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Abstract. Exact solutions for the problem of drying with coupled phase change in a porous

medium with a heat flux condition on x = 0 of the type −q0/
√

τ , with q0 > 0, for any value of

the Luikov number Lu is obtained. This solution can be only obtained when q0 verifies a certain

inequality. Besides, for large Luikov number

(
more precisely, Lu >

1

εK0 + 1

)
, we obtain

that the temperature distribution t2 reaches to a minimum value which is smaller than its initial

temperature or limit value reached at +∞.
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1 Introduction

Heat and mass transfer with phase change problems, taking place in a porous

medium, such as evaporation, condensation, freezing, melting, sublimation and

desublimation, have wide application in separation processes, food technology,

heat and mixture migration in soils and grounds, etc. Due to the non-linearity

of the problem, solutions usually involve mathematical difficulties. Only a few

exact solutions have been found for idealized cases. Mathematical formulation

of the heat and mass transfer in capillary porous bodies has been established by

Luikov [13], [14], [15], [16], [17]. Other problems in this direction are [3], [6],

[7], [9], [20], [22].
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A large bibliography on free and moving boundary problems for the heat-

diffusion equation was given in [23]. Gupta [10] presented an approximate

solution to a coupled heat and mass transfer problem involving evaporation. The

problem Gupta [10] treated has analytical solution, which is presented in Cho [5].

Heat and mass transfer during drying from an homogeneous point of view are

also considered in [1], [2], [4], [8], [11], [18], and [19].

In the following, we study a similar problem as that of [5]. A semi-infinite

porous medium is dried by maintaining a heat flux condition at x = 0 of the

type −q0 /
√

t, with q0 > 0, which was firstly considered in [21]. Initially,

the whole body is at uniform temperature t0 and uniform moisture potential

u0. The moisture is assumed to evaporate completely at a constant temperature,

evaporation point tv. It is also assumed that the moisture potential in the first

region, 0 < x < s (τ) , is constant at uv, where x = s (τ ) locates the evaporation

front at time τ > 0. It is further assumed that the moisture in vapor form does

not take away any appreciable amount of heat from the system. Neglecting mass

diffusion due to temperature variation, the problem can be expressed as:

∂t1

∂τ
(x, τ ) = a1

∂2t1

∂x2
(x, τ ) , 0 < x < s (τ) , τ > 0 (region 1) (1.1)

u1 = uv, 0 < x < s (τ) , τ > 0 (region 1) (1.2)

∂t2

∂τ
(x, τ ) = a2

∂2t2

∂x2
+ εLcm

c2

∂u2

∂τ
, x > s (τ) , τ > 0 (region 2) (1.3)

∂u2

∂τ
(x, τ ) = am

∂2u2

∂x2
(x, τ ) , x > s (τ) , τ > 0 (region 2) (1.4)

The initial and boundary conditions are:

k1
∂t1

∂x
= − q0√

τ
at x = 0, τ > 0 (1.5)

t2 = t0 in x > 0, τ = 0 (1.6)

u2 = u0 in x > 0, τ = 0 (1.7)

t1 (s (τ ) , τ ) = t2 (s (τ ) , τ ) = tv > t0 at x = s (τ ) (1.8)
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u1 (s (τ ) , τ ) = u2 (s (τ ) , τ ) = uv < u0 at x = s (τ ) (1.9)

−k1
∂t1

∂x
(s (τ ) , τ ) + k2

∂t2

∂x
(s (τ ) , τ ) = (1 − ε) ρmL

ds

dt

at x = s (τ )

(1.10)

Symbols are given in the nomenclature. We clarify that t1 is the temperature

of the dried porous medium, t2 is the temperature of the humid porous medium

and u2 is the mass-transfer potential of the humid porous medium.

In paragraph 2, we find a solution of this problem, depending on the value of

the Luikov number Lu, then in paragraphs 3 and 4 we discuss the equation that

determines the dimensionless constant which characterizes the evaporation front

when the Luikov number Lu equals to one and Lu is different to one. Finally, in

paragraph 5 we give some illustrative results and a sufficient condition (5.4) for

the Luikov number Lu in order to obtain when the temperature distribution has

a minimum value less than its initial temperature.

