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Abstract. When a sequence or an iterative process is slowly converging, a convergence accel-

eration process has to be used. It consists in transforming the slowly converging sequence into a

new one which, under some assumptions, converges faster to the same limit. In this paper, new

scalar sequence transformations having a kernel (the set of sequences transformed into a constant

sequence) generalizing the kernel of the Aitken’s12 process are constructed. Then, these trans-

formations are extended to vector sequences. They also lead to new fixed point methods which

are studied.
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1 Introduction

When a sequence(Sn) of real or complex numbers is slowly converging, it can

be transformed into a new sequence(Tn) by asequence transformation. Aitken’s

12 process and Richardson extrapolation (which gives rise to Romberg’s method

for accelerating the convergence of the trapezoidal rule) are the most well known

sequence transformations. It has been proved that a sequence transformation able

to accelerate the convergence of all sequences cannot exist [8] (see also [7]).
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In fact, each transformation is only able to accelerate the convergence of special

classes of sequences. This is the reason why several sequence transformations

have to be constructed and studied.

For constructing a new sequence transformation, an important object is its

kernel(we will explain why below). It is the set of sequences(Sn), characterized

by a particular expression or satisfying a particular relation between its terms,

both involving an unknown parameterS(the limit of the sequence if it converges

or its antilimit if it does not converge), that are transformed into the constant

sequence(Tn = S). For example, the kernel of the Aitken’s12 process (see its

definition below) is the set of sequences of the formSn = S+aλn, n = 0, 1, . . .,

wherea 6= 0 andλ 6= 1 or, equivalently, satisfying the relationa0(Sn − S) +

a1(Sn+1 − S), for n = 0, 1, . . ., with a0a1 6= 0 anda0 + a1 6= 0. If |λ| < 1,

then (Sn) converges to its limitS. Otherwise,S is called the antilimit of the

sequence(Sn).

The construction of a sequence transformation having a specific kernel consists

in giving the exact expression of the parameterS for any sequence belonging

to this kernel. This expression makes use of several consecutive terms of the

sequence starting fromSn, and it is valid for alln. Thus, by construction,

for all n, Tn = S. When applied to a sequence not belonging to its kernel,

the transformation produces a sequence(Tn) which, under some assumptions,

converges toS faster than(Sn), that is

lim
n→∞

Tn − S

Sn − S
= 0.

In that case, it is said that the transformation accelerates the convergence

of (Sn).

In fact, a sequence transformation is based on interpolation followed by ex-

trapolation. For example, the parametersa, λ andS appearing in the kernel of

the Aitken’s process are computed by solving the systemSn+i = S + aλn+i

for i = 0, 1, 2. If the sequence(Sn) to be transformed does not belong to the

kernel, then the value ofS (and also those ofa andλ) obtained from this system

depends ofn and it is denoted byTn. In order to fully understand the procedure

followed for obtaining the transformations given in this paper, let us explain in

details how the Aitken’s12 process is derived from its kernel. The sequences
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of its kernel satisfy(Sn − S)/λn = a. Applying the usual forward difference

operator1 (it is an annihilation operator as will be explained below) to both

sides leads to1((Sn − S)/λn) = 1a = 0. ThusSn+1 − S = λ(Sn − S) and it

follows S = (Sn+1 − λSn)/(1 − λ). The problem is now to computeλ. Apply-

ing the operator1 to Sn = S+ aλn gives1Sn = aλn(λ − 1), and we obtain

λ = 1Sn+1/1Sn. Thus, replacingλ by this expression in the formula forS,

leads to the transformation

Tn =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, . . . (1)

which, by construction, has a kernel including all sequences of the formSn =

S+ aλn or, equivalently, such thatSn+1 − S = λ(Sn − S) for all n. We see that

the denominator in this formula is12Sn, thus the name of the transformation.

