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Abstract. When a sequence or an iterative process is slowly converging, a convergence accel-
eration process has to be used. It consists in transforming the slowly converging sequence into a
new one which, under some assumptions, converges faster to the same limit. In this paper, new
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sequence) generalizing the kernel of the Aitkem%process are constructed. Then, these trans-
formations are extended to vector sequences. They also lead to new fixed point methods which

are studied.
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1 Introduction

When a sequendgs,) of real or complex numbers is slowly converging, it can

be transformed into a new sequerig) by asequence transformatioritken’s

A? process and Richardson extrapolation (which gives rise to Romberg’s method
for accelerating the convergence of the trapezoidal rule) are the most well known
sequence transformations. It has been proved that a sequence transformation able
to accelerate the convergence of all sequences cannot exist [8] (see also [7]).
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172 GENERALIZATIONS OF AITKEN'S PROCESS

In fact, each transformation is only able to accelerate the convergence of special
classes of sequences. This is the reason why several sequence transformations
have to be constructed and studied.

For constructing a new sequence transformation, an important object is its
kernel(we will explain why below). Itis the set of sequend&s), characterized
by a particular expression or satisfying a particular relation between its terms,
both involving an unknown paramet8gthe limit of the sequence if it converges
or its antilimit if it does not converge), that are transformed into the constant
sequencéT, = S). For example, the kernel of the Aitkerys? process (see its
definition below) is the set of sequences of the f&m= S+a\",n=0,1, ...,
wherea # 0 andA # 1 or, equivalently, satisfying the relati@a(S, — S) +
a1 (S — 9, forn=0,1,..., withaa; # 0andag +a; # 0. If |]A| < 1,
then (§,) converges to its limitS. Otherwise,S is called the antilimit of the
sequenceés,).

The construction of a sequence transformation having a specific kernel consists
in giving the exact expression of the paramesdor any sequence belonging
to this kernel. This expression makes use of several consecutive terms of the
sequence starting fror,, and it is valid for alln. Thus, by construction,
for all n, T, = S. When applied to a sequence not belonging to its kernel,
the transformation produces a seque(itg which, under some assumptions,
converges t& faster than §,), that is

. Tn_S
I =0.
nmos.,—s

In that case, it is said that the transformation accelerates the convergence
of (Sy).

In fact, a sequence transformation is based on interpolation followed by ex-
trapolation. For example, the parametars. and S appearing in the kernel of
the Aitken’s process are computed by solving the sys&m = S+ ai"*i
fori = 0,1, 2. If the sequencéS,) to be transformed does not belong to the
kernel, then the value & (and also those @ andA) obtained from this system
depends of and it is denoted by, In order to fully understand the procedure
followed for obtaining the transformations given in this paper, let us explain in
details how the Aitken's\? process is derived from its kernel. The sequences
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of its kernel satisf S, — S)/A" = a. Applying the usual forward difference
operatorA (it is an annihilation operator as will be explained below) to both
sides leads t&A ((S, — §/A") = Aa=0. ThusS,;,1 — S=A(S — S andit
follows S= (S,;1 — 2S)/(1 — ). The problem is now to compute Apply-

ing the operaton\ to §, = S+ aA" givesAS, = aA"(A — 1), and we obtain
A= AS1/AS. Thus, replacing. by this expression in the formula @,
leads to the transformation

T S$Si2— F ,
Sz — 2S5+ S
which, by construction, has a kernel including all sequences of the &rm
S+ air" or, equivalently, such theé&, ;1 — S= A(S, — S) for all n. We see that
the denominator in this formula i52S,, thus the name of the transformation.
An important point to notice for numerical applications is that Formula (1) is
numerically unstable. It has to be put under one of the equivalent forms

n=0,1,... Q)

2
- s (AS)
Siz—2Su+ S
— S ASAS 1
S - 25+ S
S, (AS11)?
28— 2S5u+ S

which are more stable. Indeed, when the teBnss,; andS,» are close t, a
cancellation appears in Formula (1). Its numerator and its denominator are close
to zero, thus producing a first order cancellation. A cancellation also appears in
the three preceding formulae, but it is a cancellation on a correcting term, that is,
in some sense, a second order cancellation (see [5, pp. 400—-403] for an extensive
the discussion).

