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Abstract. Acid injection in porous medium is a process widely used for stimulation of

petroleum wells and leads to the formation of highly conductive channels called wormholes. Two

different transport-reaction models have been developed in Part I to describe the phenomenon at

the core-scale. The possible existence of core-scale effective properties which appear in these

models is discussed here on the basis of Darcy-scale numerical experiments. The advantages and

drawbacks of one-equation and two-equation models are investigated by reference to averaged

fields computed from Darcy-scale simulations.
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1 Introduction

The unstable dissolution of a porous medium leads to complex patterns which are

difficult to model quantitatively [4]. Indeed, this dissolution process is coupled

with the fluid momentum equation in an unstable way: flow velocity is higher in

the largest pores, which generally produces faster dissolution processes. These
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56 CORE-SCALE DESCRIPTION OF POROUS MEDIA DISSOLUTION

processes increase locally the pore diameter and this may in turn facilitate the

acid transport to these large pores. These physical mechanisms can lead to the

formation of highly conductive flow channels called wormholes. A model has

been developed at the Darcy-scale by Golfier et al. [1] involving a local non-

equilibrium dissolution equation. Numerical simulations have been performed

for 2D and 3D configurations for both homogeneous and heterogeneous sys-

tems and allowed to capture all the observed features in terms of dissolution

regimes and optimum flow rate. However, a direct application of laboratory re-

sults to the field scale is not straightforward since a direct Darcy-scale description

would require a very fine grid. Therefore, a large-scale model is necessary.

Figure 1 – The different scales of the problem.

A first attempt has been made in Part I [2] at deriving a core-scale dissolu-

tion model based on cross-sectional averages from a volume averaging method

[5, 10]. We remind below the notations used at the core-scale and briefly sum-

marize the different approaches developed in Part I [2]. It must be emphasized

here that this study does not concern only stimulation methods by acidification

of petroleum wells but the dissolution mechanisms in porous media in a more

general way. As a consequence, we consider only the interaction of the water-

acid mixture with the rock (single-phase flow) and the oil phase is not taken

into account. Core-scale averaged quantities are defined in the core-scale av-

eraging volume illustrated in Fig. 1. For example, the regional intrinsic acid

concentration and the superficial regional velocity associated to the �−region,
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respectively C∗
A� and V∗

� , are defined as follows.

C∗
A� = {

CAβ

}�

�
= 1

V�

∫
V�

CAβ dV (1)

V∗
� = {

Vβ

}
�

= 1

Vt

∫
V�

Vβ dV (2)

Flow equation. For the flow description at this scale, a classical Darcy’s law

has been obtained by averaging the Darcy-Brinkman formulation.

V∗
β = − 1

µβ

K∗ · (∇ P∗
β − ρβg

)
(3)

∇ · V∗
β = 0 (4)

where V∗
β and P∗

β represent respectively the core-scale averaged velocity and

pressure and K∗ the core-scale permeability tensor. It must be pointed out that

this average velocity is linked to the two regional average velocities V∗
� and V∗

η,

with the following relation:

V∗
β = V∗

� + V∗
η (5)

With regard to the transport and dissolution part, it was not obvious to apply

an upscaling method which would lead to some core-scale equations valid in

a general way. In fact, the value of the mass transfer coefficient appearing in

the Darcy-scale model can strongly modify the acid transport behavior and the

corresponding Darcy-scale dissolution pattern. Several approaches have been

developed depending on whether the local mass equilibrium condition is verified

or not.

Local mass equilibrium dissolution: Two-equation model. If the value of

the mass transfer coefficient is very large, we obtain two different regions at the

Darcy-scale: a fluid region in the dissolved areas, and a porous region where

dissolution has not occurred. This looks like a double-porosity system, and

this suggests the introduction of a two-equation model for which the wormholes
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(�−region) and the remaining porous matrix (η−region) are treated separately.

The transport equations for the �−region are written as

φ�

∂C∗
A�

∂t
+ V∗

� · ∇C∗
A� = ∇ · (

D∗∗
� ·∇C∗

A�

) − α∗C∗
A� (6)

∂φ�

∂t
= βs

ρσ

α∗C∗
A� (7)

where βs represents the stoichiometric coefficient of the reaction, ρσ the rock

density, α∗ the core-scale mass transfer coefficient and φ� the wormhole volume

fraction whereas the average concentration associated to the η−region, C∗
Aη, is

equal to 0.