An important point to notice for numerical applications is that Formula (1) is

numerically unstable. It has to be put under one of the equivalent forms

Tn = Sn −
(1Sn)

2

Sn+2 − 2Sn+1 + Sn

= Sn+1 −
1Sn1Sn+1

Sn+2 − 2Sn+1 + Sn

= Sn+2 −
(1Sn+1)

2

Sn+2 − 2Sn+1 + Sn

which are more stable. Indeed, when the termsSn, Sn+1 andSn+2 are close toS, a

cancellation appears in Formula (1). Its numerator and its denominator are close

to zero, thus producing a first order cancellation. A cancellation also appears in

the three preceding formulae, but it is a cancellation on a correcting term, that is,

in some sense, a second order cancellation (see [5, pp. 400–403] for an extensive

the discussion).

Similarly, in the sequel, when a transformation is written asTn = Nn/Dn, it is

usually unstable. If the computation ofTn makes use ofSn, . . . , Sn+k, thenTn

can also be put under one of the formsTn = Sn+i − (Sn+i Dn − Nn)/Dn, for any

i = 0, . . . , k, which, after simplification in the numeratorSn+i Dn − Nn, is more

stable.
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By construction, we saw that, for alln, Tn = S, if (Sn) belongs to the kernel

of the transformation. To prove that this condition is also necessary is more

difficult. One has to start from the condition for alln, Tn = S, and then to show

that it implies that the relation defining the kernel is satisfied. This is why, in this

paper, we will only say that the kernels of the transformations studied include

all sequences having the corresponding form since additional sequences can also

belong to the kernel. Let us mention that, for the Aitken’s process, the condition

is necessary and sufficient.

Of course, one can ask why the notion of kernel is an important one. Although

this result was never proved, it is hoped (and it was experimentally verified) that

if a sequence is not “too far away” from the kernel of a certain transformation,

then this transformation will accelerate its convergence. For example, the kernel

of the Aitken’s process can also be described as the set of sequences such that

for all n, (Sn+1 − S)/(Sn − S) = λ 6= 1. It is easy to prove that this process

accelerates the convergence of all sequences for which there existsλ 6= 1 such

that limn→∞(Sn+1 − S)/(Sn − S) = λ. On sequence transformations, their

kernels, and extrapolation methods see, for example, [5, 14, 16].

The Aitken’s12 process is one of the most popular and effective convergence

acceleration method. In this paper we will construct scalar sequence transforma-

tions whose kernels generalize the kernel of this transformation which consists, as

we saw above, of sequences such thatSn = S+ aλn for n = 0, 1, . . .. Defining

and studying generalizations of Aitken’s process leads to interesting applica-

tions as those described in [11] and [12]. In this paper, we will consider two

new generalizations of the kernel of Aitken’s process, namely consisting of se-

quences of the formSn = S+(a+bxn)λ
n (Section 2) andSn = S+λn/(a+bxn)

(Section 3), where(xn) is a given known sequence. Compared to the sequences

in the kernel of Aitken’s process, the additional termbxn can completely change

the behaviour since non monotonic sequences or non strictly alternating ones

are now included into the kernel. According to the value ofλ and to the choice

of (xn), we can have sequences whose error (in absolute value) first increases,

and then tends to zero, or divergent sequences whose error (in absolute value)

begins to approach zero, and then goes to infinity, thus imitating asymptotic

series. This extra term can also be considered as a subdominant contribution
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(that is a kind of second order term) to the sequence as pointed out by Weniger

[15]. Let us mention that, as showed in particular in [13], there is a strong

connection between asymptotics and extrapolation methods.

In Section 5, these transformations will be extended to vector sequences.

The related fixed point methods will be studied in Section 6.

The following definitions are needed in the sequel. The forward difference

operator1 is defined by

1un = un+1 − un,

1k+1un = 1kun+1 − 1kun,

the divided difference operatorδ is defined by

δun =
un+1 − un

xn+1 − xn
,

δk+1un =
δkun+1 − δkun

xn+k+1 − xn

and the reciprocal difference operators by

%k+1un = %k−1un+1 +
xn+k+1 − xn

%kun+1 − %kun

with %−1un = 0 and%0un = un.