Similarly, in the sequel, when a transformation is writteMas= N,/D,, itis

usually unstable. If the computation ©f makes use 0§, ..., S..k, thenT,
can also be put under one of the foris= S.;i — (S14i Dn — Ny)/ Dy, for any
i =0,...,k, which, after simplification in the numerat8,; D, — Ny, is more
stable.
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174 GENERALIZATIONS OF AITKEN'S PROCESS

By construction, we saw that, for all T, = S, if (§,) belongs to the kernel
of the transformation. To prove that this condition is also necessary is more
difficult. One has to start from the condition for all T,, = S, and then to show
that itimplies that the relation defining the kernel is satisfied. This is why, in this
paper, we will only say that the kernels of the transformations studied include
all sequences having the corresponding form since additional sequences can also
belong to the kernel. Let us mention that, for the Aitken’s process, the condition
is necessary and sufficient.

Of course, one can ask why the notion of kernel is an important one. Although
this result was never proved, it is hoped (and it was experimentally verified) that
if a sequence is not “too far away” from the kernel of a certain transformation,
then this transformation will accelerate its convergence. For example, the kernel
of the Aitken’s process can also be described as the set of sequences such that
foralln, (.1 — 9/(§ — S = A # 1. ltis easy to prove that this process
accelerates the convergence of all sequences for which thereexstissuch
that limh_ o (S31 — 9/(S — S = A. On sequence transformations, their
kernels, and extrapolation methods see, for example, [5, 14, 16].

The Aitken’sA? process is one of the most popular and effective convergence
acceleration method. In this paper we will construct scalar sequence transforma-
tionswhose kernels generalize the kernel of this transformation which consists, as
we saw above, of sequences such that S+ ar"forn =0, 1, .... Defining
and studying generalizations of Aitken’s process leads to interesting applica-
tions as those described in [11] and [12]. In this paper, we will consider two
new generalizations of the kernel of Aitken’s process, namely consisting of se-
guences of the forrg, = S+ (a+bx,)A" (Section 2) an&, = S+1"/(a+bx,)
(Section 3), wheréx,) is a given known sequence. Compared to the sequences
in the kernel of Aitken’s process, the additional tdsmy can completely change
the behaviour since non monotonic sequences or non strictly alternating ones
are now included into the kernel. According to the value. aind to the choice
of (x,), we can have sequences whose error (in absolute value) first increases,
and then tends to zero, or divergent sequences whose error (in absolute value)
begins to approach zero, and then goes to infinity, thus imitating asymptotic
series. This extra term can also be considered as a subdominant contribution
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(that is a kind of second order term) to the sequence as pointed out by Weniger
[15]. Let us mention that, as showed in particular in [13], there is a strong
connection between asymptotics and extrapolation methods.

In Section 5, these transformations will be extended to vector sequences.
The related fixed point methods will be studied in Section 6.

The following definitions are needed in the sequel. The forward difference
operatorA is defined by

Aun = un+1 — Up,

AI(Jrlun = Akun+1 - Akun,

the divided difference operatéris defined by

Un+1 Un
dup = ,
Xn+1 — Xn
n= ——

Xntk+1 — Xn
and the reciprocal difference operators by

ouy = o
with o~tu, = 0 ande®u, = uj.
We also remind the Leibniz’s rule for the operator

A(Unvn) == Un_l,_lAUn + UnAUn.