Local mass non-equilibrium dissolution: One-equation model. In the more

general case of local non-equilibrium conditions at the Darcy-scale, the more

complex form of the local equations did not allow to directly infer the core-scale

transport equation. Nevertheless, it was possible to propose a general form for

the macroscopic transport-reaction equations within a one-equation model [6,

9], defined as follows:

ε∗
β

∂C∗
Aβ

∂t
+ V∗

β · ∇C∗
Aβ = ∇ · (

D∗∗
β ·∇C∗

Aβ

) − α∗C∗
Aβ (8)

∂ε∗
β

∂t
= βs

ρσ

α∗C∗
Aβ (9)

where ε∗
β represents the core-scale porosity and C∗

Aβ the average concentration

weighted by the porosity.

While we have now decided on the form of the core-scale equations to be

used in our model, a fundamental question remains: how to determine the differ-

ent effective coefficients that appear in these core-scale equations? They could

be calculated in principle by solving so-called closure problems. However, this

requires the knowledge of the developed wormhole geometry, which is the result

of the flow process. As a consequence of the fluid-porous medium interface

evolution during the dissolution process, the relationship between the macro-

scopic quantities may be historical. This problem exists also for the Darcy-scale

model, and we have adopted in this case the assumption classically made in geo-

chemistry of a direct relationships linking the different macroscopic properties.
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For instance, permeability is a function of porosity, or the mass transfer coeffi-

cient depends on the cell Peclet number and porosity. Is it possible to use some

similar relations at the core-scale?

In order to test such a possibility, rather than to solve numerically the closure

problems with some non-representative boundary conditions, the dissolution pat-

terns obtained at the Darcy-scale are used in this work to determine the effective

coefficients. A series of Darcy-scale simulation is performed on a core of 25

cm length and 5 cm wide and used to obtain, by spatial integration, some core-

scale effective parameters. We remind briefly in a first part the various results

extracted from Darcy-scale simulations and presented in Golfier et al. [1]. Then,

the definitions associated with the introduction of the core-scale parameters are

presented and the possible independence of these coefficients with respect to

the dissolution history is discussed based on the numerical experiments.

2 Darcy-scale numerical simulations

Different Darcy-scale simulations have been performed on a two-dimensional

domain by varying the injection flow rate Q, the initial acid concentration C0 and

the mass transfer coefficient value α. Two principal results have been extracted

from the model. First, the simulations allow to capture the different dissolution

regimes, those corresponding to local equilibrium as well as those with non-

equilibrium. We can see in Fig. 2 from Golfier et al. [1] an example of the dif-

ferent dissolution figures obtained numerically for different acid injection rates.

All these figures represent the porosity field. The obtained dissolution patterns

are remarkably equivalent to the experimental dissolution patterns. These results

were used to draw diagrams of the transitions between the different regimes.

Secondly, the performed simulations have confirmed the existence of an op-

timum injection rate. This numerical optimum injection rate has been fitted

with the experimental value through the proper choice of a single parameter, A,

defining the mass transfer coefficient value through

α
(
Pecell, εβ

) = A α0
(
Pecell, εβ

)
(10)

where α0 is the correlation obtained from the “ closure problem”, presented in

Golfier et al. [1]. This latter correlation expresses the mass transfer coefficient
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Figure 2 – Porosity fields representative of the dissolution structure obtained numerically:

Example of dissolution patterns: (a) face dissolution, Pe = 8.32×10−4, Da = 120; (b)

conical wormhole, Pe = 4.14×10−3% , Da = 24; (c) dominant wormhole, Pe = 1.66,

Da = 6.01 × 10−2; (d) ramified wormhole, Pe = 83.2, Da = 1.2 × 10−3; (e) uniform

dissolution, Pe = 832, Da = 1.2 × 10−4 (Golfier et al., J. Fluid Mech., 457, 2002).

as a function of the Peclet number, defined at the Darcy-scale Pecell , and the

porosity εβ .

The calculations show that the optimum injection rate is linked with the Dam-

köhler number value, called Da1. Also, this model allowed to study the effect of

many external parameters, such as the variation of temperature or concentration,

or the use of other reacting fluids, like acids in emulsion, which give lower

diffusion effects.

