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Abstract. According to biological strategy for pest control, we investigate the dynamic be-

havior of a pest management SEI model with nonlinear incidence concerning impulsive strategy-

periodic releasing infected pests at fixed times. We prove that all solutions of the system are uni-

formly ultimately bounded and there exists a globally asymptotically attractive pest-eradication

periodic solution when the impulsive period satisfies A1. When the impulsive period satisfies A2,

the stability of pest-eradication periodic solution is lost, the system is uniformly permanent. Thus,

we can use the stability of the positive periodic solution and its period to control insect pests at

acceptably low levels.
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1 Introduction

The health and socioeconomic risks posed by severe and sudden epidemics of

infectious disease like SARS, or the assessed impact of a potential influenza pan-

demic, or a measles pre and post-eradication outbreaks, are compelling scien-

tists to design and implement more effective control and preparedness programs.

Pulse vaccination is an effective method to use in attempts to control infectious

diseases. The pulse vaccination strategy (PVS) consists of periodical repetitions
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of impulsive vaccinations in a population in contrast to the traditional constant

vaccination. At each vaccination time, a constant fraction of susceptible popu-

lation is vaccinated. This vaccination is called impulsive when all the vaccine

doses are applied in a very short span of time. PVS allows to reach the eradication

of a disease with some practical advantages, as discussed in [1, 18, 19].

Over the last fifty years, epidemic models have been received a great attention

in mathematical ecology. Various types of SIR epidemic model were studied by

Anderson and May [11-13] in the context of microbic infections on the dynamics

of animal populations. SIR epidemic models assume that the disease incubation

period is negligible so that each susceptible individual becomes infectious and

later recovers with a permanently or temporarily acquired immunity. Unlike SIR

models, SEI models suppose that a susceptible individual first goes through a

latent (exposed) period before becoming infectious.

For IPM strategy, we combine the biological control and chemical control. The

infectious pests are released periodically every time period τ , meanwhile peri-

odic spraying the microbial pesticide for susceptible pests. The infected pests

have the function similar to the microbial pesticide and can infect the healthy

pests, further weaken or disable their prey function till death. Based on biolog-

ical control strategy in pest management, we construct a pest-epidemic model

with impulsive control. An alternative to chemical control is biological control,

which is generally, man’s use of specially chosen living organism, referred as

the biocontrol agent, to control another. Biological control agents can be preda-

tor, pathogens or parasites of the organism to be controlled that either kills the

harmful organism or interferes with its biological processes [2-3, 5, 7-8, 10]. For

example, Asian Tiger Mosquito can transmit viruses which cause dengue fever,

Ross River fever or Japanese encephalitis. To avoid this and to control the spread

of mosquito swarms, we could spray with Bti, which is a variety of the bacterium

Bacillus thuringiensis (Bt). Also, Insects, like humans and other animals, can

be infected by disease-causing organisms such as bacteria, viruses and fungi.

Under appropriate conditions, such as high humidity or high pest abundance,

these naturally occurring organisms may multiply to cause disease outbreaks or

epizootics that can decimate an insect population. This kind of method obtains

its target in two ways. In the first way, a small pathogen is introduced in a pest
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population with expectation that it will generate an epidemic which will persist

at an endemic level. For the second one, an insect pathogen is used like biopesti-

cides. In this case, it is applied whenever a pest population is at an economically

significant level and there is no expectation that the pathogen persists in the en-

vironment for a long time. An advantage of using insect pathogens is that they

are safe to men and are usually safe to beneficial insects. Conversely, biological

control features effective control on pests with an improved ecosystem, lower

cost and without any pollution.

