Finally, the third set gives the wave solutions

u1,3(x, ỹ, t) =
[
(n + 1)(c2 − N )

8λ

{
2 − (tanh η ± isechη)2

−
1

(tanh η ± isechη)2

}] 1
n−1

, (15)

u1,4(x, ỹ, t) =
[
(n + 1)(c2 − N )

8λ

{
2 − (coth η ± cschη)2

−
1

(coth η ± cschη)2

}] 1
n−1

, (16)

where

η = ±
(n − 1)

√
c2 − N

2



x +
N−1∑

j=1

y j − ct



 .

Case (II): If we set A = 1 and C = −4 in equation (2) and by the same

calculation as above, the following sets of nontrivial solutions are obtained:
{

a0 =
(n + 1)(c2 − N )

2λ
, a1 = 0, a2 = −

2(n + 1)(c2 − N )

λ
,

b1 = 0, b2 = 0, τ = ±
(n − 1)

√
c2 − N

4
, c = c

}
, (17)

{
a0 =

(n + 1)(c2 − N )

2λ
, a1 = 0, a2 = 0,

b1 = 0, b2 = −
(n + 1)(c2 − N )

8λ
, τ = ±

(n − 1)
√

c2 − N

4
, c = c

}
, (18)

{
a0 =

(n + 1)(c2 − N )

4λ
, a1 = 0, a2 = −

(n + 1)(c2 − N )

2λ
,

b1 = 0, b2 = −
(n + 1)(c2 − N )

32λ
, τ = ±

(n − 1)
√

c2 − N

8
, c = c

}
. (19)
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The first two sets gives the following wave solutions for Eq. (3):

u1,5(x, ỹ, t) =
[
(n + 1)(c2 − N )

2λ

{
1 − (tanh 2η)±2

}
] 1

n−1

, (20)

u1,6(x, ỹ, t) =

[
(n + 1)(c2 − N )

2λ

{

1 −
(

tanh + coth η

2

)±2
}] 1

n−1

, (21)

where η = ± (n−1)
√

c2−N
4

(
x +

∑N−1
j=1 y j − ct

)
. The third set gives the solutions

u1,7(x, ỹ, t) =
[
(n + 1)(c2 − N )

8λ

{
2 − tanh2 2η − coth2 2η

}
] 1

n−1

, (22)

u1,8(x, ỹ, t) =
[
(n + 1)(c2 − N )

32λ

{
8 − (tanh η + coth η)2

−
16

(tanh η + coth η)2

}] 1
n−1

, (23)

where

η = ±
(n − 1)

√
c2 − N

8



x +
N−1∑

j=1

y j − ct



 .

Case (III): If we set A = 1 and C = 4 in Eq. (2), and solving the system of

algebraic equations using Maple, we get the following sets of solutions:

{
a0 =

(n + 1)(c2 − N )

2λ
, a1 = 0, a2 =

2(n + 1)(c2 − N )

λ
,

b1 = 0, b2 = 0, τ = ±
(n − 1)

√
N − c2

4
, c = c

}
, (24)

{
a0 =

(n + 1)(c2 − N )

2λ
, a1 = 0, a2 = 0,

b1 = 0, b2 =
(n + 1)(c2 − N )

8λ
, τ = ±

(n − 1)
√

N − c2

4
, c = c

}
, (25)
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{
a0 =

(n + 1)(c2 − N )

4λ
, a1 = 0, a2 =

(n + 1)(c2 − N )

2λ
,

b1 = 0, b2 =
(n + 1)(c2 − N )

32λ
, τ = ±

(n − 1)
√

N − c2

8
, c = c

}
. (26)

By the same calculation as above, we obtain the following wave solutions of

Eq. (3) from the first two sets of equations (24) and (25)

u1,9(x, ỹ, t) =
[
(n + 1)(c2 − N )

2λ

{
1 + (tan 2η)±2

}
] 1

n−1

, (27)

u1,10(x, ỹ, t) =

[
(n + 1)(c2 − N )