3 Macroscopic parameters and core-scale relations

In this section, we discuss the determination of correlations between the dif-

ferent core-scale effective coefficients from numerical experiments performed

at the Darcy-scale. The definitions associated with these core-scale parameters

are discussed below. We consider the domain represented in Fig. 1. Averaged

properties, that could be used in a 1D core-scale representation are defined as

follows. The different parameters of the problem (pressure, velocity, concen-

tration...) are integrated on some interval of given length (Fig. 3) to provide

1The Damköhler number is a dimensionless number, defined as the ratio between the
acid consumed and the acid transported by convection.
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the core-scale properties, whose definitions have been given in Part I [2] and

reminded in the introduction.

From the resulting porosity, pressure, velocity, and concentration fields, two

additionnal core-scale parameters are calculated. From the pressure and veloc-

ity fields, we calculate the head loss between two sections of the core. From

the concentration field, we calculate the overall dissolution rate for a volume

included between two cross sections. From these parameters it is possible to de-

termine the core-scale permeability and the mass exchange coefficient. It must

be emphasized that their definition is general, and does not depend on a particular

model.

Figure 3 – Core-scale approach of the problem.

• Core-scale averaged permeability:

K ∗ = µβ

(
∂ P∗

β

∂x

)−1 (
V∗

β

)
x

(11)

• Core-scale averaged mass transfer coefficient:

α∗ = 1

C∗
Aβ

1

Vt

∫
Vt

αCAβ d A (12)

These different parameters can be calculated as a function of time for the var-

ious performed numerical experiments. What is the impact of the dissolution
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history? In fact, as mentioned in the introduction, a direct relationship between

the different macroscopic quantities may be historical, due to the coupling be-

tween the flow velocity and the dissolution process. It must be emphasized

that this question is of a general interest, and similar problems were found in

geochemistry, or in dealing with dendritic mushy zones [7, 3]. This problem

has been solved approximately at the Darcy-scale, where we have already de-

termined the relations linking the different macroscopic properties, such as the

permeability versus the porosity or the mass transfer coefficient as a function of

the cell Peclet number and the porosity. We discuss below the application of the

same ideas at the upper scale, by focusing particularly on the relations K∗ − φ�

and α∗ = f (Pe, φ� , ...).

3.1 Macroscopic permeability relationship

We begin by representing the evolution of the core-scale permeability K∗ as a

function of the fluid fraction φ� , or the core-scale porosity ε∗
β , for the disso-

lution regimes: conical wormhole, wormholing and ramified wormhole. The

reason for keeping the two parameters φ� and ε∗
β in the analysis have been ex-

plained in Part I [2]. In the case of local equilibrium, the Darcy-scale porosity

remains constant in the non-dissolved areas. Thus, the single parameter charac-

teristic of dissolution is φ� . On the contrary, in the non-equilibrium cases, the

Darcy-scale porosity varies, and the two parameters φ� and ε∗
β characterize the

dissolution process, in a somehow independent manner.

For the two limit cases of dissolution, compact and uniform regime, the prob-

lem simplifies to a 1D case and the dissolution front velocity is constant. It is

remarkable to see that local equilibrium as well as non-equilibrium dissolution

can lead to a stationary front displacement. Given the displacement velocity of

the front is constant, the K∗ −φ� relation does not depend on the time evolution

although it is still difficult to express easily this relationship, especially under

local non-equilibrium conditions because of the Darcy-scale porosity gradients.

For the three other cases named above, the question remains open. We tried to

determine a relation between core-scale permeability and porosity in a similar

way to the Darcy-scale problem.
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3.1.1 Compact regime

For this regime, we have a sharp dissolution front with a displacement velocity

Vq equal to

Vq = V0C0
ρσεσ

β
+ C0

(13)

where V0 and C0 are respectively the injection velocity and injection concen-

tration.

The core-scale permeability field K ∗ is directly linked to the core-scale volume

fraction φ� , and their values depend on the position of the cross section versus

the dissolution front. We can write the relationship K ∗ − φ� , for 0 ≤ φ� ≤ 1,

under the form

K ∗ = K K f luid

(1 − φ�) K f luid + φ� K
(14)

where K f luid represents the equivalent permeability of the fluid region.