2 Afirst scalar kernel

We will construct a sequence transformation with a kernel containing all se-
guences of the form

S=S+@+bx)A", n=0,1,... 2

whereS, a, b anda are unknown (possibly complex) numbers @rgh a known
(possibly complex) sequence.
We have, for alh,

5@+ bxn>=8<s‘k] S) =b. 3)

Comp. Appl. Math., Vol. 26, N. 2, 2007



176 GENERALIZATIONS OF AITKEN'S PROCESS

2.1 Firsttechnique
From (3), we obtain
bA™ T AXy = Sii1 — S—AM(S — 9. 4

Extracting S from this relation leads to a first transformation whose kernel in-
cludes all sequences of the form (2)

_ Su1— A5 - balax,

T
: 1— A

n=01,... (5)

The problem is now to compute the unknowmsand A (or A and bA"?)
appearing in (5). Applying the forward difference operatoto (4), we get

DA (A AXns1 — AXn) = AS1 — AAS,, (6)

which givesb (or bA"1) if A is known.

Writing down (6) also for the indem+ 1, we obtain a system of two nonlinear
equations in our unknowns. The unknown prodoict™ can be eliminated by
division and we get, after rearrangement of the terms,

ASyi2 —AAS 1 )\ASnH —AAS,
AAXny2 — AXnya AAXny1 — AXn'

(7)

This is a cubic equation which provides, in the real case, a uniquy if it
has one single real zero. So, another procedure for the computatiomasf to
be given.

It is possible to comput& by writing this cubic equation for the indexes
n+1andn+2. Thus we obtain a system of 3 linear equations in the 3 unknowns
A, A2, anda3

An+i 23 + ,Bn-i-i)\2 + Ynrir = Ontis i =012
with
Onyi = AXnyo4i ASy
Brii = —(AXnr14i ASi14i + AXn2ri ASi1si + AXnr14i AS)

Ynri = AXni14i AShaosi + AXnpi AShi1si + AXngprri AShy1yi
Snti = AXnyi ASito.
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We solve this system for the unknownthen we computa"**, and we finally
obtainb by (6).

Another way to proceed is to replabg"*! by its expression in (5). Then the
transformation can also be written as

T = Mn(Si1 =A%) — (S22 — A S) 8

" (Mn—1) (1—2) ’ ®

AS1— MraAS,

S Gn-DA-n
withr, = AXn1/AX,, and where. is computed by solving the preceding linear
system. Formula (9) is more stable than Formula (8). In (9), it is also possible
to replacer? by its value given as the solution of the preceding linear system
instead of squaring, thus leading to a different transformation with also a kernel
containing all sequences of the form (2).

= S 9)

Remark 1. Obviously, for sequences which do not have the form (2), the
value ofA obtained by the previous procedures depends.on

If Ax, is constant, = 1 satisfies the preceding system but its matrix is
singular. In this case, (7) reduces to

ASii2 —AAS 1 = AMAS 1 — AAS)
and) can be computed by solving the system
ASid% = 2AS 14k = —ASise, 1 =01

Then, the transformation given by (8) or (9) becomes
(S22 = A& —A(S11— A S)

T = O\ — 1)2 (10)
_ ASw1— 32AS,
= S+t G —1)72 (11)

Formula (11) is more stable than (10).
Let us give a numerical example to illustrate this transformation. We consider
the sequence

S =S+A"2—-n%) +exp—n)(1+n°), n=0,1,... (12)
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178 GENERALIZATIONS OF AITKEN'S PROCESS

with x, = n%. We tookS = 1,A = 1.15,« = 35, andb = 2. With

these values, the first term (%,) diverges, while the second one tends to zero
and, according to [15], is a subdominant contribution(8). On Figure 1,

the solid lines represent, in a logarithmic scale, and from top to bottom, the
absolute errors 0f,, of the Aitken’s A? process (which uses 3 consecutive
terms of the sequence to accelerate), of its first iterate (which uses 5 terms), and
of its second iterate (which uses 7 terms). The dash-dotted line corresponds
to the error of (11) (which uses 5 terms) with defined as above (which im-
plies the knowledge af), and the dashed line to the error of (9) (which uses 6
terms). Iterating a process, such as Aitken’s, consists in reapplying it to the new
sequence obtained by its previous application. On this example, the numerical
results obtained by the Formula (8) and by the more stable Formula (9) are the
same. The computations were performed using Matlab 7.3.