2λ

{

1 −
(

tan η − cot η

2

)±2
}] 1

n−1

, (28)

where η = ± (n−1)
√

N−c2

4

(
x +

∑N−1
j=1 y j − ct

)
. Finally, the third set (26) gives

the wave solutions

u1,11(x, ỹ, t) =
[
(n + 1)(c2 − N )

8λ

{
2 + tan2 2η + cot2 2η

}
] 1

n−1

, (29)

u1,12(x, ỹ, t) =
[
(n + 1)(c2 − N )

32λ

{
8 + (tan η − cot η)2

+
16

(tan η − cot η)2

}] 1
n−1

, (30)

where

η = ±
(n − 1)

√
N − c2

8



x +
N−1∑

j=1

y j − ct



 .

4 Solution of (N + 1)-dimensional sine-cosine-Gordon equation

The (N + 1)-dimensional sine-cosine-Gordon equation is given by [21]

N∑

j=1

ux j x j − utt − α cos(u) − β sin(2u) = 0. (31)
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Consider the wave transformation

u(x1, x2, . . . , xN , t) = u(η), η = τ




N∑

j=1

x j − ct



 ,

where τ 6= 0 and c 6= 0 are constants. With the help of the transformation,

Eq. (31) can be written as

τ 2(N − c2)u′′ − α cos(u) − β sin(2u) = 0, (32)

where the prime denotes derivative with respect to η. Now, we introduce the

transformation u = 2 tan−1 v, then we have

u′′ = 2(v′′+v′′v2−2(v′)2v)

(1+v2)2 , cos(u) = 1−v2

1+v2 , sin(2u) = 4v(1−v2)

(1+v2)2 . (33)

Substituting these transformations (33) in Eq. (32), we can rewrite the (N + 1)-

dimensional sine-cosine-Gordon Eq. (31) in the following form

2τ 2(N −c2)(1 + v2)v′′− 4τ 2(N −c2)v(v′)2+(v2−1)(αv2+ 4βv + α) = 0. (34)

To determine the parameter M , we balance the linear terms of highest order in

Eq. (34) with the highest order nonlinear terms which gives M = 2. As a result,

the modified tanh-coth method (1) admits the use of the finite expansion

v(η) = a0 + a1Y + a2Y 2 +
b1

Y
+

b2

Y 2
. (35)

Substituting Eq. (35) in the reduced ODE (34) and using Eq. (2) collecting the

coefficients of Y , yields a system of algebraic equations for a0, a1, a2, b1, b2, τ

and c.

Case (I): If we set A = 1
2 and C = − 1

2 in equation (2), and solving the

system of algebraic equations using Maple, we obtain the following three sets

of solutions:
{

a0 = −
2β

α
, a1 = ±

√
4β2 − α2

α
, a2 = 0,

b1 = 0, b2 = 0, τ = τ, c = ±

√
α2 − 4β2 + 2τ 2 Nβ

τ
√

2β

}
, (36)
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{
a0 = −

2β

α
, a1 = 0, a2 = 0,

b1 = ±

√
4β2 − α2

α
, b2 = 0, τ = τ, c = ±

√
α2 − 4β2 + 2τ 2 Nβ

τ
√

2β

}
, (37)

{
a0 = −

2β

α
, a1 = ±

√
4β2 − α2

2α
, a2 = 0, b1 = ±

√
4β2 − α2

2α
,

b2 = 0, τ = τ, c = ±

√
α2 − 4β2 + 8τ 2 Nβ

2τ
√

2β

}
. (38)

Substituting Y = tanh η ± isechη and Y = coth η ± cschη in equation (35), the

first two sets (36) and (37) gives the wave solutions

u2,1(̃x, t) = 2 tan−1

[

−
2β

α
±

√
4β2 − α2

α
(tanh η ± isechη)±1

]

, (39)

u2,2(̃x, t) = 2 tan−1

[

−
2β

α
±

√
4β2 − α2

α
(coth η ± cschη)±1

]

, (40)

where x̃ = x1, x2, . . . , xN and η = τ

(
∑N

j=1 x j ±
√

α2−4β2+2τ 2 Nβ

τ
√

2β
t
)

