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Abstract. In this paper, we will be mainly concerned with a parallel algorithm (in time and
space) which is used to solve the incompressible Navier-Stokes problem. This relies on two main
ideas: (a) a splitting of the main differential operator which permits to consider independently the
most important difficulties (nonlinearity and incompressibility) and (b) the approximation of the
resulting stationary problems by a family of second-order one-dimensional linear systems. The
same strategy can be applied to two-dimensional and three-dimensional problems and involves the
same level of difficulty. It can be also useful for the solution of other more complicate systems like
Boussinesq or turbulence models. The behavior of the method is illustrated with some numerical

experiments.
Mathematical subject classification: 65M06, 35A35, 68W10.
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1 Introduction

We will consider here a numerical method for solving the incompressible, time-
dependent, Navier-Stokes equations. These equations can be used to model the
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418 PARALLELIZATION AND NAVIER-STOKES EQUATIONS

behavior of a homogeneous, incompressible, viscous newtonian fluid. When we
impose Dirichlet conditions on the velocity field, the problem reads

au

— —VvAU+ (U-VYU+Vp=FfXt) in Q=2x(0,T),

ot

V.u=0 in  Qx@©T), (1)
u(x,t) =0 on 9Q x (0, T),

u(x, 0) = up(x) in Q.

Here,Q c RY is a bounded regular domaid & 2 or 3),u = u(x, t) is the
velocity field, p = p(x,t) is the pressurey > 0 is the kinematic viscosity (a
positive constant) anfl = f(x, t) is the density function of a field of external
forces. For simplicity, we have assumed in (1) that the fluid has unit mass density.

Concerning the solution to (1), it is well known that we can only expect to get
numerical approximations. However, it is also well understood nowadays that
this is a very difficult task.

A good strategy seems to be the useaifallel computers Of course, in order
to optimize their efficiency, one has to design appropriate algorithms (in general
terms, the next generation of processors is expected to multiply the speed of
computation by afactor 10; atthe same time, new forthcoming parallel algorithms
are expected to produce an increase of a factor 100, see [22]). However, up to
now, parallelization has been performed almost always at the lowest level, when
the task has been reduced to the solution of finite-dimensional linear systems
with probably many unknowns.

The goal of this work is to propose a different method which relies on paral-
lelization at the highest possible level and tries to reduce as much as possible
the computer time by using a large number of processors. It will be seen that
this method leads to difficulties essentially of the same kind in the 2D and 3D
settings. The seminal ideas for this approach can be found in [19].

In this paper, we will only consider low or moderate Reynolds numbers (re-
spectively up to 4000 and 1000 in 2D and 3D problems). Recall thatthe Reynolds
number of (1) is given byRe= UL /v, whereU andL are characteristic val-
ues of the velocity field modulus and the length, respectively. For higer
we would need more subtle arguments and methods. The design of appropriate
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techniques, similar to those in this paper, for the numerical solution of large
Reynolds number problems (1) will be the subject of future work.

As usual, the approximation of (1) is performed in two steps. We firstdiscretize
in the time variable and, then, we solve numerically the resulting stationary
problems by introducing a spatial approximation.

At both steps, we can use a plenty of methods. Among all them, let us mention
viscosity splitting methodand in particulag-scheme fractional schemfes the
approximation in time anfinite elementndfinite difference method®r the
approximation in space. A detailed analysis of the behavior of these and many
other methods can be found in [15].

Our interest has focused on the design and analysis of numerical schemes
relying on two main ideas: (@) to split or separate in parallel the most impor-
tant difficulties (nonlinearity and incompressibility) and (b) to approximate the
resulting stationary problems by a (large) family of second-order, completely
independent, one-dimensional linear systems.

At the 1D level, it will be then easy an adequate to apply finite difference
techniques to produce good approximations. In this way, the solution strategy
will make possible a very high level or parallelization.