3.1.2 Conical regime

Although the effective coefficients K ∗(t) and φ�(t) are a function of time,

their evolutions, nevertheless, are not independent. Is it possible to obtain a

relationship between these two parameters which is independent of the dissolu-

tion history or does it stay a function of time?

Figure 4 – Schematic representation of tube dissolution.

To answer this question, let us focus on a simplified case of our problem. We

consider a wormhole which propagates into a porous medium of initial perme-

ability K0 and of width L . The studied part of the domain is far enough from
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the boundaries so that the flow may be considered steady (see Fig. 4). If we

represent the wormhole by a tube of width b, the effective permeability K ∗ can

be estimated analytically. The equivalent permeability for the fluid zone is on

the order of b2/12 (in 2D) which leads, for the permeability K ∗, to

K ∗ = (1 − φ�) K0 + φ� b2/12

≈ φ� b2

12
for φ� > 0

(15)

and the channel width b can be also expressed as a function of the fluid fraction,

i.e. b = φ� L . We obtain:

K ∗ = L2φ3
�

12
(16)

This relationship gives us an idea about the K∗ − φ� correlation existing in

our problem.

However, we are generally far from these theoretical conditions. We have

represented in Fig. 5 the macroscopic permeability as a function of the fluid

fraction at Q = 1 cm3.h−1 for different dissolution times. The integration interval

is fixed at lint = 0.75 cm. It is clear from these results that the permeability

evolution remains a function of the time dissolution, except for small volume

fractions φ� , and we have

K ∗ = f (φ� , t) (17)

This result can be physically explained from the dissolution figures. The

closest we are from the inlet of the domain (i.e., the bigger the fluid fraction

is), the less the wormhole can be represented by a tube in the studied section

and, consequently, Eq. (16) is no longer verified.

3.1.3 Wormholing regime

On the contrary, for the wormholing regime, the obtained results are closer

to those predicted by the simplified theoretical model developed as indicated

above. In fact, in this case, the wormhole geometry is similar to a tube. We have

represented in Fig. 6, the K ∗ −φ� relation for different injection rates, different

values of the mass transfer coefficient α and at different dissolution times. The

interval length lint is also equal to 0.75 cm. We see that, for this dissolution
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Figure 5 – Macroscopic permeability as a function of the fluid fraction (conical regime).

Figure 6 – Macroscopic permeability as a function of the fluid fraction (wormholing

regime).
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regime, a macroscopic relation quasi independent of the time evolution exists

and can be expressed as

K ∗ = f (φ� ) (18)

The influence of the integration length has also been investigated. Figure 7

shows the K∗ −φ� relationship, for various values of lint . This influence is neg-

ligible, as long as the interval length remains strictly smaller than the wormhole

length Lw.

Figure 7 – Effect of the variation of the integration interval length (wormholing regime).

3.1.4 Ramified regime

For the ramified regime, at last, Fig. 8 shows the permeability evolution as a

function of the fluid fraction for different injection rates, different values of

the mass transfer coefficient, and different times. It is obvious that a K ∗ − φ�

relation does not seem to be a very accurate representation. This is due to

the impact of the spreading of the dissolution front. In fact, there are now

three distinct zones in the domain: a fluid zone, a zone corresponding to the
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initial porous medium, and a transient zone with a porosity gradient due to

the conditions of local non-equilibrium. The macroscopic permeability K ∗ can

increase although the fluid fraction value is still 0 (cf. triangles � in Fig. 8).

Therefore, φ� does not seem to be convenient to correctly represent the geo-

metry of the domain. While our above discussion suggests that φ� and ε∗
β

should be used independently, the results interpreted in terms of ε∗
β only lies

close to a single curve, Fig. 9. If confirmed, the core-scale relation could be

written as follows

K ∗ = f
(
ε∗
β

)
(19)

Figure 8 – Macroscopic permeability as a function of the fluid fraction (ramified regime).

The influence of the length lint on the calculation of K ∗ has also been verified

and the simulations have confirmed that it was negligible provided it is strictly

inferior to the wormhole length.

3.2 Macroscopic mass transfer relationship

The core-scale mass transfer coefficient α∗ seems more difficult to estimate.

