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Abstract. In this paper, we will be mainly concerned with a parallel algorithm (in time and

space) which is used to solve the incompressible Navier-Stokes problem. This relies on two main

ideas: (a) a splitting of the main differential operator which permits to consider independently the

most important difficulties (nonlinearity and incompressibility) and (b) the approximation of the

resulting stationary problems by a family of second-order one-dimensional linear systems. The

same strategy can be applied to two-dimensional and three-dimensional problems and involves the

same level of difficulty. It can be also useful for the solution of other more complicate systems like

Boussinesq or turbulence models. The behavior of the method is illustrated with some numerical

experiments.
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1 Introduction

We will consider here a numerical method for solving the incompressible, time-

dependent, Navier-Stokes equations. These equations can be used to model the
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behavior of a homogeneous, incompressible, viscous newtonian fluid. When we

impose Dirichlet conditions on the velocity field, the problem reads

∂u

∂t
− ν1u + (u ∙ ∇)u + ∇ p = f (x, t) in Q = � × (0, T),

∇ ∙ u = 0 in � × (0, T),

u(x, t) = 0 on ∂� × (0, T),

u(x, 0) = u0(x) in �.

(1)

Here,� ⊂ Rd is a bounded regular domain (d = 2 or 3),u = u(x, t) is the

velocity field, p = p(x, t) is the pressure,ν > 0 is the kinematic viscosity (a

positive constant) andf = f (x, t) is the density function of a field of external

forces. For simplicity, we have assumed in (1) that the fluid has unit mass density.

Concerning the solution to (1), it is well known that we can only expect to get

numerical approximations. However, it is also well understood nowadays that

this is a very difficult task.

A good strategy seems to be the use ofparallel computers. Of course, in order

to optimize their efficiency, one has to design appropriate algorithms (in general

terms, the next generation of processors is expected to multiply the speed of

computation by a factor 10; at the same time, new forthcoming parallel algorithms

are expected to produce an increase of a factor 100, see [22]). However, up to

now, parallelization has been performed almost always at the lowest level, when

the task has been reduced to the solution of finite-dimensional linear systems

with probably many unknowns.

The goal of this work is to propose a different method which relies on paral-

lelization at the highest possible level and tries to reduce as much as possible

the computer time by using a large number of processors. It will be seen that

this method leads to difficulties essentially of the same kind in the 2D and 3D

settings. The seminal ideas for this approach can be found in [19].

In this paper, we will only consider low or moderate Reynolds numbers (re-

spectively up to 4000 and 1000 in 2D and 3D problems). Recall that the Reynolds

number of (1) is given byRe = U L/ν, whereU andL are characteristic val-

ues of the velocity field modulus and the length, respectively. For higherRe,

we would need more subtle arguments and methods. The design of appropriate
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techniques, similar to those in this paper, for the numerical solution of large

Reynolds number problems (1) will be the subject of future work.

As usual, the approximation of (1) is performed in two steps. We first discretize

in the time variable and, then, we solve numerically the resulting stationary

problems by introducing a spatial approximation.

At both steps, we can use a plenty of methods. Among all them, let us mention

viscosity splitting methodsand in particularθ -scheme fractional schemesfor the

approximation in time andfinite elementandfinite difference methodsfor the

approximation in space. A detailed analysis of the behavior of these and many

other methods can be found in [15].

Our interest has focused on the design and analysis of numerical schemes

relying on two main ideas: (a) to split or separate in parallel the most impor-

tant difficulties (nonlinearity and incompressibility) and (b) to approximate the

resulting stationary problems by a (large) family of second-order, completely

independent, one-dimensional linear systems.

At the 1D level, it will be then easy an adequate to apply finite difference

techniques to produce good approximations. In this way, the solution strategy

will make possible a very high level or parallelization.

The research described in this paper is a small part of a much larger project

concerning parallelization and nonlinear partial differential systems. Up to now,

this has led to some publications and PhD Theses. See for instance [1]–[3],

[5], [6], [8]–[12]. However, the numerical techniques we present below can be

useful for solving many different problems: linear and semilinear elliptic and

parabolic systems with nonlinear boundary conditions, Boussinesq systems, one-

equation and two-equation turbulence models, fluid-solid interaction models,

fully nonlinear equations of the Monge-Ampère kind, etc.