The research described in this paper is a small part of a much larger project
concerning parallelization and nonlinear partial differential systems. Up to now,
this has led to some publications and PhD Theses. See for instance [1]-[3],
[5], [6], [8]-[12]. However, the numerical techniques we present below can be
useful for solving many different problems: linear and semilinear elliptic and
parabolic systems with nonlinear boundary conditions, Boussinesq systems, one-
equation and two-equation turbulence models, fluid-solid interaction models,
fully nonlinear equations of the Monge-Ampere kind, etc.

2 The algorithm
Before recalling the formulation of the algorithm, let us introduce some notation:

* J(Q) = {¢p € CgO(Q)d :V.p=0inQ}; H (resp.V) is the closure
of J(Q) in the spaceL?(2)? (resp.H()?). Thus,H (resp.V) is a
Hilbert space for the scalar productlof(£)¢ (resp.Hol(Q)d), which will
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be denoted by, -) (resp.(-, -)). The associated norm will be denoted
by |- | (resp.|| - II).

» V'isthe dual space &f ; (-, -) denotes the duality pairing betwe¥hand
V.

» We also introduce the trilinear fornhg- , -, -) andB(- ,+, ), with
b(u, v, w) = /;2 ui Dijvj wjdx, b, v, w) = % (b(u, v, w) — b(u, w, v))
foranyu, v, w € HY(Q)9 (here, the usual summation convention is used).
The following properties o¥ andH are well known:
V={ve H}!:V.v=0inQ},
H={vel?®):Vv-v=0inQ, v-n=0o0nT},

V — H < V', where the embeddings are dense and compact.
We can now give arigorous formulation of the unsteady Navier-Stokes problem
inQ x (0, T):
uel?0,T;V)NL®®O,T; H),

ou
(— @, V) +vu(t), v) +bu), u),v) = {f(),v)
ot (2)

a.e.in(0, T), VveV,

u@ = ug.

In (2),ug € H andf € L2(0, T; L2(Q)%). Itis well known that (2) possesses
at least one solution which is furthermore unique ¥ 2. If uis a solution, then
u solves, together with some scalar distributiprthe Navier-Stokes equations
(1) (for instance, see [18]). One also has

u=0 on a2 x(0,T)

anduli—g = Up in an appropriate sense.
Notice that

b(u,v,w) =bu,v,w), VueV, Vv,we HQ)".
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Also, b(u, v, v) =0 forallv e Hol(Q)d (even when diw # 0). Consequently,
the variational evolution equation in (2) can also be written in ternfg af: , -)
and this gives the following equivalent formulation:

uel?0,T;V)NL®O,T; H),

au N
( ﬁ(t), V) +v(u(), v) + bu(t), ut), v) = (f(t), v),
3)
a.e.in(0, T), VYveV,

u0) = ug.

We are now going to indicate how to approximate in time. Let us divide the
interval[0, T]in M subintervals of lengtk (k = T/M) and let us assume that
the parameters € (0, 1], 6, u € [0, 1] anda, b > 0 are given.

We first put

u’ = up. (4)

Then, for givenm > 0 andu™ e H}()¢ (an approximation ofi at time
tm = MK), we computai™?2, u™P and theru™? as follows. We first solve in
parallel the elliptic systems

PROBLEM (BP) (Burgers)
U™ e Hg(Q)4,

1

_(um+a _ um’ W) + U((O'Um+a + (1 — O')Um’ W))

| ax (5)
20 . 2

+ —bu*, U™, w) = —(
a a

f™2 w), vwe HH} Q)Y

and

PROBLEM (SP) (Stokes)

um-|-b c V,

1

— U™ — U™ V) 4 (U™ + (1 — o)u™P, v)

bk ©

21— 2(1-90) .

(™0 v) bw™ u™v), VveV.
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422 PARALLELIZATION AND NAVIER-STOKES EQUATIONS

Then, we set
U™t = Zuma 4 gmtby, 7
2( ) (7)

In (5) and (6)f ™2y f™*P are appropriate approximationsfofFor instance,
we can make the following choice:

: (m+j)Hk
f™(x) = —/ f(x,t)dt, j=a,h.
Jk mk
In (5), several different definitions af* andu*™ are possible. Thus, it seems
natural to put
U** — O[Um+a + (1_ O[)Um

for somex. Actually, the choice ofi** is crucial when one tries to establish “a
priori” estimates of the numerical solutions. On the other hand, the partictlar
we use determines the degree of linearity we conserve in (5).