Based on the relation at the Darcy-scale α = f
(
Pecell, εβ

)
and from the closure

problem form, we start by assuming that the coefficient α∗ depends on the Peclet
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Figure 9 – Macroscopic permeability as a function of the macroscopic porosity (ramified

regime).

number Pe at the core-scale and the fluid fraction φ� (or the core-scale porosity

ε∗
β for the local non-equilibrium dissolution regime). Moreover, we assume here

that the dependence on the Peclet number is small compared with the depend-

ence versus φ� (or ε∗
β). We will come back later on this assumption.

We have represented in Fig. 10 the evolution of the core-scale mass transfer

coefficient α∗ into the core as a function of the core-scale porosity ε∗
β for dif-

ferent dissolution times and different injection rates within the conical, worm-

holing and ramified regimes. This figure shows that the relationship α∗ − ε∗
β is

not as evident as the relationship K ∗ − ε∗
β , although the plot is here in semi-log

scale. Even if a relationship seems to emerge in the case of the conical regime,

we can remark the same phenomenon of instationarity observed for the K ∗ − ε∗
β

relationship. At ε∗
β = 0.2, initial porosity of the medium, we recover the mass

transfer coefficient value at the Darcy-scale. When the fluid fraction (resp. the

core-scale porosity) increases, the core-scale mass transfer coefficient decreases

to pass by a plateau before going to 0 when ε∗
β → 1. The value depends on

the dissolution regime. In fact, if α is proportional to 1/ l2
β where lβ represents

the characteristic length at the pore-scale (here lβ = 300 µm), α∗ is propor-
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Figure 10 – Macroscopic mass transfer coefficient as a function of the macroscopic

porosity ε∗
β.

tional to 1/ l2
� where l� is the wormhole width. Therefore, as the wormhole

width decreases from the conical regime to the wormholing regime, and from

the wormholing regime to the ramified regime, although it is more difficult to

define the limit of a wormhole in local non-equilibrium dissolution, the value of

the core-scale parameter α∗ decreases in the same way. Thus, when the macro-

scopic porosity ε∗
β increases, the core-scale mass transfer coefficient decreases

of a factor
(
lβ/ l�

)2
versus its initial value at ε∗

β = 0.2.

The uncertainty about the relationship for α∗ raises a major problem: like at

the lower-scale, several numerical simulations confirmed that the propagation

velocity of the wormholes predicted by our core-scale model is strongly sen-

sitive to the value of this coefficient, especially in the zone at the end of the

wormhole (ε∗
β = 0.3). Based on the assumption that this uncertainty is linked

with the multitude of channels created at the short times at the core inlet, we

decided to eliminate from the porosity and concentration fields the wormholes

that do no longer develop, and to only consider the influence of the dominant

wormhole (this will be referred to as the dominant wormhole assumption). The
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Figure 11 – (a) porosity field and (b) α∗ − ε∗
β correlation in wormholing regime before

the dominant wormhole assumption; (c) porosity field and (d) α∗ − ε∗
β correlation in

wormholing regime after the dominant wormhole assumption.

interest of using this assumption is confirmed by Fig. 11. The variation of the

integration interval length has always a negligible influence on the correlation.

An interesting parallel can be made between this assumption and the quasi-

stationarity condition often used for solving the closure problems. With this

last assumption, non-local effects in time and space are eliminated. In the same

way, neglecting these wormholes allows to neglect the spatio-temporal varia-

tions of the deviations, and, consequently, the theory is valid only for some long

times and far enough from the core inlet.

A zoom around the zone where the mass transfer coefficient strongly de-

creases, and which contains the most important part of the dissolution physics,

is represented in Fig. 12. This shows a non negligible dependence of the α∗

coefficient versus the injection velocity, i.e., the Peclet number. It is therefore

necessary to take into account both the fluid fraction (or the porosity ε∗
β) and

the injection Peclet number for the development of the correlations for the core-

scale mass transfer coefficient. The log-normal representation in Fig. 12 sug-

gests the use of correlations for α∗ with an exponential dependence with ε∗
β ,

the magnitude varying as a function of the injection Peclet number.

Comp. Appl. Math., Vol. 25, N. 1, 2006
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Figure 12 – Expression of correlations α∗ = f (Pe, φ� ) .

As a conclusion, several important results can be extracted from the develop-

ment of these correlations:

• In the conical regime, effective coefficients cannot be uncoupled from

the dissolution history.