We also remind the Leibniz’s rule for the operator1

1(unvn) = un+11vn + vn1un.

2 A first scalar kernel

We will construct a sequence transformation with a kernel containing all se-

quences of the form

Sn = S+ (a + bxn)λ
n, n = 0, 1, . . . (2)

whereS, a, b andλ are unknown (possibly complex) numbers and(xn) a known

(possibly complex) sequence.

We have, for alln,

δ(a + bxn) = δ

(
Sn − S

λn

)
= b. (3)
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2.1 First technique

From (3), we obtain

bλn+11xn = Sn+1 − S− λ(Sn − S). (4)

ExtractingS from this relation leads to a first transformation whose kernel in-

cludes all sequences of the form (2)

Tn =
Sn+1 − λSn − bλn+11xn

1 − λ
, n = 0, 1, . . . (5)

The problem is now to compute the unknownsb and λ (or λ and bλn+1)

appearing in (5). Applying the forward difference operator1 to (4), we get

bλn+1(λ1xn+1 − 1xn) = 1Sn+1 − λ1Sn, (6)

which givesb (or bλn+1) if λ is known.

Writing down (6) also for the indexn+1, we obtain a system of two nonlinear

equations in our unknowns. The unknown productbλn+1 can be eliminated by

division and we get, after rearrangement of the terms,

1Sn+2 − λ1Sn+1

λ1xn+2 − 1xn+1
= λ

1Sn+1 − λ1Sn

λ1xn+1 − 1xn
. (7)

This is a cubic equation which provides, in the real case, a uniqueλ only if it

has one single real zero. So, another procedure for the computation ofλ has to

be given.

It is possible to computeλ by writing this cubic equation for the indexesn,

n+1 andn+2. Thus we obtain a system of 3 linear equations in the 3 unknowns

λ, λ2, andλ3

αn+i λ
3 + βn+i λ

2 + γn+i λ = δn+i , i = 0, 1, 2

with

αn+i = 1xn+2+i 1Sn+i

βn+i = −(1xn+1+i 1Sn+1+i + 1xn+2+i 1Sn+1+i + 1xn+1+i 1Sn+i )

γn+i = 1xn+1+i 1Sn+2+i + 1xn+i 1Sn+1+i + 1xn+1+i 1Sn+1+i

δn+i = 1xn+i 1Sn+i +2.
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We solve this system for the unknownλ, then we computeλn+1, and we finally

obtainb by (6).

Another way to proceed is to replacebλn+1 by its expression in (5). Then the

transformation can also be written as

Tn =
λrn(Sn+1 − λSn) − (Sn+2 − λSn+1)

(λrn − 1) (1 − λ)
, (8)

= Sn+1 −
1Sn+1 − λ2rn1Sn

(λrn − 1)(1 − λ)
, (9)

with rn = 1xn+1/1xn, and whereλ is computed by solving the preceding linear

system. Formula (9) is more stable than Formula (8). In (9), it is also possible

to replaceλ2 by its value given as the solution of the preceding linear system

instead of squaringλ, thus leading to a different transformation with also a kernel

containing all sequences of the form (2).

Remark 1. Obviously, for sequences which do not have the form (2), the

value ofλ obtained by the previous procedures depends onn.

If 1xn is constant,λ = 1 satisfies the preceding system but its matrix is

singular. In this case, (7) reduces to

1Sn+2 − λ1Sn+1 = λ(1Sn+1 − λ1Sn)

andλ can be computed by solving the system

1Sn+i λ
2 − 21Sn+1+i λ = −1Sn+i +2, i = 0, 1.

Then, the transformation given by (8) or (9) becomes

Tn =
(Sn+2 − λSn+1) − λ(Sn+1 − λSn)

(λ − 1)2
, (10)

= Sn+1 +
1Sn+1 − λ21Sn

(λ − 1)2
. (11)

Formula (11) is more stable than (10).