Impulsive differential equations found in almost of the dynamics of applied

science and have been studied in many investigations [6, 9, 12, 14, 20]. But

to our knowledge there are only a few paper and books on mathematical model

of the dynamics of microbial diseases in pest control. Anderson et al. pointed

out that standard incidence is more suitable than bilinear incidence [13]. Levin

et al. have adopted a incidence form like βSq I p or βSq I p

N which depends on

different infective diseases and environment [16, 17]. In the following, we shall

examine the use of pathogens in a more flexible manner. The main feature of

the present paper is to study the dynamic behavior of the model we construct

and obtain some conditions under which the pest becomes eradicable or not.

The pest-epidemic model with impulses, i.e., periodic releasing infected pests

at fixed moments is described as follows:





Ṡ(t) = r S(t)
(

1 − S(t)
K

)
− βS(t)I q(t),

Ė(t) = βS(t)I q(t)− (α + μ)E(t),

İ (t) = αE(t)− μI (t),






t 6= nτ, n ∈ Z+,

1S(t) = 0,

1E(t) = 0,

1I (t) = p.






t = nτ, n ∈ Z+,

(1.1)

where S(t), E(t) and I (t) are densities of susceptible, exposed, infectious pests

at time t , respectively. S(t) is in the absence of I (t) grows logistically with

carrying capacity K , and with an intrinsic birth rate constant r , βS(t)I q(t) is the

contact rate, α is the inverse of latent period. μ is the death rate of the exposed
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and infectious pests, and r, K , β, μ, p, q are positive constants. p is the release

amount of the infected pests at t = nτ, n ∈ Z+, Z+ = {0, 1, 2, ∙ ∙ ∙ , }, τ is

the period of the impulsive effect. 1S(t) = S(t+) − S(t),1E(t) = E(t+) −

E(t),1I (t) = I (t+) − I (t), f (t+) = limx→t+ f (x). That is, we can use

releasing infected pests to eradicate pests or keep the pest population below the

damage level.

2 Notations and definitions

In this section, we agree on some notations which will prove useful and give

some definitions.

Let R+ = [0,∞), R3
+ = {x ∈ R3 : x > 0},� = int R3

+, Z+ be the set of all

nonnegative integers. Denote f = ( f1, f2, f3), the map defined by the right hand

side of the first two equations of system (1.1). Let V0 = {V : R+ × R3
+ 7→ R+},

continuous on (nτ, (n + 1)τ ] × R3
+, and lim(t,y)→(nτ+,x) V (t, y) = V (nτ+, x)

exists.

Definition 2.1. V ∈ V0, then for V (t, x) ∈ (nτ, (n + 1)τ ] × R3
+, the upper

right derivative of V (t, x) with respect to the impulsive differential system (1.1)

is defined as

D+V (t, x) = lim
h→0

sup
1

h

[
V (t + h, x + h f (t, x))− V (t, x)

]
.

The solution of system (1.1) is a piecewise continuous function x : R+ 7→ R3
+,

x(t) is continuous on (nτ, (n+1)τ ], n ∈ Z+ and x(nτ+) = limt→nτ+ x(t) exists.

Obviously the smoothness properties of f guarantee the global existence and

uniqueness of solution of system (1.1), for details see [4, 15].

We will use a basic comparison result from impulsive differential equations.

For convenience, we state it in our notations.

Suppose g : R+ × R+ 7→ R satisfies:

(H) g is continuous in (nτ, (n + 1)τ ] × R+ and for x ∈ R+, n ∈ Z+,

lim(t,y)→(nτ+,x) g(t, y) = g(nτ+, x) exists.
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Lemma 2.1. Let V ∈ V0, assume that





D+V (t, x) ≤ g(t, V (t, x)), t 6= nτ,

V (t, x(t+)) ≤ ψn(V (t, x(t))), t = nτ,
(2.1)

where g : R+ × R+ 7→ R satisfies (H) and ψn : R+ 7→ R+ is nondecreasing.