Using more or less standard arguments, we can deduce existence and unique-
ness results for (5) and (6), at least whean not too small (see for instance [17]
and [18]).

In the previous works [5] and [6], we have presented theoretical and numerical
results obtained for some parallel schemes of the kind (4)—(7). There, paral-
lelization was performed only at the time approximation level and the stationary
problems(BP) and (SP) were solved with finite element techniques. In this
work, we are going to extend the parallelization procedure to all the variables.

To this end, we will apphgimultaneous directions implidi§DI) techniques to
the previous stationary problems. Thus, let us denoM/bg finite dimensional
Hilbert space determined by a second-order finite difference approximation of
Hol(Q)OI (his a parameter that allows to identify the mesh; of course, we pass from
the finite-dimensional to the infinite-dimensional problems by letting>- 0).

Let Vi, € W, be the subspace formed by the functiond/Af) with vanishing
discrete divergencésee [21] for several possibl&}, andV;, and the associated
definitions of the discrete divergence).

Then, the spatial approximation of (4)—(7) is the following:

First,u is the orthogonal projection ak on W, for the L2 scalar product, i.e.

(U, vh) = (Ug, Vh), VVvh e Wh, UudeW,. (8)
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Then, for any givenm > 0 andu € W, we computeul™?, u™® and then
ut as follows. We first solve in parallel two independent problems:

1
— UM — U™ Wh) + v(ou™t? + (L — o)ul, Wh)n

ak
9
20 21
+ —bh(U:, U;*, Wh) = _(fm+a’ Wh), VYwh € W .
a a
1 m+b m m m+b
_k(uh — U, Vh) +v((ouy + (1 —o)u, ™, Vh)n
(10)
21— p) 2(1-0) .
= T(f””b, V) — Tb(uhm, ul, Vi), Whe V.
Then, we put
1
uptt = S+ up®). (11)

Again, we have several possibilities for the choiceipndu;*. For instance,

we can take
Uy =oupf® 4+ (1 —o)uy,

Ui = up oru = up?, etc.

The existence and uniqueness of a solutixﬂﬁb to (10) is an immediate
consequence of Lax—Milgram’s lemma. The existence of a solufof to (9)
is easily implied by Brouwer’s fixed point theorem (see for instance [18]).

In [6] and [8], we have deduced convergence and stability results for the com-
pletely discretized scheme (in time and space). In some particular situations, we

have also deduced error estimates, cf. [2] and [1].

3 Aconvergence result

We recall in this section a convergence-stability result for the previous numerical
method. In the sequel; denotes a generic positive constant only depending on
the data, T, v, ug andf and, possibly, the parametersd and .
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There exisbptimal quantitiesdy , S(h) andS;(h) such that
1
d_|Wh| < lIwnll < S(h)|wn], Ywh € Wh (12)

0

and
1Bh (Vh, Vi, W) | < S IVRIPIWRIL, Yk, Wh € Wh . (13)

More precisely, we hawe = 2¢ wherel is the smallest size @t in the directions
X1y ... Xd

d "2 3V2S(h) ifd=2
. A_2 _ | =
S(h) _2<i§_1: h ) and S (h) { 2. F2 S0y ifd— 3 (14)

(see [21]).
For each time stef and eacth > 0, we introduce the functions , vkn,
Wkh s Zkh » Clkh , ﬁkh andwkh s given as follows:

m+b

Ukh, Ukh» Wkhs Zkh - [0, T]1 — W4, are piecewise constant, with
Ukn(t) = U, vkn(t) = Up™2, win(t) = up™>,