. Finally,

the third set gives the wave solutions

u2,3(̃x, t) = 2 tan−1

[
−

2β

α
±

√
4β2 − α2

2α

{
(tanh η ± isechη)

+
1

(tanh η ± isechη)

}]
, (41)

u2,4(̃x, t) = 2 tan−1

[
−

2β

α
±

√
4β2 − α2

2α

{
(coth η ± cschη)

+
1

(coth η ± cschη)

}]
, (42)

where

η = τ




N∑

j=1

x j ±

√
α2 − 4β2 + 8τ 2 Nβ

2τ
√

2β
t



 .
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Case (II): If we set A = 1 and C = −4 in equation (2) and by the same

calculation as above, the following sets of solutions are obtained:
{

a0 = −
2β

α
, a1 = ±

2
√

4β2 − α2

α
, a2 = 0,

b1 = 0, b2 = 0, τ = τ, c = ±

√
α2 − 4β2 + 32τ 2 Nβ

4τ
√

2β

}
, (43)

{
a0 = −

2β

α
, a1 = 0, a2 = 0,

b1 = ±

√
4β2 − α2

2α
, b2 = 0, τ = τ, c = ±

√
α2 − 4β2 + 32τ 2 Nβ

4τ
√

2β

}
, (44)

{
a0 = −

2β

α
, a1 = ±

√
4β2 − α2

α
, a2 = 0,

b1 = ±

√
4β2 − α2

4α
, b2 = 0, τ = τ, c = ±

√
α2 − 4β2 + 128τ 2 Nβ

8τ
√

2β

}
. (45)

The first two sets gives the following wave solutions of Eq. (31):

u2,5(̃x, t) = 2 tan−1

[

−
2β

α
±

√
4β2 − α2

α
(tanh 2η)±1

]

, (46)

u2,6(̃x, t) = 2 tan−1

[

−
2β

α
±

√
4β2 − α2

α
(tanh η + cothη)±1

]

, (47)

where η = τ

(
∑N

j=1 x j ±
√

α2−4β2+32τ 2 Nβ

4τ
√

2β
t
)

. The third set gives the wave

solutions

u2,7(̃x, t) = 2 tan−1

[
−

2β

α
±

√
4β2 − α2

2α
(tanh 2η + coth 2η)

]
, (48)

u2,8(̃x, t) = 2 tan−1

[
−

2β

α
±

√
4β2 − α2

4α

{
(tanh η + coth η)

+
4

(tanh η + coth η)

}]
, (49)
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where

η = τ




N∑

j=1

x j ±

√
α2 − 4β2 + 128τ 2 Nβ

8τ
√

2β
t



 .

Case (III): If we set A = 1 and C = 4 in Eq. (2), and solving the system of

algebraic equations using Maple, we get the following sets of solutions:
{

a0 = −
2β

α
, a1 = ±

2
√

α2 − 4β2

α
, a2 = 0,

b1 = 0, b2 = 0, τ = ±

√
α2 − 4β2

4
√

2β(N − c2)
, c = c

}
, (50)

{
a0 = −

2β

α
, a1 = 0, a2 = 0,

b1 = ±

√
α2 − 4β2

2α
, b2 = 0, τ = τ, c = ±

√
−α2 + 4β2 + 32τ 2 Nβ

4τ
√

2β

}
, (51)

{
a0 = −

2β

α
, a1 = ±

√
α2 − 4β2

α
, a2 = 0,

b1 = ∓

√
α2 − 4β2

4α
, b2 = 0, τ = τ, c = ±

√
−α2 + 4β2 + 128τ 2 Nβ

8τ
√

2β

}
. (52)

By the same calculation as above, we obtain the following wave solutions of

Eq. (31) from the first two sets of equations (50) and (51)

u2,9(̃x, t) = 2 tan−1

[

−
2β

α
±

√
α2 − 4β2

α
(tan 2η)±1

]

, (53)

u2,10(̃x, t) = 2 tan−1

[

−
2β

α
±

√
α2 − 4β2

α

(
tan η − cot η

2

)±1
]

, (54)

where η = ±
√

α2−4β2

4
√

2β(N−c2)

(∑N
j=1 x j − ct

)
. Finally, the third set (52) gives the

wave solutions

u2,11(̃x, t) = 2 tan−1

[
−

2β

α
±

√
α2 − 4β2

2α
(tan 2η − cot 2η)

]
, (55)
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u2,12(̃x, t) = 2 tan−1

[
−

2β

α
±

√
α2 − 4β2

2α

{
(tan η − cot η)

2

−
2

(tan η − cot η)

}]
, (56)

where

η = τ




N∑

j=1

x j ±

√
−α2 + 4β2 + 128τ 2 Nβ

8τ
√

2β
t



 .