10 T T T T

-4 ! ! ! !
0 10 20 30 40 50

Figure 1 — Transformation (9) in dashed line, and transformation (11) in dash-dotted
line, both applied to (12).

The results of Figure 1 show that Aitken’s process and its iterates have no
impact on the divergence of the sequeKgg). On the contrary, the dominant
contribution has been suppressed at the beginning by the transformations (9)
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and (11), and they generate sequences which converge before diverging again.
Of course, whem grows, the subdominant contribution is almost zero, and this

is why these sequence transformations no longer operate. This is particularly
visible with transformation (11) which produces a rapidly diverging sequence.
On the contrary, transformation (9) exhibits a behavior similar to the behavior
of an asymptotic series. Thus stopping its application after 27 or 28 terms leads
to an error of the order of 1@. It must be noticed that the numerical results are
guite sensitive to changes in the parameters, andb if Formula (10) is used,

while they are not with Formula (11).

2.2 Second technique

Since, for alln, § (a + bx,) is a constant, then for all, Aé(a + bx,) = 0. Thus

0 = M(S‘_S>
)\n
1 [Swz —S—AM&S1— 9 —AS’H —S—AM& - S)}
AN+2 AXni1 AXq

and it follows, forn =0, 1, . . .,
AXp[Si2 — S—= A(S41 = 9] = AAX1[S11 = S A& - 9] =0. (13)

ExtractingSfrom this relation, we obtain the following sequence transforma-
tion whose kernel includes all sequences of the form (2)
Si28% — ASi11(AXn 4+ AXni1) + A2SAXnia

T, = . (14)
AXn - )\.(AXn + AXn+1) + )\4 AXn+1

AS 1A%, — M2ASAXnt1
AXn - )\,(AXn + AXn+l) + )LZAXrH,l'

= St (15)
Formula (15) is more stable than (14).
The problem is again to expresdrom the terms of the sequencg,). We
assume that an annihilation operator for the sequéncg) is known, that is
a linear operatot. such that for alh, L(Ax,) = 0. Such operators are quite
useful in deriving sequence transformations (as in the case of the Aitken’s pro-
cess where. = A). They were introduced by Weniger [14]. Thus, applylng
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to (13), we get, for alh,
L(Sh2A%n) — AL(Sis1(AXn + AXni1) + A2L(SA%n1) = 0. (16)

This polynomial equation of degree 2 has 2 solutions and we don’'t know which
solution is the right one. So, we will compute simultaneousindi?. For that,
we write (16) for the indexes andn + 1, and we obtain a system of two linear
equations in these two unknowns

AL(S11(A%y + AXni1) — A2L($iA%n11) = L(Sh2A%n)
AL(Si2(A%ni1 4+ AXng2)) — A2L(Sii1A%ns2) = L(Siy3AXni1).

It must be noticed that this approach requires more terms of the sequence than
solving directly the quadratic equation (16) far

The solution of the system is
A= [L(Si3A%:D) L(SiAXn+1) — L(Si2A%) L(Si+1A%042)] /Dn
32 = [L(Si3f %) L(Sia(AXn + AXnyi1))
—L(S128%) L (Si12(AXnt1 + A%ni2))] /Da

with

Dn = L(SAX%n+1) L(Si12(AXny1 + AXny2))
— L(S41AX%n42) L(Si41(AXn + AXny1)).

Replacingx and A2 in (14) or (15) completely defines our sequence trans-
formation. Let us remark that, for sequences which are not of the form (2),
a different transformation is obtained if the preceding expression ferused
in (14) or (15), and then squared for gettiog

Remark 2. The annihilation operatok. used for obtaining (16) from (13)
must be independent of since it has to be applied to a linear combination of
terms of the sequenca,) whose coefficients can dependmnSoL cannot be
Ad since, although it is an annihilation operator fgy), we haveAs (Ax,) # 0.
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Let us mention that annihilation operators are only known for quite simple
sequences. For example, the annihilation operator correspondigg=on¥
is L = A1 since AktInk = AK(AnK). If, for all n, x, is constant, the
transformation (11) is recovered.