[ Qkh, Dkh, Wkh = [0, T1— W, are continuous and piecewise linear, with

Okn(MK) = U, Ten(MK) = U2 | dp(mk) = U

Theorem 1. Assume that € (3, 1], a+b =2, uf* = ouf™®+ (1 - o)up*®
and, for instancey; = uf' in (9). There exist constant&, and K, only
depending o2, |ug|, || f Il 2¢0.T.1), v @ndo, such that, whenever

kSh)? < Ko, kS (h)? < Ky, (15)
we have:

1. There exist subsequencegy , ..., Wy that converge strongly in the
spaceL?(0, T; L2()%), weakly inL2(0, T; HZ(£2)%) and also weaklys
in L°°(0, T; L2(Q)Y) to the same function.

2. The limit of any such subsequence is a solutio(®pf
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3. Consequently, wheth = 2, the whole sequenceg, ..., Wy, converge
(in the above sense) to the unique solutioli)f

4. Finally, if d = 2 andk andh satisfy
kSth)? - 0, kS(h)?— 0, (16)

we also have strong convergence of the whole sequences in the space
L2(0, T; Hg ().

The proof of this result is given in [2]. Notice that (15) can be viewed as a
stability condition It means in practice that, for any smallk cannot be too
large.

Remark 1. From the proof of this result we see that, in order to get stability
with restrictions as weak as possible, it seems preferable ttake, which

is equivalent to leave the whole nonlinear term(BP). On the other hand,

as expectable, we see that the choice.dias no influence on (15). A more
detailed analysis shows that the best parameters conserving stability and low
computational cost are those satisfying

2 2 k 17 k 17
—<a<-; —<—ifd=2; — <
17 5 hcz) 2% hg 328

ifd=3  (17)

(see [9]), wherdng = min;<jq hj . A remarkable fact is that, for small (the
most interesting situation from the realistic viewpoint), the stability requirements
(17) become weak.

4 The numerical solution in practice

After time discretization, we must solve independent stationary problems of two
kinds:

 Burgers-like problemgBP) that can be linear or not, depending on the
definition ofu*.

» Generalized (linear) Stokes proble(&P).
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We are now going to indicate the way these problems are solved in practice.
The mainideaisto reduce the task to the solution of a family of Poisson problems.
Then, as already said, we will apply SDI techniques. As a result, we will only
find (many) independent 1D differential problems.

4.1 The numerical solution of Burgers problems

The goal is to solve humerically a system of the kind

oau — uiAu+ 20(u* - V)(ou + (1 —o)v)

+0(divu)((1—o)v+ou) =F in Q, (18)
u=20 onrl,
where
u = um? v=um
H1 = vao, a = 1/Kk,

F = Fv) =2uf™" +va(l—o)Av+av—Vp™

Whenu* = v, we find a linear elliptic system. Contrarily, whah= u, (18)is
nonlinear. In both cases, (18) is solved applying an iterative fixed point algorithm
leading to standard Poisson equations completed with Dirichlet conditions.

To this end, let us rewrite (18) in the form

au — u1Au=G(u,V) in€,

19
u=20 onTl, (19)

with
Gu,v) =F—-20Uu* - V)(ocu+ (1—0)v) —0(divu*)((1 — o)V + ou).

We first takeu® = v (in practice, the velocity field we know from the previous
time step). Then, for ang > 0, we compute the solution"* to the linear
system

ou™t — i AUM= G, v) inQ,

20
u"t1l=10 onl (20)

and we iterate until the desired precision is reached.
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Observe that (20) is a set dfindependent scalar Poisson-Dirichlet problems,
for which the unknowns arg; fori = 1,...,d. Consequently, they can be
solved in parallel. To each of these problems, SDI techniques will be applied
(see subsection 4.3). Thus, we see that at least conceptually (18) reduces to a
family of 1D differential problems, many of them independent, all them leading
to similar numerical difficulties.