5 Solution of (N + 1)-dimensional double sinh-Gordon equation

In this section, consider the following (N + 1)-dimensional double sinh-Gordon

equation [21]

N∑

j=1

ux j x j − utt − α sinh(u) − β sinh(2u) = 0. (57)

By using the transformation u(x1, x2, ∙ ∙ ∙ , xN , t) = u(η), η = τ(
∑N

j=1 x j −ct),

here τ 6= 0 and c 6= 0 are constants, the Eq. (57) can be written as

τ 2(N − c2)u′′ − α sinh(u) − β sinh(2u) = 0, (58)

where the prime denotes derivative with respect to η. Next we introduce the

transformation u = ln v, then we obtain

u′′ =
v′′v − (v′)2

v2
, sinh(u) =

v − v−1

2
, sinh(2u) =

v2 − v−2

2
. (59)

Substituting these transformations (59) in Eq. (58), we can rewrite the Eq. (57)

in the following form

2τ 2(N − c2)(v′′v − (v′)2) − α(v3 − v) − β(v4 − 1) = 0. (60)

To determine the parameter M , we balance the linear terms of highest order in

Eq. (60) with the highest order nonlinear terms. This in turn gives M = 1. As a

result, the modified tanh-coth method (1) admits the use of the finite expansion

v(η) = a0 + a1Y +
b1

Y
. (61)

Substituting Eq. (61) in the reduced ODE (60) and using Eq. (2) collecting the

coefficients of Y , yields a system of algebraic equations for a0, a1, b1, τ and c.
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Case (I): If we set A = 1
2 and C = − 1

2 in equation (2), and solving the

system of algebraic equations using Maple, we obtain the following three sets

of solutions:
{

a0 = −
α

2β
, a1 = ±

√
α2 − 4β2

2β
, b1 = 0,

τ = τ, c = ±

√
−α2 + 4β2 + 2τ 2 Nβ

τ
√

2β

}
, (62)

{
a0 = −

α

2β
, a1 = 0, b1 = ±

√
α2 − 4β2

2β
,

τ = τ, c = ±

√
−α2 + 4β2 + 2τ 2 Nβ

τ
√

2β

}
, (63)

{
a0 = −

α

2β
, a1 = ±

√
α2 − 4β2

4β
, b1 = ±

√
α2 − 4β2

4β
,

τ = τ, c = ±

√
−α2 + 4β2 + 8τ 2 Nβ

2τ
√

2β

}
. (64)

Substituting Y = tanh η ± isechη and Y = coth η ± cschη in equation (61), the

first two sets (62) and (63) gives the wave solutions

u3,1(̃x, t) = ln

[

−
α

2β
±

√
α2 − 4β2

2β
(tanh η ± isechη)±1

]

, (65)

u3,2(̃x, t) = ln

[

−
α

2β
±

√
α2 − 4β2

2β
(coth η ± cschη)±1

]

, (66)

where x̃ = x1, x2, ∙ ∙ ∙ , xN and η = τ

(
∑N

j=1 x j ±
√

−α2+4β2+2τ 2 Nβ

τ
√

2β
t
)

. Finally,

the third set gives the solutions

u3,3(̃x, t) = ln
[

−
α

2β
±

√
α2 − 4β2

4β

{
(tanh η ± isechη)

+
1

(tanh η ± isechη)

}]
, (67)
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u3,4(̃x, t) = ln
[

−
α

2β
±

√
α2 − 4β2

4β

{
(coth η ± cschη)

+
1

(coth η ± cschη)

}]
, (68)

where

η = τ




N∑

j=1

x j ±

√
−α2 + 4β2 + 8τ 2 Nβ

2τ
√

2β
t



 .