2 The algorithm

Before recalling the formulation of the algorithm, let us introduce some notation:

• J(�) = { ϕ ∈ C∞
0 (�)d : ∇ ∙ ϕ = 0 in � }; H (resp.V) is the closure

of J(�) in the spaceL2(�)d (resp.H1
0 (�)d). Thus, H (resp.V) is a

Hilbert space for the scalar product ofL2(�)d (resp.H1
0 (�)d), which will
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be denoted by(∙ , ∙) (resp.((∙ , ∙))). The associated norm will be denoted

by | ∙ | (resp.‖ ∙ ‖).

• V ′ is the dual space ofV ; 〈∙ , ∙〉 denotes the duality pairing betweenV ′ and

V .

• We also introduce the trilinear formsb(∙ , ∙ , ∙) andb̂(∙ , ∙ , ∙), with

b(u, v, w) =
∫

�

ui Di v j w j dx, b̂(u, v, w) =
1

2
(b(u, v, w) − b(u, w, v))

for anyu, v, w ∈ H1(�)d (here, the usual summation convention is used).

The following properties ofV andH are well known:

V = { v ∈ H1
0 (�)d : ∇ ∙ v = 0 in � },

H = { v ∈ L2(�)d : ∇ ∙ v = 0 in �, v ∙ n = 0 on0 },

V ↪→ H ↪→ V ′, where the embeddings are dense and compact.

We can now give a rigorous formulation of the unsteady Navier-Stokes problem

in � × (0, T):





u ∈ L2(0, T; V) ∩ L∞(0, T; H),

〈
∂u
∂t

(t), v〉 + ν((u(t), v)) + b(u(t), u(t), v) = 〈f (t), v〉

a.e. in(0, T), ∀v ∈ V,

u(0) = u0 .

(2)

In (2), u0 ∈ H andf ∈ L2(0, T; L2(�)d). It is well known that (2) possesses

at least one solution which is furthermore unique ifd = 2. If u is a solution, then

u solves, together with some scalar distributionp, the Navier-Stokes equations

(1) (for instance, see [18]). One also has

u = 0 on ∂� × (0, T)

andu|t=0 = u0 in an appropriate sense.

Notice that

b(u, v, w) = b̂(u, v, w), ∀u ∈ V, ∀v, w ∈ H1
0 (�)d.

Comp. Appl. Math., Vol. 24, N. 3, 2005



“main” — 2006/3/9 — 16:43 — page 421 — #5

ISIDORO I. ALBARREAL et al. 421

Also, b̂(u, v, v) = 0 for all v ∈ H1
0 (�)d (even when divu 6= 0). Consequently,

the variational evolution equation in (2) can also be written in terms ofb̂(∙ , ∙ , ∙)

and this gives the following equivalent formulation:





u ∈ L2(0, T; V) ∩ L∞(0, T; H),

〈
∂u
∂t

(t), v〉 + ν((u(t), v)) + b̂(u(t), u(t), v) = 〈f (t), v〉,

a.e. in(0, T), ∀v ∈ V,

u(0) = u0 .

(3)

We are now going to indicate how to approximate in time. Let us divide the

interval[0, T] in M subintervals of lengthk (k = T/M) and let us assume that

the parametersσ ∈ (0, 1], θ, μ ∈ [0, 1] anda, b > 0 are given.

We first put

u0 = u0 . (4)

Then, for givenm ≥ 0 andum ∈ H1
0 (�)d (an approximation ofu at time

tm = mk), we computeum+a, um+b and thenum+1 as follows. We first solve in

parallel the elliptic systems

PROBLEM (BP) (Burgers)





um+a ∈ H1
0 (�)d,

1

ak
(um+a − um, w) + ν((σum+a + (1 − σ)um, w))

+
2θ

a
b̂(u∗, u∗∗, w) =

2μ

a
(f m+a, w), ∀w ∈ H1

0 (�)d.