Let us give a numerical example to illustrate this transformation. We consider

the sequence

Sn = S+ λn(2 − nα) + exp(−n)(1 + nb), n = 0, 1, . . . (12)
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with xn = nα. We took S = 1, λ = 1.15, α = 3.5, andb = 2. With

these values, the first term in(Sn) diverges, while the second one tends to zero

and, according to [15], is a subdominant contribution to(Sn). On Figure 1,

the solid lines represent, in a logarithmic scale, and from top to bottom, the

absolute errors ofSn, of the Aitken’s12 process (which uses 3 consecutive

terms of the sequence to accelerate), of its first iterate (which uses 5 terms), and

of its second iterate (which uses 7 terms). The dash-dotted line corresponds

to the error of (11) (which uses 5 terms) withxn defined as above (which im-

plies the knowledge ofα), and the dashed line to the error of (9) (which uses 6

terms). Iterating a process, such as Aitken’s, consists in reapplying it to the new

sequence obtained by its previous application. On this example, the numerical

results obtained by the Formula (8) and by the more stable Formula (9) are the

same. The computations were performed using Matlab 7.3.

0 10 20 30 40 50
−4

−2

0

2

4

6

8

10

Figure 1 – Transformation (9) in dashed line, and transformation (11) in dash-dotted

line, both applied to (12).

The results of Figure 1 show that Aitken’s process and its iterates have no

impact on the divergence of the sequence(Sn). On the contrary, the dominant

contribution has been suppressed at the beginning by the transformations (9)
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and (11), and they generate sequences which converge before diverging again.

Of course, whenn grows, the subdominant contribution is almost zero, and this

is why these sequence transformations no longer operate. This is particularly

visible with transformation (11) which produces a rapidly diverging sequence.

On the contrary, transformation (9) exhibits a behavior similar to the behavior

of an asymptotic series. Thus stopping its application after 27 or 28 terms leads

to an error of the order of 10−4. It must be noticed that the numerical results are

quite sensitive to changes in the parametersα, λ, andb if Formula (10) is used,

while they are not with Formula (11).

2.2 Second technique

Since, for alln, δ(a + bxn) is a constant, then for alln, 1δ(a + bxn) = 0. Thus

0 = 1δ

(
Sn − S

λn

)

=
1

λn+2

[
Sn+2 − S− λ(Sn+1 − S)

1xn+1
− λ

Sn+1 − S− λ(Sn − S)

1xn

]

and it follows, forn = 0, 1, . . .,

1xn[Sn+2 − S− λ(Sn+1 − S)] − λ1xn+1[Sn+1 − S− λ(Sn − S)] = 0. (13)

ExtractingS from this relation, we obtain the following sequence transforma-

tion whose kernel includes all sequences of the form (2)

Tn =
Sn+21xn − λSn+1(1xn + 1xn+1) + λ2Sn1xn+1

1xn − λ(1xn + 1xn+1) + λ21xn+1
(14)

= Sn+1 +
1Sn+11xn − λ21Sn1xn+1

1xn − λ(1xn + 1xn+1) + λ21xn+1
. (15)

Formula (15) is more stable than (14).

The problem is again to expressλ from the terms of the sequence(Sn). We

assume that an annihilation operator for the sequence(1xn) is known, that is

a linear operatorL such that for alln, L(1xn) = 0. Such operators are quite

useful in deriving sequence transformations (as in the case of the Aitken’s pro-

cess whereL ≡ 1). They were introduced by Weniger [14]. Thus, applyingL

Comp. Appl. Math., Vol. 26, N. 2, 2007
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to (13), we get, for alln,

L(Sn+21xn) − λL(Sn+1(1xn + 1xn+1)) + λ2L(Sn1xn+1) = 0. (16)

This polynomial equation of degree 2 has 2 solutions and we don’t know which

solution is the right one. So, we will compute simultaneouslyλ andλ2. For that,

we write (16) for the indexesn andn + 1, and we obtain a system of two linear

equations in these two unknowns

λL(Sn+1(1xn + 1xn+1)) − λ2L(Sn1xn+1) = L(Sn+21xn)

λL(Sn+2(1xn+1 + 1xn+2)) − λ2L(Sn+11xn+2) = L(Sn+31xn+1).