• Simple correlations for the mass transfer coefficient remains difficult to

be evaluated numerically. This represents an important problem for the

development of a macroscopic model at the core-scale, while it is not

clear at this point what is the impact of errors made in determining these

correlations.

• The obtained correlations do not depend on the length of the integration

interval lint , within the range of parameters explored.

4 Core-scale 1D model

From the system of equations obtained at the core-scale and the mass trans-

fer and permeability correlations provided by the numerical simulations at the

Darcy-scale, two 1D core-scale models can be used to verify the validity of

Comp. Appl. Math., Vol. 25, N. 1, 2006
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these representations. The one-medium or one-equation local non-equilibrium

model corresponds to the coupling between the flows equations, Eqs. (3) and

(4), and the transport and dissolution equations, Eqs. (8) and (9). The devel-

opment of the two-medium or two-equation local equilibrium model, based on

the reaction-transport equations presented previously, Eqs. (6) and (7), needs

the introduction of an additional assumption. In fact, this model requires the

knowledge of the regional average velocities V∗
� and V∗

η, i.e., solving of the

regional core-scale Darcy equations written as

∇ · V∗
� = 0 (20)

V∗
� = − 1

µ
K∗

� · (∇ P∗
� − ρβg

)
in the � − phase (21)

and

∇ · V∗
η = 0 (22)

V∗
η = − 1

µ
K∗

η · (∇ P∗
η − ρβg

)
in the η − phase (23)

where K∗
� and K∗

η represent the regional effective permeability tensors [8].

The two average velocities are linked with the following relation:

V∗
β = V∗

� + V∗
η

= φ� U∗
� + (1 − φ�) U∗

η

(24)

The intrinsic average velocity in the porous medium U∗
η being negligible ver-

sus the velocity in the fluid region U∗
� , we can assume

V∗
β ≈ V∗

� (25)

which allows us to use Eqs. (3) and (4) for the flow part. This approximation

raises some difficulties only for some small values of φ� , when the wormhole

is not yet developed.

In this section, we test the capacity of these models to describe the core-scale

dissolution physics. For this purpose, we compare the predictions given by the

1D averaged models with the simulations performed at the lower scale. Since

the large-scale dispersion tensor D∗∗
β , which appears in the transport equation,
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201 × 101 nodes A = 0.5

ρσ = 2160 kg.m−3 µ = 1.10−3 Pa.s

ε∗
β = 0.2

(
or φ� = 10−4

)
β = 1.62

D = 2.10−9 m.s−1 K ∗ = 1.5 · 10−11 m2

Table 1 – Numerical data for constant flow rate injection.

has not been calculated, it has been taken equal to φ� D (or ε∗
β D for local non-

equilibrium dissolution) in our simulations. This assumption has a small effect

on the propagation time because we have focused here on the wormholing and

ramified regime, for which the Peclet number is relatively important. The Darcy-

scale simulations which are used as reference, are obtained from the model

described in Golfier et al. [1] and described briefly in Section 2. The local

characteristics of the porous medium and its core-scale properties, including the

initial values of ε∗
β (or φ� ) and K ∗ are given in Table 1. The correlations used for

the evolution of the mass transfer coefficient α∗ and the effective permeability

K ∗ are obtained as previously described.

Figure 13 – Comparison of the Darcy-scale model and the core-scale models for Q = 21

cm3.h−1 and C0 = 545 kg.m−3.

The comparison of our results for both models with Darcy-scale simulations

are illustrated in Fig. 13 and 14 for Q = 21 cm3.h−1 – C0 = 545 kg.m−3 and
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Figure 14 – Comparison of the Darcy-scale model and the core-scale models for Q = 50

cm3.h−1 and C0 = 326 kg.m−3.