When (18) is nonlinear and the considered Reynolds number is large, the
previous fixed point argument does not suffice. In that case, more sophisti-
cated methods are required based for instance on least square reformulations and
Newton-like or conjugate gradient algorithms (see [14] for a complete analysis).
However, for the low or moderate Reynolds numbers considered in this paper,
it is sufficient to argue as before. In fact, the numerical experiments show that
good convergence is attained after very few iterates (see [8] for more details).

4.2 The solution of the generalized Stokes problems

Now, we deal with the linear problem

au— uAu+Vp*=F inQ,

V.-u=0 in 2,
u=2~0 onTl, (21)
/p*dx:o,
Q
where
u — um+b’
ur = bv(l-o), a =1/Kk,

F = 21— wf™P 4+ bvoAu™ — 21 —6)(u™ - V)u™
= —(1-0)(divu™Hu™ + au™.

This generalized Stokes problem has been solved using a conjugate gradient
algorithm adapted from the methods in [7]. Its complete description has been
givenin [9].

This procedure reduces (again) the task to the solution of Poisson-Dirichlet
problems of the kind (22) (see below). In practice, in order to improve its
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behavior, we have to incorporate preconditioners. For more details, see [7]
and [8].

Remark 2. At each time step, when we sol{8P), we get in particular a
numerical approximation to the pressyrém.1).

4.3 The solution to the Poisson-Dirichlet problems with SDI methods

We include here a brief description of the parallel method originally proposed
in [19] and later used and analyzed in [8] and [11] to solve the previous Poisson-
Dirichlet problems.
Thus, let us consider the system
Lu=—Au u= fx) in €,
+ o (X) (22)
u=h(x) onTl,
wheref andh are given. Let us writé inthe formL =L, +---+ Lqg, where

92 o
—— 4+ -1 forl<n<d.
8x§+d -~

Ln =
We start with an arbitrary) © satisfying
U%=nh(x) onT,

Then, for anym > 0, U™ is found fromU™ as follows. First, we compute

umil . U™Ld by solving in parallel the “one-dimensional” problems
(I +7l U™ = (1 =7 Y Lpu™ +f, (23)
j#n

completed with appropriate boundary conditions deduced from (22). Secondly,
we set

N
uml = %ZU"‘“’” +1—wu™ (24)
n=1
Here,r andw (that can depend am) are parameters that must be determined

in order to improve convergence properties. For instance, when 2, the
iterative method (23)—(24) leads to the following problems:

o 92 o 92
| = — ) Ju™tl (| (21 = — ) )U™+ ¢f 25
( th(2 axf)) 12 X5 +rf (29)
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o 92 o 92
| | —— ) JU™2 (| —¢ (=] = — ) |U™+¢f 26
(e (5 e = (-2 (51 - 5g)Jumeer o

completed with Dirichlet (two-point) boundary conditions.
We see that, for each fixed , the unknown function

§] m+1,1(" X2)

solves in (25) an ordinary differential equation (in (2%),is a parameter). In
practice, it seems reasonable to fix a finite sekpfalues and, then, solve
numerically the corresponding problems (25). In this way, we will obtain ap-
proximations to the values of the unknowi™*1! in a finite set of grid points
x!,xd).

Of course, similar things can be said for (26). Since both unkndwish!
andU ™12 have to be used in (23) for the computationdf*1, it is desirable
to use the same coordinabefsandx% in (25) and (26). Accordingly, we are led
to use rectangular grids.

It is important to emphasize that the level of difficulty is not increased in the
cased = 3 since, at the end, the task is reduced to the numerical solution of
(many) one-dimensional problems like (25) and (26).

Several slight generalizations of (23)—(24) and a convergence analysis have
been given in [11].

5 The behavior of the SDI method

We are now going to illustrate the behavior of the SDI method when it is applied
to the following test problems:

» The two-dimensional problem (22) @ = (0,1) x (0, 1) with o = 0,
B =1landf = 2. The exact solution is

U = sinh(wXy) sin(TXs) + X1(1 — Xq).