This study was motivated by the following mathematical and physical analysis.

Taking into account (1.1), (1.5) and (1.8), and (1.4), (1.7) and (1.9), by the

maximum principle, we have t1 (x, τ ) > tv for region 1 and uv < u2 (x, τ ) < u0

for region 2 respectively. We expect from a physical point of view that the phase

change front s (τ ) should be an increasing function. In this case, thanks again

to the maximum principle, we should obtain that
∂u2

∂τ
(x, τ ) < 0 for region

2, then the heat equation (1.3) has a heat sink within the corresponding region

2. Due to the maximum principle, we have t2 (x, τ ) < tv for region 2 and we

can say anything about where the temperature has an absolute minimum value.

One of the goals of this paper is to obtain a sufficient condition for the data

in order to have a minimum value for the temperature within its corresponding

domain. Moreover, we can characterize the coordinate of this point when the

dimensionless variable η = x

2
√

a1τ
takes the value (5.7) as a function of the

data.
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2 Solution of the problem

Let be the following dimensionless variables and parameters:

Ui = ui − u0

uv − u0
, for i = 1, 2 (2.1)

Ti = ti − t0

tv − t0
, for i = 1, 2 (2.2)

η = x

2
√

a1τ
(2.3)

Lu = am

a1
> 0 (2.4)

Ko = Lcm (u0 − uv)

c2 (tv − t0)
> 0 (2.5)

ν = (1 − ε) ρmLa1

k1 (tv − t0)
> 0 (2.6)

k21 = k2

k1
> 0. (2.7)

Assuming U and T are only functions of the variable η, the conditions (1.1)-(1.9)

imply us that

s (τ ) = 2λ
√

a1τ (2.8)

where λ is a positive constant to be determined later. Therefore, equations

(1.1)-(1.4) are transformed to the following dimensionless ordinary differential

equations of the form:

T ′′
1 (η) + 2ηT ′

1 (η) = 0, 0 < η < λ (2.9)

U1 = 1, 0 < η < λ (2.10)

T ′′
2 (η) + 2ηT ′

2 (η) − 2εKoηU ′
2 (η) = 0, η > λ (2.11)

LuU
′′
2 (η) + 2ηU ′

2 (η) = 0, η > λ. (2.12)
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The boundary conditions (1.5)-(1.10) become:

T ′
1 = − 2q0

√
a1

k1 (tv − t0)
at η = 0, (2.13)

T2 = 0 as η → ∞, (2.14)

U2 = 0 as η → ∞, (2.15)

T1 = T2 = 1 at η = λ, (2.16)

U1 = U2 = 1 at η = λ, (2.17)

T ′
1 − k21T

′
2 = −2νλ at η = λ, (2.18)

Solutions of the equations (2.9) and (2.12), which satisfy boundary conditions

(2.13), (2.15), (2.16) and (2.17), are easily obtained as follows

T1 (η) = 1 + q0
√

πa1

k1 (tv − t0)
(erf λ − erf η) , 0 < η < λ (2.19)

U2 (η) =
1 − erf

(
η√
Lu

)

1 − erf

(
λ√
Lu

) , η > λ. (2.20)

Substituting expression (2.20) into equation (2.11), and solving the result-

ing non-homogeneous ordinary differential equation with boundary conditions

(2.14) and (2.16), we obtain the following results, depending on Lu = 1 or

Lu �= 1, i.e.:

T2 (η) = εKo√
π (1 − erf (λ))

[
λ e−λ2 1 − erf (η)

1 − erf (λ)
− η e−η2

]

+ 1 − erf (η)

1 − erf (λ)
, if Lu = 1, η > λ

(2.21)
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or

T2 (η) = εKoLu

Lu − 1


−

1 − erf
(

η√
Lu

)
1 − erf

(
λ√
Lu

) + 1 − erf (η)

1 − erf (λ)




+ 1 − erf η

1 − erf λ
, if Lu �= 1, η > λ.