Q = 50 cm3.h−1 – C0 = 326 kg.m−3, respectively. It must be emphasized

here that the choice of the porosity threshold used to determine the tip of the

wormhole is a decisive criterion: it has been fixed from the observation of the

porosity fields at ε∗
β = 0.25 (φ� = 10−2 for the two-medium model). In the

case of the two-equation model, the initial value of φ� at t = 0 s, theoretically

equal to 0, is fixed at 10−4 for numerical reasons. The one-equation model does

not succeed to correctly reproduce the propagation velocity of the wormhole

and overestimates the breakthrough time in both regimes. The wormhole prop-

agation, indeed, is represented in the one-equation model by an increase of ε∗
β

which is a property averaged on all the domain under consideration. For in-

stance, a uniform dissolution of the porous medium and a conical wormhole

well-developed could lead to the same value of ε∗
β in certain conditions. As

a consequence, the macroscopic porosity and hence the one-equation model,

are not suitable to describe the local behaviour of the wormhole developement

within a porous medium. On the contrary, results are more promising for the

two-equation model. The propagation velocity is correctly predicted (same slope

coefficient), except for the short times where the propagation time is underes-

timated. This difference can be explained by the fact that the phenomenon of

wormhole competition is not taken into account in the calculation of α∗ (dom-
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inant wormhole assumption). This emphasizes the difficulty to express this

coefficient independently of the history. The comparison of the fluid fraction

fields obtained, either directly from the core-scale model, or by spatial integra-

tion of the Darcy-scale porosity fields, confirms this assumption. One can see in

Fig. 15, that the φ� value is correctly predicted, except for the inlet of the domain

where it is strongly underestimated because the core-scale model does not take

into account the multitude of channels which propagate over a few centimeters.

Figure 15 – Fluid fraction values predicted by the Darcy-scale model and the core-scale

2-equation model for Q = 50 cm3.h−1and C0 = 326 kg.m−3at t = 152 s.

These first results suggest that it is impossible to completely eliminate the

non-local effects and that a unique correlation for the mass transfer coefficient,

independent of x and t, does not allow to perfectly reproduce the dissolution

phenomenon at the core-scale. In the framework of the proposed core-scale

models, several routes can be considered to model these mechanisms and correct

the inaccuracy induced by such a representation: (i) taking into account the time

effects by the introduction of a different α∗-correlation at short times such as

α∗ = α∗
compact = constant for t � t0, (ii) taking into account the spatial effects

by the introduction of a different α∗-correlation at the inlet of the domain such as

α∗ = α∗
compact = constant for x � x0. We have chosen here, from the observa-

tion of the fraction fluid values, a “ mixed approach” by using a different corre-

lation for α∗ where the porous medium at the inlet is not dissolved enough, i.e.,
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α∗ = α∗
compact = constant for φinlet

� � φ0. Then, the α∗
compact variable becomes

an additional parameter of the model that may be fitted to “ experimental” data.

The results of the introduction of this inlet compact dissolution model are illus-

trated by the curve with the symbols (•) in Fig. 13 and 14 and the impact on the

fluid fraction field is presented in Fig. 16.

Figure 16 – Fluid fraction values predicted by the core-scale 2-equation model with

compact front for Q = 50 cm3.h−1and C0 = 326 kg.m−3at t = 152 s.

These different results confirm that the description of the studied system by a

two-medium domain may be an appropriate way for describing the dissolution

phenomenon at the core-scale.

5 Conclusion

We have determined in this paper the correlations used for the effective coef-

ficients which appear in the two core-scale transport-reaction models developed

in Part I [2]. In both cases, the correlations have been directly extracted from

the study of Darcy-scale numerical simulations and not from the solution of

“ closure problems”.

Several questions are left open concerning both the form of the macroscopic

equations and the correlations used for the effective coefficients. Nevertheless,

the results suggest that a two-medium model is a better candidate to describe

the physic behaviour of the dissolving system. Furthermore, it seems that the
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effective coefficients cannot completely be uncoupled from the non-local effects

and the expressions of their correlations remains non-local functions, i.e., func-

tions of x and t . A good estimation of the mass transfer coefficient α∗ allows

however to correctly reproduce the wormhole propagation into the domain.

What are the implications of these results for larger “ averaging” volume, i.e.,

field scale problems? The introduction of a supplementary upscaling to de-

scribe the wormholing phenomenon at the large-scale seems difficult. The use

of our core-scale model as a near well-bore simulator coupled with a classical

field model seems preferable. In fact, the results of our model could be used to

calculate the skin effect factor in order to take into account the real conditions

around the well within the field model. Therefore, we investigate at this time

the ability of core-scale models to correctly reproduce the experimental results

being based on accessible experimental data only, i.e., porosity and fluid fraction

fields which can be obtained from tomography methods.
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