This construction could be extended to a kernel whose members have the
form S, = S+ P«(xn)A", wherePy is a polynomial of degrek. Indeed, since
§¥Pu(xn) is a constant, we have, for ai

Aﬁauo=AM(&‘s)=a

)\’n
However, the difficulty in applying the two techniques described above lies in the
derivation and the solution of a system of equations involviragnd its powers.
We will not pursue in this direction herein.

3 A second scalar kernel

We will now construct a sequence transformation with a kernel containing all
sequences of the form

n

S =S+

, h=01,... 17
a + bx, (17

wheresS, a, b anda are unknown scalars argd,) a known sequence.
We have, for alh, §(a + bx,) =8(A\"/(S — ) = b. Thus

)\.n( )\‘ - 1 )ZbAXn,
S+1—-S S-S

which is a nonlinear equation i. Therefore the problem is to bypass such a
nonlinearity.
We have, for alh,

)\‘n
AS bx,) = AS =0,
(a4 bxy) (S1 — S)
and, therefore,

AAX ( * ! ) AX ( * ! ) =0
"\S2-S S-S "\Su-S s-s/ 7
Settinge, = S, — Sand reducing to the same denominator, we have

A€ AXn(A€ni1 — €ny2) — En2AXnr1(A€y — €nq1) = 0. (18)
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3.1 Firsttechnique

The main drawback of (18) is that it is a quadratic equatio®.ihet us con-
sider the particular case wherex, is constant. If we apply the operata,
then, by Leibniz’s rule,A(€p€hiq) = €nrip+1A€hiq + EntgAentp. Since
Aen = AS.,j, we obtain a linear expression B Remark that, for each
producte,peniq, We can choose, in Leibniz’s rule, eithay = e,., and
Un = €n4q OF Vice versa. However, after simplification, all these choices lead to
the same expression.

Applying A to (18), we obtain, wherx, is constant,

A (€28 + e AS1) — 24 (En1AShi2 + En12AS)

(19)
+ (er13AS 11+ 1A S 2) = 0.
Define the transformation N
Th= — 20
"= b (20)

with

Nh = )\231+1(Sh+2 — &) — 2(S3S511 — S2D) + S412(Siz — Sii)
Dn (S22 — ) — 2(Ss— Sz + S — S + (Svis — S

Then, by (19), the kernel of the transformation (20) includes all the sequences
of the form (17).

It remains to compute., and the problem can be solved as above. If, in
(19), we do not separateand S, the unknowns aré?, A, A%S, ASandS. So,
writing (19) for the indexes, ..., n+ 4, leads to a system of 5 linear equations
in these 5 unknowns

22814 (S — Si) — 20(Shiari Svessi — S Sazri)
—)»23(31+2+i — Sii) F 2AS(Svizi — St + St — S (21)
—S(Si3+i — Siradi) = =S4 (Svqzri — Sia4i), 1=0,..., 4,

which provides. andi?.
This system can also be solved directly for the unkndynhus providing
another transformation whose kernel includes all sequences of the form (17).
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Let us give a numerical example to illustrate this transformation. We consider
the sequence

n

S, = S+ + b, n=0,1,... (22)

2+ an

We tookS = 1,A = —-1.2,b = 0.1, ¢« = 1.1, andB = 2.5. With these
values, the first term i4S,) diverges, while the second one tends to zero. This
second term is a subdominant contributior($). On Figure 2, the solid lines
represent, in a logarithmic scale, and from top to bottom, the absolute errors of
S, of the Aitken’sA? process (which uses 3 consecutive terms of the sequence
to accelerate), of its first iterate (which uses 5 terms), and of its second iterate
(which uses 7 terms). The dashed line corresponds to the error of (20) (which
uses 8 terms).

-10 \ b
\
12+ \ 4
\
14 ' N
\\\ \/\/\/\\//\/ v ~
-16 " " " "
0 10 20 30 40 50

Figure 2 — The transformation (20) applied to (22), in dashed line.