» A similar three-dimensional problem fa = (0, 1) x (0, 1) x (0, 1), with
a=0,8=1andf = 4. Now, the exact solution is

U = sinh(r X1) Sin( X2) + sinh(r X1) SiN(T X3) + X1 (1 —X1) +X3(1—X3) .
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Of course, in both cases the imposed boundary conditions are those fitted by
u.

The previous algorithm has been implemented in a SGI Origin 2000 computer
with 8 processors, using the parallel computing model of OpenMP. In order to
measure the performance of the parallel algorithm, let us introduce two param-
eters: thespeed-upS,, defined by

Resolution time with Jrocessor

9
Resolution time withp processors

and theefficiency n = S,/p. We have obtained results for different meshes
and for 2, 4, 6 and 8 processors. In Fig. 1-4, the associated speed-up’s and
efficiencies are shown.

4 4
o 3 —
= —
<
[
1]
w21
| H_H
0 s
65x65 129x129 257x257 513x513 1025x1025 |Grids
02 processors 1,29 1,51 1,75 1,79 1,82
04 processors 1,38 2,18 2,81 2,89 3
E 6 processors 1,06 2,06 3,54 3,7 3,89
8 processors 1,7 3,79 4,17 4,74

Figure 1 — The speed-up (2D test).

The observed behavior is very similar in dimensions 2 and 3. For coarse
grids, parallelization does not improve the speed-up. In fact, in the case of a
65 x 65 mesh, the results when using 8 processors are worse than those provided
by a sequential method. This can be justified because, in this case, the cost of
initializing the processors is, probably, greater than the benefit (the computational
work of each processor is too small). On the contrary, when the number of nodes
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1,0
0,8 |
3 0,6 | ]
c
2
2
E 0,4
0,2
0,0
65x65 129x129 257x257 513x513 1025x1025
O2 processors 0,65 0,76 0,88 0,90 0,91
04 processors 0,35 0,55 0,70 0,72 0,75
06 processors 0,18 0,34 0,59 0,62 0,65
8 processors 0,21 0,47 0,52 0,59
Figure 2 — The efficiency (2D test).
5,00
4,00
Q. 3,00
=]
he]
7]
1]
& 2,00
1,00
0,00
17x17x17 33x33x33 65x65x65 129x129x129
02 processors 1,24 1,71 1,83 1,74
O4 processors 1,74 2,22 2,90 3,19
O 6 processors 1,89 2,59 3,48 4,01
8 processors 1,74 2,74 4,11 4,86

Figure 3 — The speed-up (3D test).

Grids

Grids

431

is high, the speed-up and the efficiency increase, and we obtain an efficiency
of 0.6 for 8 processors, that we think reasonable. The results are analogous for
other tests in non rectangular domains. For more details, see [8].
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1,0

0,8

Efificiency

0,2

0,4 -

0,0

17x17x17

33x33x33

65x65x65

129x129x129

02 processors
04 processors
O 6 processors

0,62
0,44
0,31

l 8 processors

0,22

0,85
0,56
0,43
0,34

0,92
0,73
0,58
0,51

0,87
0,80
0,67
0,61

Figure 4 — The efficiency (3D test).

6 Two-dimensional numerical experiments

Grids

We are now going to present some numerical results concerning the Navier-
Stokes problem (1). We begin with the so calgial no-flow test This is related

to the motion of a viscous 2D fluid under the action of gravitational forces of
the formf = (0, —1). The considered domai2 and the pressure isolines are

displayed in Fig. 5.

Figure 5 — The isobars for the 2D no flow test.

0.5

0.5

The spatial approximation has been determined by a regular mesh of step
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h = 0.05. The time step has beé&n= 0.01. The following parameters were
chosen:oc = 0.51,6 = 0.5 anda = 0.5. We have started the computations
from zero velocity field and pressure at time- 0.

The computed isobars, in accordance with the theoretical prediction, are hori-
zontal straight lines. The exact error for the pressure (in notthis less than
3.4 x 1077. TheL*> norm of the computed velocity is less tha28x 1011,

We consider now a squared cavity of unit side filled by a fluid. We assume
that the upper wall slips with constant velocity and we try to determine which is
the effect of this on the fluid (see [13]).