(2.22)

Functions (2.19), (2.20) and (2.21) or (2.22) satisfy all boundary conditions

except condition (2.18). Substituting these expressions into condition (2.18), the

positive constant λ is determined from the following equation, depending on the

value of Lu, as follows:

k21√
π

e−λ2

1 − erf (λ)

[
−2εK0√

π
λ

e−λ2

1 − erf (λ)
+ 2εK0λ

2 − εK0 − 2

]

+ 2
√

a1q0

k1 (tv − t0)
e−λ2 = 2νλ, λ > 0 if Lu = 1,

(2.23)

or
√

πa1q0

(tv − t0)
e−λ2 + LuεK0

Lu − 1
k2

[
1√
Lu

F1

(
λ√
Lu

)
− F1 (λ)

]

= k2F1 (λ) + √
πk1νλ, λ > 0 if Lu �= 1.

(2.24)

3 Discussion of the equation that determines λ, considering the case when
the Luikov number equals to one

Now let’s study in detail the equation (2.23), vinculated to the case Lu = 1, that

is to say, when am = a1. We define the following real functions:

α (x) = k21√
π

e−x2

1 − erf (x)

[
−2εK0√

π
x

e−x2

1 − erf (x)
+ 2εK0x

2 − εK0 − 2

]

+ 2
√

a1q0

k1 (tv − t0)
e−x2

(3.1)

χ (x) = 2νx (3.2)
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Then, equation (2.23) can be expressed saying that λ must be the solution of the

following equation

α (x) = χ (x) , x > 0. (3.3)

We shall see the characteristics of each one of the functions α and χ which

appears in equation (3.3).

Firstly, we have that χ is a strictly increasing function, with the properties:

χ (0) = 0 ; χ (+∞) = +∞ ; χ ′ (x) = 2ν > 0, x > 0.

Before we study the function α, let’s define the following real functions:

Q (x) = √
πxe−x2

(1 − erf (x)) , x > 0

W (x) = x√
π

e−x2

1 − erf (x)
− x2 = x2

(
1

Q (x)
− 1

)
, x > 0.

Function Q has the following properties:

Q
(
0+) = 0 ; Q (+∞) = 1 ; Q′ (x) > 0, x > 0.

Function W is a positive valued function, with the following properties [12]:

W
(
0+) = 0 ; W (+∞) = 1

2
; W ′ (x) > 0

then W is a strictly increasing function. Now we take care about α. Taking into

account W, we can put α in the following way:

α (x) = 2
√

a1q0

k1 (tv − t0)
e−x2 − k21√

π
F1(x)

[
2εK0W (x) + εK0 + 2

]
where function F1 is defined by

F1(x) = e−x2

1 − erf (x)
(3.4)

which has the following properties

F1
(
0+) = 1 ; F1 (+∞) = +∞ ; F ′

1 (x) > 0, x > 0 ; F ′′
1 (x) > 0, x > 0
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lim
x→+∞

F1 (x)

x
=

√
π

Q (+∞)
= √

π.

Then α is written as the sum of two strictly decreasing functions, therefore it

results that α is also a strictly decreasing one. Besides, it has the following

properties:

α (0) = 2
√

a1q0

k1 (tv − t0)
− k21√

π
[εK0 + 2] ; α (+∞) = −∞

α′ (x) = −4x
√

a1q0

k1 (tv − t0)
e−x2 − k21√

π

e−x2

1 − erf (x)

[
2εK0W

′ (x)
]

+ (−k21)√
π

F ′
1 (x)

[
2εK0W (x) + εK0 + 2

]
< 0, x > 0.

Next, to assure that the two functions α and χ have an intersection point, we

need to assume that

α (0) > χ (0) ,

that is to say,
2
√

a1q0

k1 (tv − t0)
>

k21√
π

[εK0 + 2] , which is equivalent to the condition

q0 >
k2 (tv − t0)

2
√

πa1

[
εK0 + 2

]
, (3.5)

and we can finally give the following:

Theorem 3.1. If the Luikov number is equals to one, and the coefficient q0

verifies the condition (3.5) then there exists one and only one solution λ > 0

of the equation (2.23). Furthermore, the solution of the problem (1.1)-(1.10)

is given by (2.19)-(2.21), where λ is the unique solution of the equation (2.23),

that is:

u1 (x, τ ) = uv, 0 < x < s (τ) , τ > 0 (3.6)

t1 (x, τ ) = 1 + q0
√

πa1

k1 (tv − t0)