We see that, as in our first example, the dominant contribution has been sup-
pressed at the beginning and that, winegrows, the subdominant contribution
is almost zero and this is why the sequence transformation no longer operates.
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3.2 Second technique

Equation (18) can be written as

A5 S 1A% — A5 S 2(AXn + AXni1) + Si1Shi2AXns1
—SIAZ(Sh + S A% — M(S + Si42) (A% + AXnya) (23)
+(Sit1 + S2) AXnpal = S (A — D[AXns1 — AAXq].

Remark 3. If the reciprocal difference operator is applied to the sequence
1/(@+ bxy) = (S — /A", we get, for alln, g?(1/(a + bx,) = 0%((S —
S)/A") = 0, and (18) is exactly recovered.

For extractingSfrom (23), we need to know an annihilation operdtdor the
sequencéAxn 1 — AAXy), and we obtain the following transformation whose
kernel includes all sequences of the form (17)

Nn
Th=—. 24
"= 5 (24)

Here

Nn = LA2SS18% — 2S$Shi2(A% + AXnp1) + Shi1Shi2A%n41)
Dn = LOAS + S0 A% — A(Sh + Shi2) (AXn + AXnya)
+ (Si1 + Si12) AXnr1).

As explained above, i, is a polynomial of degrek in n, thenL = AK*L,

The problem is now to compute However, if the unknowng and S are
not separated in (23), we obtain, after applying the annihilation opekatan
equation in the unknownig?, A, A2S, ASandS. So, writing (23) for the indexes
n,...,n+ 4, leads to a system of 5 linear equations in these 5 unknowns. This
system can be solved for the unknowmand its value used in (24). The system
can also be solved for the unknowhsand A2 and their values used in (24).
Finally, the system can be solved directly for the unkno®/n Thus several
transformations whose kernels include all sequences of the form (17) can be
obtained. When, for al, x, = n, the transformation (24) reduces to (20) since
the\’s obtained from these systems are the halves of tb@rresponding to the
system (21).
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4 Other transformations

Let us now discuss some additional transformations.

In the particular casg, = n, the following transformation also has a kernel
including all sequences of the form (2). It was obtained by Durbin [10], and it
is defined as

3$%+2 — 45113+ S
6Si2 — A4S+ Sia) + (S + Sipa)

Let us mention that, in this particular case, the second Shanks transformation
(the fourth column of the-algorithm)e; : (S)) — (e2(S) = &) also has a
kernel containing all sequences of the form (2), see [4].

We remark that the denominator of (25)A8S,, and it is easy to see that this
transformation can also be written as
_ SA513—3511AS42 + 35124511 — S43AS,

B AS+3—3AS 12+ 3A541 — AS, .

This expression leads to the idea of other transformations of a similar form

with a denominator equal to

T = n=0,1,... (25)

Tn

k
AHG = AKAS) = ) (-D'CASuk-
i=0
WhereCL = k!/@!(k —i)!) is the binomial coefficient. So, we obtain a whole
class of transformations defined by

k
D (D' CSiAS

Tn _ i=0

k
Z(_l)iCLAS\+k—i
i=0
The kernels of these transformations are unknown, but it is easy to see that
they all contain the kernel of the Aitken’s process. These transformations have
to be compared with thak processes [9] given by
k
’ Z(_l)iCLSHk—i/ASHk—i
_AY&/AS) o
TTOAKQ/AS) T K o
Y ()'Cl/AS

i=0
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The case&k = 1 corresponds to the Aitken’a? process and, fok = 2, the
second columﬂém of thed-algorithm is recovered (see [5]). The kernel of this
transformation is the set of sequences such that, fa, all

k(S —S\ _

A ( AS, ) =9
that is S s

AS = P1(n),

wherePy_; is a polynomial of degrek — 1 inn.

5 The vector case

The sequence transformations described in Sections 2 and 3 will now be used
in the case wher&, and S are vectors of dimensiop. Obviously, for a vector
sequence, a scalar transformation could be used separately on each component.
However, such a procedure is usually less efficient than using a transformation
specially built for treating vector sequences.