Case (II): If we set A = 1 and C = −4 in equation (2) and by the same

calculation as above, the following sets of solutions are obtained:

{
a0 = −

α

2β
, a1 = ±

√
α2 − 4β2

β
, b1 = 0,

τ = ±

√
α2 − 4β2

4
√

2β(N − c2)
, c = c

}
, (69)

{
a0 = −

α

2β
, a1 = 0, b1 = ±

√
α2 − 4β2

4β
,

τ = ±

√
α2 − 4β2

4
√

2β(N − c2)
, c = c

}
, (70)

{
a0 = −

α

2β
, a1 = ±

√
α2 − 4β2

2β
, b1 = ±

√
α2 − 4β2

8β
,

τ = ±

√
α2 − 4β2

8
√

2β(N − c2)
, c = c

}
. (71)

The first two sets gives the following wave solutions of Eq. (57):

u3,5(̃x, t) = ln

[

−
α

2β
±

√
α2 − 4β2

2β
(tanh 2η)±1

]

, (72)

u2,6(̃x, t) = ln

[

−
α

2β
±

√
α2 − 4β2

2β

(
tanh η + coth η

2

)±1
]

, (73)
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where

η = ±

√
α2 − 4β2

4
√

2β(N − c2)




N∑

j=1

x j − ct



 .

The third set gives the wave solutions

u3,7(̃x, t) = ln
[

−
α

2β
±

√
α2 − 4β2

4β
(tanh 2η + coth 2η)

]
, (74)

u3,8(̃x, t) = ln
[

−
α

2β
±

√
α2 − 4β2

4β

{
(tanh η + coth η)

2

+
2

(tanh η + coth η)

}]
, (75)

where

η = ±

√
α2 − 4β2

8
√

2β(N − c2)




N∑

j=1

x j − ct



 .

Case (III): If we set A = 1 and C = 4 in Eq. (2), and solving the system of

algebraic equations using Maple, we get the following sets of solutions:
{

a0 = −
α

2β
, a1 = ±

√
4β2 − α2

β
, b1 = 0,

τ = ±

√
4β2 − α2

4
√

2β(N − c2)
, c = c

}
, (76)

{
a0 = −

α

2β
, a1 = 0, b1 = ±

√
4β2 − α2

4β
,

τ = ±

√
4β2 − α2

4
√

2β(N − c2)
, c = c

}
, (77)

{
a0 = −

α

2β
, a1 = ±

√
4β2 − α2

2β
, b1 = ∓

√
4β2 − α2

8β
,

τ = ±

√
4β2 − α2

8
√

2β(N − c2)
, c = c

}
. (78)
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By the same calculation as above, we obtain the following wave solutions of

Eq. (57) from the first two sets of equations (76) and (77)

u3,9(̃x, t) = ln

[

−
α

2β
±

√
4β2 − α2

2β
(tan 2η)±1

]

, (79)

u3,10(̃x, t) = ln

[

−
α

2β
±

√
4β2 − α2

2β

(
tan η − cot η

2

)±1
]

, (80)

where

η = ±

√
4β2 − α2

4
√

2β(N − c2)




N∑

j=1

x j − ct



 .

Finally, the third set (78) gives the wave solutions

u3,11(̃x, t) = ln
[

−
α

2β
±

√
4β2 − α2

4β
(tan 2η − cot 2η)

]
, (81)

u3,12(̃x, t) = ln
[

−
α

2β
±

√
4β2 − α2

4β

{
(tan η − cot η)

2

−
2

(tan η − cot η)

}]
, (82)

where

η = ±

√
4β2 − α2

8
√

2β(N − c2)




N∑

j=1

x j − ct



 .