(
erf λ − erf

(
x

2
√

a1τ

))
,

0 < x < s (τ) , τ > 0

(3.7)
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u2 (x, τ ) =
1 − erf

(
x

2
√

amτ

)
1 − erf (λ)

, x > s (τ) , τ > 0 (3.8)

t2 (η) = εK0√
π (1 − erf (λ))


λ e−λ2

1 − erf

(
x

2
√

a1τ

)
1 − erf (λ)

− x

2
√

a1τ
e

− x2
4a1τ




+
1 − erf

(
x

2
√

a1τ

)
1 − erf λ

, x > s (τ) , τ > 0 (3.9)

s (τ ) = 2λ
√

a1τ . (3.10)

4 Discussion of the equation that determines λ, considering the case when
the Luikov number is different to one

In this paragraph we will study in detail the equation (2.24), which determines

the unknown λ for the case Lu �= 1, that is to say, am �= a1. For this propose, we

define the following functions:

φ (x) =
√

πa1q0

(tv − t0)
e−x2 + P (x) (4.1)

ϕ (x) = k2F1 (x) + √
πk1νx. (4.2)

where

P (x) = Lu εK0

Lu − 1
k2

(
1√
Lu

F1

(
x√
Lu

)
− F1 (x)

)
, x > 0. (4.3)

Then, equation (2.24) can be written saying that λ must be the solution of the

equation

φ (x) = ϕ (x) , x > 0. (4.4)

Therefore, we can see the characteristics of each one of these functions φ and ϕ.
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Firstly, let’s see that ϕ (x) is a strictly increasing function with the properties:

ϕ (0) = k2 ; ϕ (+∞) = +∞ ; ϕ′ (x) > 0, x > 0.

Before studying φ, we need to analyse the function P .

Obviously, function P when x = 0+ is equal to −
√

Lu εK0√
Lu+1

k2 < 0, and when

x tends to +∞ its behaviour may depends on the value of Lu. Well, it doesn’t

happen:

We have

lim
x→∞




F1

(
x√
Lu

)
F1 (x)

− √
Lu


 = 1√

Lu

− √
Lu = 1 − Lu√

Lu

,

so, we can verify that:

i) If Lu > 1, we have lim
x→∞

(
1√
Lu

F1

(
x√
Lu

)
− F1 (x)

)
= −∞, then

P (+∞) = −∞.

ii) If Lu < 1, we have lim
x→∞

(
1√
Lu

F1

(
x√
Lu

)
− F1 (x)

)
= +∞, then

P (+∞) = −∞.

Therefore, it doesn’t matter whether Lu is less or greater than 1, P (x) always
tends to −∞ when x → +∞. Then, the properties of φ (x) are:

φ (0) =
√

πa1q0

(tv − t0)
+ P

(
0+) =

√
πa1q0

(tv − t0)
−

√
LuεK0√
Lu + 1

k2; φ (+∞) = −∞

φ′ (x) = −2
√

πa1q0

(tv − t0)
xe−x2 + LuεK0

Lu − 1
k2

[
1

Lu

F ′
1

(
x√
Lu

)
− F ′

1 (x)

]
< 0, x > 0.

Concluding, to assure an intersection point between the two functions φ and

ϕ, we impose the condition φ (0) > ϕ (0) , that is to say
√

πa1q0

(tv − t0)
−

√
LuεK0√
Lu + 1

k2 > k2,

which is equivalent to

q0 > k2

(
1 +

√
LuεK0

1 + √
Lu

)
tv − t0√

πa1
, (4.5)

and we can finally give the following theorem:
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Theorem 4.1. If the Luikov number is different than one, and the coefficient q0

verifies the condition (4.5) then there exists one and only one solution λ > 0

of the equation (2.24). Furthermore, the solution of the problem (1.1)-(1.10) is

given by (2.19)-(2.21), where λ is the solution of the equation (2.24), that is:

(3.6), (3.7), (3.8), (3.10) and

t2 (η) = εKoLu

Lu − 1


−

1 − erf

(
x

2
√

amτ

)

1 − erf

(
λ√
Lu

) +
1 − erf

(
x

2
√

a1τ

)
1 − erf (λ)




+
1 − erf

(
x

2
√

a1τ

)
1 − erfλ

, x > s (τ) , τ > 0.