(5)

and

PROBLEM (SP) (Stokes)





um+b ∈ V,

1

bk
(um+b − um, v) + ν((σum + (1 − σ)um+b, v))

=
2(1 − μ)

b
(f m+b, v) −

2(1 − θ)

b
b̂(um, um, v), ∀v ∈ V.

(6)
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Then, we set

um+1 =
1

2
(um+a + um+b). (7)

In (5) and (6),f m+a y f m+b are appropriate approximations off . For instance,

we can make the following choice:

f m+ j (x) =
1

jk

∫ (m+ j )k

mk
f (x, t) dt, j = a, b.

In (5), several different definitions ofu∗ andu∗∗ are possible. Thus, it seems

natural to put

u∗∗ = αum+a + (1 − α)um

for someα. Actually, the choice ofu∗∗ is crucial when one tries to establish “a

priori” estimates of the numerical solutions. On the other hand, the particularu∗

we use determines the degree of linearity we conserve in (5).

Using more or less standard arguments, we can deduce existence and unique-

ness results for (5) and (6), at least whenν is not too small (see for instance [17]

and [18]).

In the previous works [5] and [6], we have presented theoretical and numerical

results obtained for some parallel schemes of the kind (4)–(7). There, paral-

lelization was performed only at the time approximation level and the stationary

problems(BP) and (SP) were solved with finite element techniques. In this

work, we are going to extend the parallelization procedure to all the variables.

To this end, we will applysimultaneous directions implicit(SDI) techniques to

the previous stationary problems. Thus, let us denote byWh a finite dimensional

Hilbert space determined by a second-order finite difference approximation of

H1
0 (�)d (h is a parameter that allows to identify the mesh; of course, we pass from

the finite-dimensional to the infinite-dimensional problems by lettingh → 0).

Let Vh ∈ Wh be the subspace formed by the functions inWh with vanishing

discrete divergence(see [21] for several possibleWh andVh and the associated

definitions of the discrete divergence).

Then, the spatial approximation of (4)–(7) is the following:

First,u0
h is the orthogonal projection ofu0 onWh for theL2 scalar product, i.e.

(u0
h, vh) = (u0, vh), ∀vh ∈ Wh , u0

h ∈ Wh . (8)
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Then, for any givenm ≥ 0 andum
h ∈ Wh , we computeum+a

h , um+b
h and then

um+1
h as follows. We first solve in parallel two independent problems:






1

ak
(um+a

h − um
h , wh) + ν((σum+a

h + (1 − σ)um
h , wh))h

+
2θ

a
b̂h(u∗

h, u∗∗
h , wh) =

2μ

a
(f m+a, wh), ∀wh ∈ Wh .

(9)






1

bk
(um+b

h − um
h , vh) + ν((σum

h + (1 − σ)um+b
h , vh))h

=
2(1 − μ)

b
(f m+b, vh) −

2(1 − θ)

b
b̂(um

h , um
h , vh), ∀vh ∈ Vh .

(10)

Then, we put

um+1
h =

1

2
(um+a

h + um+b
h ). (11)

Again, we have several possibilities for the choice ofu∗
h andu∗∗

h . For instance,

we can take

u∗∗
h = σum+a

h + (1 − σ)um
h ,

u∗
h = um

h or u∗
h = um+a

h , etc.

The existence and uniqueness of a solutionum+b
h to (10) is an immediate

consequence of Lax–Milgram’s lemma. The existence of a solutionum+a
h to (9)

is easily implied by Brouwer’s fixed point theorem (see for instance [18]).

In [6] and [8], we have deduced convergence and stability results for the com-

pletely discretized scheme (in time and space). In some particular situations, we

have also deduced error estimates, cf. [2] and [1].

3 A convergence result

We recall in this section a convergence-stability result for the previous numerical

method. In the sequel,C denotes a generic positive constant only depending on

the data�, T , ν, u0 andf and, possibly, the parametersσ , θ andμ.
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There existoptimalquantitiesd0 , S(h) andS1(h) such that

1

d0

|wh| ≤ ‖wh‖ ≤ S(h)|wh|, ∀wh ∈ Wh (12)

and

|b̂h(vh, vh, wh)| ≤ S1(h)|vh|
2‖wh‖, ∀vh, wh ∈ Wh . (13)

More precisely, we haved0 = 2` wherè is the smallest size of� in the directions

x1, . . . , xd ,

S(h) = 2

(
d∑

i =1

h−2
i

)1/2

and S1(h) =

{
3
√

2 S(h) if d = 2

2 ∙ 33/2 S3/2(h) if d = 3
(14)

(see [21]).