It must be noticed that this approach requires more terms of the sequence than

solving directly the quadratic equation (16) forλ.

The solution of the system is

λ =
[
L(Sn+31xn+1)L(Sn1xn+1) − L(Sn+21xn)L(Sn+11xn+2)

]
/Dn

λ2 =
[
L(Sn+31xn+1)L(Sn+1(1xn + 1xn+1))

−L(Sn+21xn)L(Sn+2(1xn+1 + 1xn+2))
]
/Dn

with

Dn = L(Sn1xn+1)L(Sn+2(1xn+1 + 1xn+2))

− L(Sn+11xn+2)L(Sn+1(1xn + 1xn+1)).

Replacingλ andλ2 in (14) or (15) completely defines our sequence trans-

formation. Let us remark that, for sequences which are not of the form (2),

a different transformation is obtained if the preceding expression forλ is used

in (14) or (15), and then squared for gettingλ2.

Remark 2. The annihilation operatorL used for obtaining (16) from (13)

must be independent ofn since it has to be applied to a linear combination of

terms of the sequence(xn) whose coefficients can depend onn. SoL cannot be

1δ since, although it is an annihilation operator for(xn), we have1δ(1xn) 6= 0.
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Let us mention that annihilation operators are only known for quite simple

sequences. For example, the annihilation operator corresponding toxn = nk

is L ≡ 1k+1, since1k+1nk = 1k(1nk). If, for all n, xn is constant, the

transformation (11) is recovered.

This construction could be extended to a kernel whose members have the

form Sn = S+ Pk(xn)λ
n, wherePk is a polynomial of degreek. Indeed, since

δk Pk(xn) is a constant, we have, for alln,

1δk Pk(xn) = 1δk

(
Sn − S

λn

)
= 0.

However, the difficulty in applying the two techniques described above lies in the

derivation and the solution of a system of equations involvingλ and its powers.

We will not pursue in this direction herein.

3 A second scalar kernel

We will now construct a sequence transformation with a kernel containing all

sequences of the form

Sn = S+
λn

a + bxn
, n = 0, 1, . . . (17)

whereS, a, b andλ are unknown scalars and(xn) a known sequence.

We have, for alln, δ(a + bxn) = δ(λn/(Sn − S)) = b. Thus

λn

(
λ

Sn+1 − S
−

1

Sn − S

)
= b1xn,

which is a nonlinear equation inS. Therefore the problem is to bypass such a

nonlinearity.

We have, for alln,

1δ(a + bxn) = 1δ

(
λn

Sn − S

)
= 0,

and, therefore,

λ1xn

(
λ

Sn+2 − S
−

1

Sn+1 − S

)
− 1xn+1

(
λ

Sn+1 − S
−

1

Sn − S

)
= 0.

Settingen = Sn − Sand reducing to the same denominator, we have

λen1xn(λen+1 − en+2) − en+21xn+1(λen − en+1) = 0. (18)
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3.1 First technique

The main drawback of (18) is that it is a quadratic equation inS. Let us con-

sider the particular case where1xn is constant. If we apply the operator1,

then, by Leibniz’s rule,1(en+pen+q) = en+p+11en+q + en+q1en+p. Since

1en+i = 1Sn+i , we obtain a linear expression inS. Remark that, for each

product en+pen+q, we can choose, in Leibniz’s rule, eitherun = en+p and

vn = en+q or vice versa. However, after simplification, all these choices lead to

the same expression.