(4.6)

Remark 1. The right side member of the inequality (4.5) goes to the right side

member of the inequality (3.5) when Lu tends to 1, that is to say, we can study

the case Lu = 1 considering the limit Lu → 1 in the case Lu �= 1, then we can

resume both results in the following one:

Theorem 4.2. Let be consider the coefficient q0 verifying the condition (4.5),

then, for any positive value of Lu, there exists one and only one solution λ > 0 of

the equation (2.23) or (2.24) depending on what value takes Lu. Furthermore,

the solution of the problem (1.1)-(1.10) is given by:

a) (3.7)-(3.8), (3.9) and (3.10), if Lu = 1,

b) (3.7)-(3.8), (4.6) and (3.10), if Lu �= 1.

5 Some illustrative results and a sufficient condition for the Luikov number
in order to obtain the minimum value of the temperature distribution

Some results of sample calculations are shown here. In this examples we take

εK0 = 2, a1 = 1, k2 = 1, and (tv − t0) = 1. Figure 1 shows the behaviour of λ

as a function of q0. Figure 2, 3 and 4 shows the behaviour of the dimensionless

temperature with respect to the dimensionless variable η, taking Lu equals to

0.1, 1 and 4 respectively.
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Figure 1 – Behavior of λ as a function of q0.

Looking at Figures 2, 3 and 4, we see that the temperature distribution t2

reaches to a minimum value which is smaller than the limit value t0 that the

function reaches at +∞, i.e. the initial temperature, although in Figure 2 the

function has no such minimum value. We shall find the values of the coefficient

Lu for which the function T2 has a minimum value which is smaller than its limit

value when η → +∞.

For Lu �= 1, we take T2 (η) for any η > λ, and we have

T ′
2 (η) = εKoLu

Lu − 1




2√
πLu

e

(
− η2

Lu

)

1 − erf

(
λ√
Lu

) −
2√
π

e(−η2)

1 − erf (λ)


 −

2√
π

e(−η2)

1 − erf λ

and we get that

T ′
2 (η) = 0 ⇔ εKo

√
Lu

Lu − 1

e


−

η2

Lu




1 − erf

(
λ√
Lu

) =
(

εKoLu

Lu − 1
+ 1

)
e(−η2)

1 − erf λ

⇔ η is the solution of the following equation:
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Figure 2 – Behavior of the temperature with respect to the dimensionless variable η

considering Lu = 0.1 < 1.

Figure 3 – Behavior of the temperature with respect to the dimensionless variable η

considering Lu = 1.
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Figure 4 – Behavior of the temperature with respect to the dimensionless variable η

considering Lu = 4 > 1.

Figure 5 – Behavior of the temperature T2 with respect to the dimensionless variable η

varying the values of Lu.
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S (x) = Z (x) , x > λ, (5.1)

where S and Z are defined by:

S (x) = εKo

√
Lu

Lu − 1

e


−

x2

Lu




1 − erf

(
λ√
Lu

) (5.2)

Z (x) =
(

εKoLu

Lu − 1
+ 1

)
e(−x2)

1 − erf λ
(5.3)

Obviously, both S and Z are strictly decreasing (increasing) functions for any

x > 0 when Lu > 1 (0 < Lu < 1). Moreover, we have

S (x) = Z (x) ⇔ εKo

√
Lu

e


−

x2

Lu




1 − erf

(
λ√
Lu

) = ((εK0 + 1) Lu − 1)
e(−x2)

1 − erf λ

⇔ e

(
1− 1

Lu

)
x2 = ((εK0 + 1) Lu − 1)

εKo

√
Lu

1 − erf

(
λ√
Lu

)
1 − erf λ

which implies that in order to solve the equation (5.1), firstly we must to assume

that ((εK0 + 1) Lu − 1) > 0, that is

Lu >
1

εK0 + 1
(5.4)