For each time stepk and eachh > 0, we introduce the functionsukh , vkh ,

wkh , zkh , ũkh , ṽkh andw̃kh , given as follows:

{
ukh, vkh, wkh, zkh : [0, T] 7→ Wh are piecewise constant, with

ukh(t) = um
h , vkh(t) = um+a

h , wkh(t) = um+b
h ,

{
ũkh, ṽkh, w̃kh : [0, T] 7→ Wh are continuous and piecewise linear, with

ũkh(mk) = um
h , ṽkh(mk) = um+a

h , w̃kh(mk) = um+b
h .

Theorem 1. Assume thatσ ∈ (1
2, 1], a + b = 2, u∗∗

h = σum+a
h + (1− σ)um+b

h

and, for instance,u∗
h = um

h in (9). There exist constantsK0 and K1 , only

depending on�, |u0|, ‖ f ‖L2(0,T;H) , ν andσ , such that, whenever

kS(h)2 ≤ K0, kS1(h)2 ≤ K1, (15)

we have:

1. There exist subsequencesuk′h′ , . . . , w̃k′h′ that converge strongly in the

spaceL2(0, T; L2(�)d), weakly inL2(0, T; H1
0 (�)d) and also weakly-∗

in L∞(0, T; L2(�)d) to the same functionu.

2. The limit of any such subsequence is a solution of(2).
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3. Consequently, whend = 2, the whole sequencesukh , . . . , w̃kh converge

(in the above sense) to the unique solution of(2).

4. Finally, if d = 2 andk andh satisfy

kS(h)2 → 0, kS1(h)2 → 0, (16)

we also have strong convergence of the whole sequences in the space

L2(0, T; H1
0 (�)d).

The proof of this result is given in [2]. Notice that (15) can be viewed as a

stability condition. It means in practice that, for any smallh, k cannot be too

large.

Remark 1. From the proof of this result we see that, in order to get stability

with restrictions as weak as possible, it seems preferable to takeθ = 1, which

is equivalent to leave the whole nonlinear term in(BP). On the other hand,

as expectable, we see that the choice ofμ has no influence on (15). A more

detailed analysis shows that the best parameters conserving stability and low

computational cost are those satisfying

2

17
< a <

2

5
;

k

h2
0

<
17

29ν
if d = 2 ;

k

h2
0

<
17

3 ∙ 28ν
if d = 3 (17)

(see [9]), whereh0 = min1≤i ≤d hi . A remarkable fact is that, for smallν (the

most interesting situation from the realistic viewpoint), the stability requirements

(17) become weak.

4 The numerical solution in practice

After time discretization, we must solve independent stationary problems of two

kinds:

• Burgers-like problems(BP) that can be linear or not, depending on the

definition ofu∗.

• Generalized (linear) Stokes problems(SP).
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We are now going to indicate the way these problems are solved in practice.

The main idea is to reduce the task to the solution of a family of Poisson problems.

Then, as already said, we will apply SDI techniques. As a result, we will only

find (many) independent 1D differential problems.

4.1 The numerical solution of Burgers problems

The goal is to solve numerically a system of the kind





αu − μ11u + 2θ(u∗ ∙ ∇)(σu + (1 − σ)v)

+θ(divu∗)((1 − σ)v + σu) = F in �,

u = 0 on0,

(18)

where

u = um+a, v = um,

μ1 = νaσ , α = 1/k,

F = F(v) = 2μf m+a + νa(1 − σ)1v + αv − ∇ pm.

Whenu∗ = v, we find a linear elliptic system. Contrarily, whenu∗ = u, (18) is

nonlinear. In both cases, (18) is solved applying an iterative fixed point algorithm

leading to standard Poisson equations completed with Dirichlet conditions.