Applying 1 to (18), we obtain, when1xn is constant,

λ2(en+21Sn + en1Sn+1) − 2λ(en+11Sn+2 + en+21Sn)

+ (en+31Sn+1 + en+11Sn+2) = 0.
(19)

Define the transformation

Tn =
Nn

Dn
(20)

with

Nn = λ2Sn+1(Sn+2 − Sn) − 2λ(Sn+3Sn+1 − Sn+2Sn) + Sn+2(Sn+3 − Sn+1)

Dn = λ2(Sn+2 − Sn) − 2λ(Sn+3 − Sn+2 + Sn+1 − Sn) + (Sn+3 − Sn+1).

Then, by (19), the kernel of the transformation (20) includes all the sequences

of the form (17).

It remains to computeλ, and the problem can be solved as above. If, in

(19), we do not separateλ andS, the unknowns areλ2, λ, λ2S, λS andS. So,

writing (19) for the indexesn, . . . , n + 4, leads to a system of 5 linear equations

in these 5 unknowns

λ2Sn+1+i (Sn+2+i − Sn+i ) − 2λ(Sn+1+i Sn+3+i − Sn+i Sn+2+i )

−λ2S(Sn+2+i − Sn+i ) + 2λS(Sn+3+i − Sn+2+i + Sn+1+i − Sn+i )

−S(Sn+3+i − Sn+1+i ) = −Sn+2+i (Sn+3+i − Sn+1+i ), i = 0, . . . , 4,

(21)

which providesλ andλ2.

This system can also be solved directly for the unknownS, thus providing

another transformation whose kernel includes all sequences of the form (17).
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Let us give a numerical example to illustrate this transformation. We consider

the sequence

Sn = S+
λn

2 + αn
+ bnnβ, n = 0, 1, . . . (22)

We took S = 1, λ = −1.2, b = 0.1, α = 1.1, andβ = 2.5. With these

values, the first term in(Sn) diverges, while the second one tends to zero. This

second term is a subdominant contribution to(Sn). On Figure 2, the solid lines

represent, in a logarithmic scale, and from top to bottom, the absolute errors of

Sn, of the Aitken’s12 process (which uses 3 consecutive terms of the sequence

to accelerate), of its first iterate (which uses 5 terms), and of its second iterate

(which uses 7 terms). The dashed line corresponds to the error of (20) (which

uses 8 terms).
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Figure 2 – The transformation (20) applied to (22), in dashed line.

We see that, as in our first example, the dominant contribution has been sup-

pressed at the beginning and that, whenn grows, the subdominant contribution

is almost zero and this is why the sequence transformation no longer operates.
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3.2 Second technique

Equation (18) can be written as

λ2SnSn+11xn − λSnSn+2(1xn + 1xn+1) + Sn+1Sn+21xn+1

−S[λ2(Sn + Sn+1)1xn − λ(Sn + Sn+2)(1xn + 1xn+1)

+(Sn+1 + Sn+2)1xn+1] = S2(λ − 1)[1xn+1 − λ1xn].

(23)

Remark 3. If the reciprocal difference operator is applied to the sequence

1/(a + bxn) = (Sn − S)/λn, we get, for alln, %2(1/(a + bxn)) = %2((Sn −

S)/λn) = 0, and (18) is exactly recovered.

For extractingS from (23), we need to know an annihilation operatorL for the

sequence(1xn+1 − λ1xn), and we obtain the following transformation whose

kernel includes all sequences of the form (17)

Tn =
Nn

Dn
. (24)

Here

Nn = L(λ2SnSn+11xn − λSnSn+2(1xn + 1xn+1) + Sn+1Sn+21xn+1)

Dn = L(λ2(Sn + Sn+1)1xn − λ(Sn + Sn+2)(1xn + 1xn+1)

+ (Sn+1 + Sn+2)1xn+1).

As explained above, ifxn is a polynomial of degreek in n, thenL ≡ 1k+1.