The results we obtain for various different parameteas timeT = 10 have
been presented in Fig. 6 and 7. This test has been performed for a Reynolds
numberRe = 1000, with spatial mesh size = 0.01 and time approximation
stepk = 0.01. We have takea = 0.5 ando = 0.51.

It can be observed that, &sincreases, the occurrence of spurious pressures
becomes more important. A detailed analysis of the reasons that lead to this
phenomenon has been presented in [8] and [10]. There, a discrete filtering
operator that eliminates these undesirable fluctuations has been introduced.

The numerical results corresponding to the particular 6asel without and
with filtering have been displayed in Fig. 7(a) and Fig. 7(b), respectively.

In order to make a comparison with the results furnished by Ghia [13], Botella
and Peyret [4] and Griebel [20], we have fixed a regular spatial approximation
with 129 points in each direction. We have taken adai 0.01, Re = 1000
and afinal timel = 30. The computed streamlines and isobars are presented in
Fig. 8.

Some computed values of the velocity field and the pressure, together with the
deviations of these results from those in [13], [4] and [20] are also given in [9].
We can observe that the proposed algorithm leads to numerical solutions whose
behavior is correct.

In a similar way, we have displayed in Fig. 9 the streamlines and isobars
corresponding computed for this test fiee = 4000 at timeT = 50, using a
spatial mesh sizie = 0.01 and a time approximation stkp= 0.005. Of course,
in this case we have had to take a smatler order to ensure numerical stability
of the Burgers problems.
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(c) 6 =05 (d) 6 = 0.75

Figure 6 — The isobars for the 2D cavity test wite = 1000,T = 10.

0.1 0.1

(a) Without pressure filtering (b) With pressure filtering

Figure 7 — The 2D cavity test witRe= 1000,T = 10 andd = 1.
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(a) The streamlines. (b) The isobars.

Figure 8 — The 2D cavity test witRe= 1000.

0.9
038
07
06
i 05
0.4
03
02

0.1

(a) The streamlines. (b) The isobars.

Figure 9 — The 2D cavity test witRe= 4000,T = 50,h = 0.01 andk = 0.005.

7 Three-dimensional numerical experiments

We have also considered the no-flow and the cavity tests for a 3D fluid.

For the no-flow test, the results obtained at tifne= 3 for h = 0.05 and
k = 0.01 are presented in Fig. 10. We have used here the following parameter
values: 6 = 0.5, ¢ = 0.51 anda = 0.5. Again, the algorithm has started
from a vanishing velocity field and a vanishing pressure. We have displayed the
surfacesP = const. noticing that the exact error, in notrf?, is less than 1¢P.

For the 3D cavity test, we have compared our results to those furnished by
[16]. For instance, the results obtained for Rel000 have been presented in
Fig. 11-12, respectively. Good agreement is found.
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y

(

(@z=05 (b) y=05 (c) x=0.5

Figure 11 — The isobars for the 3D cavity test with-Re.000 andl = 10.

8 Final comments

The proposed parallel algorithm leads to satisfactory numerical results for both
2D and 3D Navier-Stokes fluids with small or moderate Reynolds numbers. The
theoretical results have been confirmed by a set of numerical experiments.

Although we have only reported here Reynolds numbers up to 4000 in 2D tests
and up to 1000 in 3D tests, other experiments reveal that, with an appropriate
choice of the parameters, we can obtain realistic results for larger Re.

The algorithm we have used is very flexible can be easily adapted to many
particular flows. Another positive fact is the incorporation of SDI methods
for the solution of Poisson problems, which can be combined with multigrid
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Figure 12 — The velocity profiles for the 3D cavity test with Rel000 andT = 10 at
y = 0.5.

techniques in view of their smoother properties (see [12]).

Let us finally mention that other boundary conditions can be considered. In-
deed, SDI methods can be adapted to the numerical solution of Poisson equations
with Neumann and Robin boundary conditions (see [8] and [3]).
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