To this end, let us rewrite (18) in the form
{

αu − μ11u = G(u, v) in �,

u = 0 on0,
(19)

with

G(u, v) = F − 2θ(u∗ ∙ ∇)(σu + (1 − σ)v) − θ(divu∗)((1 − σ)v + σu).

We first takeu0 = v (in practice, the velocity field we know from the previous

time step). Then, for anyn ≥ 0, we compute the solutionun+1 to the linear

system {
αun+1 − μ11un+1= G(un, v) in �,

un+1= 0 on0
(20)

and we iterate until the desired precision is reached.
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Observe that (20) is a set ofd independent scalar Poisson-Dirichlet problems,

for which the unknowns areui for i = 1, . . . , d. Consequently, they can be

solved in parallel. To each of these problems, SDI techniques will be applied

(see subsection 4.3). Thus, we see that at least conceptually (18) reduces to a

family of 1D differential problems, many of them independent, all them leading

to similar numerical difficulties.

When (18) is nonlinear and the considered Reynolds number is large, the

previous fixed point argument does not suffice. In that case, more sophisti-

cated methods are required based for instance on least square reformulations and

Newton-like or conjugate gradient algorithms (see [14] for a complete analysis).

However, for the low or moderate Reynolds numbers considered in this paper,

it is sufficient to argue as before. In fact, the numerical experiments show that

good convergence is attained after very few iterates (see [8] for more details).

4.2 The solution of the generalized Stokes problems

Now, we deal with the linear problem





αu − μ21u + ∇ p∗ = F in �,

∇ ∙ u = 0 in �,

u = 0 on0,∫

�

p∗ dx = 0,

(21)

where

u = um+b,

μ2 = bν(1 − σ), α = 1/k,

F = 2(1 − μ)f m+b + bνσ1um − 2(1 − θ)(um ∙ ∇)um

= −(1 − θ)(divum)um + αum.

This generalized Stokes problem has been solved using a conjugate gradient

algorithm adapted from the methods in [7]. Its complete description has been

given in [9].

This procedure reduces (again) the task to the solution of Poisson-Dirichlet

problems of the kind (22) (see below). In practice, in order to improve its
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behavior, we have to incorporate preconditioners. For more details, see [7]

and [8].

Remark 2. At each time step, when we solve(SP), we get in particular a

numerical approximation to the pressurep(tm+1).

4.3 The solution to the Poisson-Dirichlet problems with SDI methods

We include here a brief description of the parallel method originally proposed

in [19] and later used and analyzed in [8] and [11] to solve the previous Poisson-

Dirichlet problems.

Thus, let us consider the system
{

Lu = −1u + αu = f (x) in �,

u = h(x) on0,
(22)

where f andh are given. Let us writeL in the formL = L1 + ∙ ∙ ∙ + Ld , where

Ln = −
∂2

∂x2
n

+
α

d
I for 1 ≤ n ≤ d.

We start with an arbitraryU0 satisfying

U0 = h(x) on0,

Then, for anym ≥ 0, Um+1 is found fromUm as follows. First, we compute

Um+1,1, . . . , Um+1,d by solving in parallel the “one-dimensional” problems

(I + τ Ln)Um+1,n = (I − τ
∑

j 6=n

L j )U
m + τ f, (23)

completed with appropriate boundary conditions deduced from (22). Secondly,

we set

Um+1 =
ω

d

N∑

n=1

Um+1,n + (1 − ω)Um. (24)

Here,τ andω (that can depend onm) are parameters that must be determined

in order to improve convergence properties. For instance, whend = 2, the

iterative method (23)–(24) leads to the following problems:
(

I + τ

(
α

2
I −

∂2

∂x2
1

))
Um+1,1 =

(
I − τ

(
α

2
I −

∂2

∂x2
2

))
Um + τ f, (25)
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(
I + τ

(
α

2
I −

∂2

∂x2
2

))
Um+1,2 =

(
I − τ

(
α

2
I −

∂2

∂x2
1

))
Um + τ f, (26)

completed with Dirichlet (two-point) boundary conditions.