We begin by the first kernel studied in Section 2. Different situations could
beconsidered

SS=S+@+bx)A"or S, =S+ (@a+ x,b)A"

reC aeCP bx, € CP xab € CP
beC,x, eCP beCP x,eC
b e CP*P x, € CP b e CP, x, € CP*P
L eCP aecC beC,x,eC
or bx, € CP*P Xpb € CP*P
aecCPP | beC,x, € CP*P be CP*P x,eC

b € CP*P, x, € CP*P | b € CP*P, x, € CP*P
S =S+ A"@+bxy) orS, =S+ A"@+ xb)
LeCP*P| aeCP bx, € CP Xnb € CP
beC,x,eCP beCP,x,eC

b e CP*P, x, e CP b e CP, x, € CPxP

Since our purpose is only to show how to proceed with vector sequences,
we will not treat all these cases. The procedures followed are similar to those
described in [6] and [1].
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Let us consider the first transformation in the case wheaadb are scalars,
anda and x, vectors. Formulae (5) and (6) are still valid. Taking the scalar
product of (6) with two linearly independent vectgrsandy,, and eliminating
b gives

A[(Y1, AXn1) (Y2, ASis1) — (Yz, AXny1) (Y1, ASi1)
+ (Y1, AX) (Y2, AS) — (Y2, AXn) (Y1, AS)]
+ A2[(Y2, AXnD) (Y1, AS) — (Y1, AXns1) (Y2, ASY)]
= (Y1, AXn) (Y2, AS11) — (Y2, AXn) (Y1, AS11)-

Writing down this relation also for the indax+ 1 leads to a system of two
equations in the two unknownis and A2, which completely defines the first
vector transformation.

Another way of computing andA? consists in writing down (6) for the indexes
n andn + 1 and taking the scalar products with a unique vegtoEliminating
b gives an equation in our two unknowns. Then, this equation is written down
for the indexes andn + 1, thus leading again to a system of two equations.

For the second transformation, nothing has to be changed until (16) included.
For the computation of andA? one can proceed as for the first transformation.
The relation (16) can be multiplied scalarly igyandy,. Thus, a system of two
equations is obtained for the unknowns. It is also possible to write down (16)
for the indexes andn + 1 and to multiply these two equations scalarly by the
same vectoy.

For the second kernel considered in Section 3, it can be writte§, as
S+ (a+ bx,)~*A", which shows thaa + bx, can be a matrix and a vector.
Obviously,a andbx, cannot be vectors. This second kernel can then be treated
in a way similar to the first one.

6 Fixed point methods

There is a close connection between sequence transformations and fixed point
iterations for findingk € RP such thax = F(x), whereF is a mapping ofRP

into itself [2]. In this Section, we will see how to convert the vector sequence
transformations of Section 5 into fixed point methods. The procedure is similar
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to obtaining Steffensen’s method from Aitken’& process in the case = 1.
The transformations obtained in this way are often related to quasi-Newton meth-
ods; see [3].

In each sequence transformation, the computationl,pfmakes use of
S, ..., Sm, Where the value af differs for each of them. An iteration of a
fixed point method based on a sequence transformation consists in the following
steps for computing the new iteratg, ; from the previous ong,

1. Setg = x,.
2. ComputeS,; = F(§)fori =0,...,m— 1.
3. Apply the sequence transformationSg . . ., S,, and computdy.

4, Setxn+1 = To.

7 Conclusions

In this paper, we discussed how to construct scalar sequence transformations
with certain kernels generalizing the kernel of the Aitkea%process. As we

could see, generalizations for the types of kernels we considered are not so
easy to obtain and the corresponding algorithms need some efforts to be imple-
mented. However, we experimented some cases where they were quite effective.
The convergence and the acceleration properties of these transformations remain
to be studied. Then, we showed how extend some of these transformations to
the case of vector sequences. Since we only gave the idea how to proceed, a
systematic study of such vector transformations and their applications have to
be pursued. Finally, we explained how to convert these vector transformations
into fixed point iterations. They also have to be analyzed.
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