Secondly, if Lu > 1 we must to impose that

((εK0 + 1) Lu − 1)

εKo

√
Lu

1 − erf

(
λ√
Lu

)
1 − erf λ

> 1 (5.5)

which is always satisfied taking into account that the error function is a strictly

increasing function. Moreover, if Lu < 1 we must to impose that

((εK0 + 1) Lu − 1)

εKo

√
Lu

1 − erf

(
λ√
Lu

)
1 − erf λ

< 1 (5.6)
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which is satisfied for all 0 < Lu < 1. Therefore, if the Luikov number Lu verifies

the condition (5.4) we obtain that the solution of the equation S(x) = Z(x) is

given by

η =

√√√√√√√
(

Lu

Lu − 1

)
log


((εK0 + 1) Lu − 1)

εKo

√
Lu

1 − erf

(
λ√
Lu

)
1 − erf λ


 (5.7)

Then we have obtained the following result:

Theorem 5.1. If the Luikov number Lu verifies the condition (5.4) the temper-

ature distribution t2 reaches to a minimum value which is smaller than the initial

temperature or its limit value at +∞. The minimum value is attained when the

dimensionless variable η takes the value (5.7).

Remark 2. For large Luikov number the temperature distribution t2 = t2 (η)

has an absolute minimum value less than its initial temperature. Moreover, the

minimum value for the Luikov number in order to have that property is given

explicitely by the coefficient
1

εK0 + 1
, which is not an intuitive result.

6 Conclusion

Exact solutions for the problem of drying with coupled phase change in a porous

medium with a heat flux condition on x = 0 of the type − q0√
τ
, with q0 > 0,

for any value of Lu is obtained. This solution is only obtained when q0 verifies

a certain explicited inequality. The temperatures of the two phases and the

mass-transfer potential were obtained by using the similarity method. Some

illustrative results are shown. Finally, for large Luikov number
(
more precisely,

Lu >
1

εK0 + 1

)
we obtain that the temperature distribution t2 reaches to an

absolute minimum value which is smaller than the initial temperature (or its

limit value at +∞), and we characterize the coordinate of this point when the

dimensionless variable η = x

2
√

a1τ
takes the value (5.7) as a function of the

data.

Comp. Appl. Math., Vol. 22, N. 3, 2003



EDUARDO A. SANTILLAN MARCUS and DOMINGO A. TARZIA 309

7 Acknowledgments

This paper has been partially sponsored by the project ‘‘Free Boundary Problems

for the Heat-Diffusion Equation’’ from CONICET-UA, Rosario (Argentina) and

‘‘Partial Differential Equations and Numerical Optimization with Applications’’

from Fundación Antorchas (Argentina).

Nomenclature:

ai, i = 1, 2 thermal diffusivity of the phase-i.

a12 ratio of thermal diffusivities from phase 1 to phase 2

am moisture diffusivity

cm specific mass capacity

c2 specific heat capacity

ki, i = 1, 2 thermal conductivity of the phase-i.

k21 ratio of thermal conductivity from phase 2 to phase 1

K0 = Lcm (u0 − uv)

c2 (tv − t0)
Kossovitch number

L latent heat of evaporation of liquid per unit mass

Lu = am�a1 Luikov number

q0 coefficient that characterizes the heat flux at x = 0

s(τ ) position of the evaporation front

ti(x, τ ), i = 1, 2 temperature of the phase-i.

t0 initial temperature

tv temperature at the phase-change state

Ti, i = 1, 2 non-dimensional temperature of the phase-i

u mass-transfer potential

u0 initial mass-transfer potential

Ui, i = 1, 2 dimensionless mass-transfer potential of the phase-i

x space coordinate

X dimensionless length
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Greek symbols

ε coefficient of internal evaporation

η dimensionless variable

λ dimensionless constant which characterizes the evaporation front

ρm density of moisture

τ time

Subscripts

0 at initial time, t = 0

1 dried porous medium, 0 < x < s (τ)

2 humid porous medium, x > s (τ)

v at evaporation front, x = s (τ )
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