We see that, for each fixedx2 , the unknown function

Um+1,1(∙, x2)

solves in (25) an ordinary differential equation (in (25),x2 is a parameter). In

practice, it seems reasonable to fix a finite set ofx2 values and, then, solve

numerically the corresponding problems (25). In this way, we will obtain ap-

proximations to the values of the unknownUm+1,1 in a finite set of grid points

(x`
1, x j

2).

Of course, similar things can be said for (26). Since both unknownsUm+1,1

andUm+1,2 have to be used in (23) for the computation ofUm+1, it is desirable

to use the same coordinatesx`
1 andx j

2 in (25) and (26). Accordingly, we are led

to use rectangular grids.

It is important to emphasize that the level of difficulty is not increased in the

cased = 3 since, at the end, the task is reduced to the numerical solution of

(many) one-dimensional problems like (25) and (26).

Several slight generalizations of (23)–(24) and a convergence analysis have

been given in [11].

5 The behavior of the SDI method

We are now going to illustrate the behavior of the SDI method when it is applied

to the following test problems:

• The two-dimensional problem (22) in� = (0, 1) × (0, 1) with α = 0,

β = 1 and f ≡ 2. The exact solution is

u = sinh(πx1) sin(πx2) + x1(1 − x1).

• A similar three-dimensional problem in� = (0, 1)× (0, 1)× (0, 1), with

α = 0, β = 1 and f ≡ 4. Now, the exact solution is

u = sinh(πx1) sin(πx2)+sinh(πx1) sin(πx3)+x1(1−x1)+x3(1−x3) .
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Of course, in both cases the imposed boundary conditions are those fitted by

u.

The previous algorithm has been implemented in a SGI Origin 2000 computer

with 8 processors, using the parallel computing model of OpenMP. In order to

measure the performance of the parallel algorithm, let us introduce two param-

eters: thespeed-upSp, defined by

Sp =
Resolution time with 1processor

Resolution time withp processors
,

and theefficiency η = Sp/p. We have obtained results for different meshes

and for 2, 4, 6 and 8 processors. In Fig. 1–4, the associated speed-up’s and

efficiencies are shown.

Figure 1 – The speed-up (2D test).

The observed behavior is very similar in dimensions 2 and 3. For coarse

grids, parallelization does not improve the speed-up. In fact, in the case of a

65×65 mesh, the results when using 8 processors are worse than those provided

by a sequential method. This can be justified because, in this case, the cost of

initializing the processors is, probably, greater than the benefit (the computational

work of each processor is too small). On the contrary, when the number of nodes
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Figure 2 – The efficiency (2D test).

Figure 3 – The speed-up (3D test).

is high, the speed-up and the efficiency increase, and we obtain an efficiency

of 0.6 for 8 processors, that we think reasonable. The results are analogous for

other tests in non rectangular domains. For more details, see [8].
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Figure 4 – The efficiency (3D test).

6 Two-dimensional numerical experiments

We are now going to present some numerical results concerning the Navier-

Stokes problem (1). We begin with the so called2D no-flow test. This is related

to the motion of a viscous 2D fluid under the action of gravitational forces of

the formf = (0, −1). The considered domain� and the pressure isolines are

displayed in Fig. 5.

0 0.5 1

0

0.5

1

Figure 5 – The isobars for the 2D no flow test.

The spatial approximation has been determined by a regular mesh of step
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h = 0.05. The time step has beenk = 0.01. The following parameters were

chosen:σ = 0.51, θ = 0.5 anda = 0.5. We have started the computations

from zero velocity field and pressure at timet = 0.

The computed isobars, in accordance with the theoretical prediction, are hori-

zontal straight lines. The exact error for the pressure (in normL∞) is less than

3.4 × 10−7. TheL∞ norm of the computed velocity is less than 3.28× 10−11.

We consider now a squared cavity of unit side filled by a fluid. We assume

that the upper wall slips with constant velocity and we try to determine which is

the effect of this on the fluid (see [13]).

The results we obtain for various different parametersθ at timeT = 10 have

been presented in Fig. 6 and 7. This test has been performed for a Reynolds

numberRe = 1000, with spatial mesh sizeh = 0.01 and time approximation

stepk = 0.01. We have takena = 0.5 andσ = 0.51.