6 Solution of (N + 1)-dimensional sinh-cosinh-Gordon equation

In this section, we consider the (N + 1)-dimensional sinh-cosinh-Gordon equa-

tion of the form [21]

N∑

j=1

ux j x j − utt − α cosh(u) − β sinh(2u) = 0. (83)
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Using the transformation

u(x1, x2, ∙ ∙ ∙ , xN , t) = u(η), η = τ




N∑

j=1

x j − ct



 ,

here τ 6= 0 and c 6= 0 are constants, the Eq. (83) can be written as

τ 2(N − c2)u′′ − α cosh(u) − β sinh(2u) = 0, (84)

where the prime denotes derivative with respect to η. Next, we introduce the

transformation u = ln v, then we have

u′′ =
v′′v − (v′)2

v2
, cosh(u) =

v + v−1

2
, sinh(2u) =

v2 − v−2

2
. (85)

Substituting these transformations (85) in Eq. (84), we can rewrite the (N + 1)-

dimensional sinh-cosinh-Gordon Eq. (83) in the following form

2τ 2(N − c2)(v′′v − (v′)2) − α(v3 + v) − β(v4 − 1) = 0. (86)

To determine the parameter M , we balance the linear terms of highest order in

Eq. (86) with the highest order nonlinear terms which gives M = 1. As a result,

the modified tanh-coth method (1) admits the use of the finite expansion

v(η) = a0 + a1Y +
b1

Y
. (87)

Substituting Eq. (87) in the reduced ODE (86) and using Eq. (2) collecting the

coefficients of Y , yields a system of algebraic equations for a0, a1, b1, τ and c.

Case (I): If we set A = 1
2 and C = − 1

2 in equation (2), and solving the

system of algebraic equations using Maple, we obtain the following three sets

of solutions:
{

a0 = −
α

2β
, a1 = ±

√
α2 + 4β2

2β
, b1 = 0,

τ = τ, c = ±

√
−α2 − 4β2 + 2τ 2 Nβ

τ
√

2β

}
, (88)
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{
a0 = −

α

2β
, a1 = 0, b1 = ±

√
α2 + 4β2

2β
,

τ = τ, c = ±

√
−α2 − 4β2 + 2τ 2 Nβ

τ
√

2β

}
, (89)

{
a0 = −

α

2β
, a1 = ±

√
α2 + 4β2

4β
, b1 = ±

√
α2 + 4β2

4β
,

τ = τ, c = ±

√
−α2 − 4β2 + 8τ 2 Nβ

2τ
√

2β

}
. (90)

Substituting Y = tanh η ± isechη and Y = coth η ± cschη in equation (87), the

first two sets (88) and (89) gives the wave solutions

u4,1(̃x, t) = ln

[

−
α

2β
±

√
α2 + 4β2

2β
(tanh η ± isechη)±1

]

, (91)

u4,2(̃x, t) = ln

[

−
α

2β
±

√
α2 + 4β2

2β
(coth η ± cschη)±1

]

, (92)

where

x̃ = x1, x2, ∙ ∙ ∙ , xN and η = τ




N∑

j=1

x j ±

√
−α2 − 4β2 + 2τ 2 Nβ

τ
√

2β
t



 .

Finally, the third set gives the wave solutions

u4,3(̃x, t) = ln
[

−
α

2β
±

√
α2 + 4β2

4β

{
(tanh η ± isechη)

+
1

(tanh η ± isechη)

}]
, (93)

u4,4(̃x, t) = ln
[

−
α

2β
±

√
α2 + 4β2

4β

{
(coth η ± cschη)

+
1

(coth η ± cschη)

}]
, (94)
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where

η = τ




N∑

j=1

x j ±

√
−α2 − 4β2 + 8τ 2 Nβ

2τ
√

2β
t



 .