The problem is now to computeλ. However, if the unknownsλ and S are

not separated in (23), we obtain, after applying the annihilation operatorL, an

equation in the unknownsλ2, λ, λ2S, λSandS. So, writing (23) for the indexes

n, . . . , n + 4, leads to a system of 5 linear equations in these 5 unknowns. This

system can be solved for the unknownλ and its value used in (24). The system

can also be solved for the unknownsλ andλ2 and their values used in (24).

Finally, the system can be solved directly for the unknownS. Thus several

transformations whose kernels include all sequences of the form (17) can be

obtained. When, for alln, xn = n, the transformation (24) reduces to (20) since

theλ’s obtained from these systems are the halves of theλ corresponding to the

system (21).
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4 Other transformations

Let us now discuss some additional transformations.

In the particular casexn = n, the following transformation also has a kernel

including all sequences of the form (2). It was obtained by Durbin [10], and it

is defined as

Tn =
3S2

n+2 − 4Sn+1Sn+3 + SnSn+4

6Sn+2 − 4(Sn+1 + Sn+3) + (Sn + Sn+4)
, n = 0, 1, . . . (25)

Let us mention that, in this particular case, the second Shanks transformation

(the fourth column of theε-algorithm)e2 : (Sn) 7−→
(
e2(Sn) = ε

(n)

4

)
also has a

kernel containing all sequences of the form (2), see [4].

We remark that the denominator of (25) is14Sn, and it is easy to see that this

transformation can also be written as

Tn =
Sn1Sn+3 − 3Sn+11Sn+2 + 3Sn+21Sn+1 − Sn+31Sn

1Sn+3 − 31Sn+2 + 31Sn+1 − 1Sn
.

This expression leads to the idea of other transformations of a similar form

with a denominator equal to

1k+1Sn = 1k(1Sn) =
k∑

i =0

(−1)i Ci
k1Sn+k−i ,

whereCi
k = k!/(i !(k − i )!) is the binomial coefficient. So, we obtain a whole

class of transformations defined by

Tn =

k∑

i =0

(−1)i Ci
kSn+i 1Sn+k−i

k∑

i =0

(−1)i Ci
k1Sn+k−i

.

The kernels of these transformations are unknown, but it is easy to see that

they all contain the kernel of the Aitken’s process. These transformations have

to be compared with the1k processes [9] given by

Tn =
1k(Sn/1Sn)

1k(1/1Sn)
=

k∑

i =0

(−1)i Ci
kSn+k−i /1Sn+k−i

k∑

i =0

(−1)i Ci
k/1Sn+k−i

.
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The casek = 1 corresponds to the Aitken’s12 process and, fork = 2, the

second columnθ(n)

2 of theθ -algorithm is recovered (see [5]). The kernel of this

transformation is the set of sequences such that, for alln,

1k

(
Sn − S

1Sn

)
= 0 ,

that is
Sn − S

1Sn
= Pk−1(n) ,

wherePk−1 is a polynomial of degreek − 1 in n.

5 The vector case

The sequence transformations described in Sections 2 and 3 will now be used

in the case whereSn andS are vectors of dimensionp. Obviously, for a vector

sequence, a scalar transformation could be used separately on each component.

However, such a procedure is usually less efficient than using a transformation

specially built for treating vector sequences.

We begin by the first kernel studied in Section 2. Different situations could

beconsidered

Sn = S+ (a + bxn)λ
n or Sn = S+ (a + xnb)λn

λ ∈ C a ∈ Cp bxn ∈ Cp xnb ∈ Cp

b ∈ C, xn ∈ Cp b ∈ Cp, xn ∈ C

b ∈ Cp×p, xn ∈ Cp b ∈ Cp, xn ∈ Cp×p

λ ∈ Cp a ∈ C b ∈ C, xn ∈ C

or bxn ∈ Cp×p xnb ∈ Cp×p

a ∈ Cp×p b ∈ C, xn ∈ Cp×p b ∈ Cp×p, xn ∈ C

b ∈ Cp×p, xn ∈ Cp×p b ∈ Cp×p, xn ∈ Cp×p

Sn = S+ λn(a + bxn) or Sn = S+ λn(a + xnb)