It can be observed that, asθ increases, the occurrence of spurious pressures

becomes more important. A detailed analysis of the reasons that lead to this

phenomenon has been presented in [8] and [10]. There, a discrete filtering

operator that eliminates these undesirable fluctuations has been introduced.

The numerical results corresponding to the particular caseθ = 1 without and

with filtering have been displayed in Fig. 7(a) and Fig. 7(b), respectively.

In order to make a comparison with the results furnished by Ghia [13], Botella

and Peyret [4] and Griebel [20], we have fixed a regular spatial approximation

with 129 points in each direction. We have taken againk = 0.01, Re= 1000

and a final timeT = 30. The computed streamlines and isobars are presented in

Fig. 8.

Some computed values of the velocity field and the pressure, together with the

deviations of these results from those in [13], [4] and [20] are also given in [9].

We can observe that the proposed algorithm leads to numerical solutions whose

behavior is correct.

In a similar way, we have displayed in Fig. 9 the streamlines and isobars

corresponding computed for this test forRe = 4000 at timeT = 50, using a

spatial mesh sizeh = 0.01 and a time approximation stepk = 0.005. Of course,

in this case we have had to take a smallerk in order to ensure numerical stability

of the Burgers problems.

Comp. Appl. Math., Vol. 24, N. 3, 2005



“main” — 2006/3/9 — 16:43 — page 434 — #18

434 PARALLELIZATION AND NAVIER-STOKES EQUATIONS

x
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(a) θ = 0
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y

(b) θ = 0.25

x

y

(c) θ = 0.5

x

y

(d) θ = 0.75

Figure 6 – The isobars for the 2D cavity test withRe= 1000,T = 10.
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(a) Without pressure filtering
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(b) With pressure filtering

Figure 7 – The 2D cavity test withRe= 1000,T = 10 andθ = 1.
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(a) The streamlines.
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(b) The isobars.

Figure 8 – The 2D cavity test withRe= 1000.
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(a) The streamlines.
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(b) The isobars.

Figure 9 – The 2D cavity test withRe= 4000,T = 50,h = 0.01 andk = 0.005.

7 Three-dimensional numerical experiments

We have also considered the no-flow and the cavity tests for a 3D fluid.

For the no-flow test, the results obtained at timeT = 3 for h = 0.05 and

k = 0.01 are presented in Fig. 10. We have used here the following parameter

values: θ = 0.5, σ = 0.51 anda = 0.5. Again, the algorithm has started

from a vanishing velocity field and a vanishing pressure. We have displayed the

surfacesP = const. noticing that the exact error, in normL∞, is less than 10−5.

For the 3D cavity test, we have compared our results to those furnished by

[16]. For instance, the results obtained for Re= 1000 have been presented in

Fig. 11–12, respectively. Good agreement is found.
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Figure 10 – The 3D no-flow test. Numerical results withk = 0.01 andh = 0.05.

(a) z = 0.5 (b) y = 0.5 (c) x = 0.5

Figure 11 – The isobars for the 3D cavity test with Re= 1000 andT = 10.

8 Final comments

The proposed parallel algorithm leads to satisfactory numerical results for both

2D and 3D Navier-Stokes fluids with small or moderate Reynolds numbers. The

theoretical results have been confirmed by a set of numerical experiments.

Although we have only reported here Reynolds numbers up to 4000 in 2D tests

and up to 1000 in 3D tests, other experiments reveal that, with an appropriate

choice of the parameters, we can obtain realistic results for larger Re.

The algorithm we have used is very flexible can be easily adapted to many

particular flows. Another positive fact is the incorporation of SDI methods

for the solution of Poisson problems, which can be combined with multigrid
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(a) Vx at x = 0.5.
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Figure 12 – The velocity profiles for the 3D cavity test with Re= 1000 andT = 10 at

y = 0.5.

techniques in view of their smoother properties (see [12]).

Let us finally mention that other boundary conditions can be considered. In-

deed, SDI methods can be adapted to the numerical solution of Poisson equations

with Neumann and Robin boundary conditions (see [8] and [3]).
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