Case (II): If we set A = 1 and C = −4 in equation (2) and by the same

calculation as above, the following sets of solutions are obtained:

{
a0 = −

α

2β
, a1 = ±

√
α2 + 4β2

β
, b1 = 0,

τ = τ, c = ±

√
−α2 − 4β2 + 32τ 2 Nβ

4τ
√

2β

}
, (95)

{
a0 = −

α

2β
, a1 = 0, b1 = ±

√
α2 + 4β2

4β
,

τ = τ, c = ±

√
−α2 − 4β2 + 32τ 2 Nβ

4τ
√

2β

}
, (96)

{
a0 = −

α

2β
, a1 = ±

√
α2 + 4β2

2β
, b1 = ±

√
α2 + 4β2

8β
,

τ = τ, c = ±

√
−α2 − 4β2 + 128τ 2 Nβ

8τ
√

2β

}
. (97)

The first two sets gives the following wave solutions of Eq. (83):

u4,5(̃x, t) = ln

[

−
α

2β
±

√
α2 + 4β2

2β
(tanh 2η)±1

]

, (98)

u4,6(̃x, t) = ln

[

−
α

2β
±

√
α2 + 4β2

2β

(
tanh η + coth η

2

)±1
]

, (99)

where

η = τ




N∑

j=1

x j ±

√
−α2 − 4β2 + 32τ 2 Nβ

4τ
√

2β
t



 .
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The third set gives the solutions

u4,7(̃x, t) = ln
[

−
α

2β
±

√
α2 + 4β2

4β
(tanh 2η + coth 2η)

]
, (100)

u4,8(̃x, t) = ln
[

−
α

2β
±

√
α2 + 4β2

4β

{
(tanh η + coth η)

2

+
2

(tanh η + coth η)

}]
, (101)

where

η = τ




N∑

j=1

x j ±

√
−α2 − 4β2 + 128τ 2 Nβ

8τ
√

2β
t



 .

Case (III): If we set A = 1 and C = 4 in Eq. (2), and solving the system of

algebraic equations using Maple, we get the following sets of solutions:

{
a0 = −

α

2β
, a1 = ±

√
α2 + 4β2

β
i, b1 = 0,

τ = ±

√
α2 + 4β2

4
√

2β(c2 − N )
, c = c

}
, (102)

{
a0 = −

α

2β
, a1 = 0, b1 = ±

√
α2 + 4β2

4β
i,

τ = ±

√
α2 + 4β2

4
√

2β(c2 − N )
, c = c

}
, (103)

{
a0 = −

α

2β
, a1 = ±

√
α2 + 4β2

2β
i, b1 = ∓

√
α2 + 4β2

8β
i,

τ = ±

√
α2 + 4β2

8
√

2β(c2 − N )
, c = c

}
. (104)
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By the same calculation as above, we obtain the following wave solutions of

Eq. (83) from the first two sets of equations (102) and (103)

u4,9(̃x, t) = ln

[

−
α

2β
± i

√
α2 + 4β2

2β
(tan 2η)±1

]

, (105)

u4,10(̃x, t) = ln

[

−
α

2β
± i

√
α2 + 4β2

2β

(
tan η − cot η

2

)±1
]

, (106)

where

η = ±

√
α2 + 4β2

4
√

2β(c2 − N )




N∑

j=1

x j − ct



 .

Finally, the third set (104) gives the wave solutions

u4,11(̃x, t) = ln
[

−
α

2β
± i

√
α2 + 4β2

4β
(tan 2η − cot 2η)

]
, (107)

u4,12(̃x, t) = ln
[

−
α

2β
± i

√
α2 + 4β2

4β

{
(tan η − cot η)

2

−
2

(tan η − cot η)

}]
, (108)

where

η = ±

√
α2 + 4β2

8
√

2β(c2 − N )




N∑

j=1

x j − ct



 .

7 Conclusion

In this paper, many new travelling wave solutions for the (N + 1)-dimensional

nonlinear evolution equations is obtained by using the tanh-coth method. By

using the solution of the auxiliary equation (4) in the tanh-coth function method,

we obtain new solutions of the (N + 1)-dimensional generalized Boussinesq

equation, (N + 1)-dimensional sine-cosine-Gordon equation, (N + 1)-double

sinh-Gordon equation and (N + 1)-sinh-cosinh-Gordon equations. This tanh-

coth method also suggests that one can get different exact travelling wave solu-

tions by choosing different auxiliary equations in the tanh-function. The result
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reveals that the implemented technique is quite efficient and is practically well

suited for soling the higher dimensional equations. The correctness of these

solutions are ensured by testing them on computer with the aid of symbolic

computation software Maple.
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