λ ∈ Cp×p a ∈ Cp bxn ∈ Cp xnb ∈ Cp

b ∈ C, xn ∈ Cp b ∈ Cp, xn ∈ C

b ∈ Cp×p, xn ∈ Cp b ∈ Cp, xn ∈ Cp×p

Since our purpose is only to show how to proceed with vector sequences,

we will not treat all these cases. The procedures followed are similar to those

described in [6] and [1].
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Let us consider the first transformation in the case whereλ andb are scalars,

and a and xn vectors. Formulae (5) and (6) are still valid. Taking the scalar

product of (6) with two linearly independent vectorsy1 andy2, and eliminating

b gives

λ
[
(y1,1xn+1)(y2,1Sn+1) − (y2,1xn+1)(y1,1Sn+1)

+ (y1,1xn)(y2,1Sn) − (y2,1xn)(y1,1Sn)
]

+ λ2
[
(y2,1xn+1)(y1,1Sn) − (y1,1xn+1)(y2,1Sn)

]

= (y1,1xn)(y2,1Sn+1) − (y2,1xn)(y1,1Sn+1).

Writing down this relation also for the indexn + 1 leads to a system of two

equations in the two unknownsλ and λ2, which completely defines the first

vector transformation.

Another way of computingλ andλ2 consists in writing down (6) for the indexes

n andn + 1 and taking the scalar products with a unique vectory. Eliminating

b gives an equation in our two unknowns. Then, this equation is written down

for the indexesn andn + 1, thus leading again to a system of two equations.

For the second transformation, nothing has to be changed until (16) included.

For the computation ofλ andλ2 one can proceed as for the first transformation.

The relation (16) can be multiplied scalarly byy1 andy2. Thus, a system of two

equations is obtained for the unknowns. It is also possible to write down (16)

for the indexesn andn + 1 and to multiply these two equations scalarly by the

same vectory.

For the second kernel considered in Section 3, it can be written asSn =

S+ (a + bxn)
−1λn, which shows thata + bxn can be a matrix andλ a vector.

Obviously,a andbxn cannot be vectors. This second kernel can then be treated

in a way similar to the first one.

6 Fixed point methods

There is a close connection between sequence transformations and fixed point

iterations for findingx ∈ Rp such thatx = F(x), whereF is a mapping ofRp

into itself [2]. In this Section, we will see how to convert the vector sequence

transformations of Section 5 into fixed point methods. The procedure is similar
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to obtaining Steffensen’s method from Aitken’s12 process in the casep = 1.

The transformations obtained in this way are often related to quasi-Newton meth-

ods; see [3].

In each sequence transformation, the computation ofTn makes use of

Sn, . . . , Sn+m, where the value ofm differs for each of them. An iteration of a

fixed point method based on a sequence transformation consists in the following

steps for computing the new iteratexn+1 from the previous onexn

1. SetS0 = xn.

2. ComputeSi +1 = F(Si ) for i = 0, . . . , m − 1.

3. Apply the sequence transformation toS0, . . . , Sm, and computeT0.

4. Setxn+1 = T0.

7 Conclusions

In this paper, we discussed how to construct scalar sequence transformations

with certain kernels generalizing the kernel of the Aitken’s12 process. As we

could see, generalizations for the types of kernels we considered are not so

easy to obtain and the corresponding algorithms need some efforts to be imple-

mented. However, we experimented some cases where they were quite effective.

The convergence and the acceleration properties of these transformations remain

to be studied. Then, we showed how extend some of these transformations to

the case of vector sequences. Since we only gave the idea how to proceed, a

systematic study of such vector transformations and their applications have to

be pursued. Finally, we explained how to convert these vector transformations

into fixed point iterations. They also have to be analyzed.
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