Let r(t) be the maximal solution of the scalar impulsive differential equation





u̇(t) = g(t, u(t)), t 6= nτ,

u(t+) = ψn(u(t)), t = nτ,

u(0+) = u0,

(2.2)

existing on [0,∞). Then V (0+, x0) ≤ u0 implies that V (t, x(t)) ≤ r(t), t ≥ 0,

where x(t) is any solution of (1.1), similar result can be obtained when all the

directions of the inequalities in the lemma are reversed and ψn is nonincreasing.

Note that if we have some smoothness conditions of g to guarantee the existence

and uniqueness of solutions for (2.2), then r(t) is exactly the unique solution

of (2.2).

Lemma 2.2. Suppose that x(t) is a solution of (1.1) with x(0+) ≥ 0, then

x(t) ≥ 0 for t ≥ 0, and further if x(0+) > 0, then x(t) > 0 for all t > 0.

For convenience, we give some basic properties of the following system:





u̇(t) = a − bu(t), t 6= nτ,

1u(t) = p, t = nτ,

u(0+) = u0 ≥ 0.

(2.3)

We have the following lemma:

Lemma 2.3. System (2.3) has a unique positive periodic solution ũ(t) with

period τ and for every solution u(t) of (2.3) such that |u(t) − ũ(t)| → 0 as

t → ∞, where

ũ(t) =
a

b
+

p exp(−b(t − nτ ))

1 − exp(−bτ)
, t ∈ (nτ, (n + 1)τ ], n ∈ Z+,

ũ(0+) =
a

b
+

p

1 − exp(−bτ)

and ũ(t) is globally asymptotically stable.

Comp. Appl. Math., Vol. 29, N. 1, 2010
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Proof. Clearly ũ(t) is a positive periodic solution of (2.3) with period τ when

a 6= 0. Integrating and solving the first equation of (2.3) between pulses, we get

u(t) =
a

b
+

(
u(nτ+)−

a

b

)
exp(−b(t − nτ)), t ∈ (nτ, (n + 1)τ ]. (2.4)

After each successive pulse, we can deduce the following stroboscopic map of

system (2.4)

u((n + 1)τ+) =
a

b
+

(
u(nτ+)−

a

b

)
exp(−bτ)+ p. (2.5)

Equation (2.5) has a unique fixed point u∗ = a
b + p

1−e−bτ , it corresponds to the

unique positive periodic solution ũ(t) of system (2.3), the initial value ũ(0+) =

u∗ = a
b + p

1−e−bτ . The fixed point u∗ of the stroboscopic map implies that there

is a corresponding cycle of period τ in u(t), that is ũ(t) = a
b + p exp(−b(t−nτ))

1−exp(−bτ) ,

t ∈ (nτ, (n + 1)τ ] using iterative technique on (2.5), we obtain

u(nτ+) =
(

p +
a

b
(1 − exp(−bτ))

) 1 − exp(−nbτ )

1 − exp(−bτ)
+ u(0+) exp(−nbτ),

thus, u(nτ+) → u∗ as n → ∞, so ũ(t) is globally asymptotically stable. And

thus, we have

u(t) = (u(0+)− ũ(0+)) exp(−bt)+ ũ(t).

Therefore, u(t) → ũ(t) as t → ∞, that is |u(t)− ũ(t)| → 0 as t → ∞.

If a = 0, the system (2.3) has a unique positive periodic solution ũ(t) =
p exp(−b(t−nτ ))

1−exp(−bτ) and with initial value ũ(0+) = p
1−exp(−bτ) and ũ(t) is globally

asymptotically stable. The proof is complete.

Therefore, system (1.1) has a pest-eradication periodic solution (0, 0, Ĩ (t)),

where Ĩ (t) = p exp(1−μ(t−nτ ))
1−exp(−μτ) .

3 Stability of the pest-eradication periodic solution

In this section, we study the stability of the pest-eradication periodic solution as

a solution of the full system (1.1). Firstly, we present the Floquet theory for the

linear τ -periodic impulsive equation





dx

dt
= A(t)x, t 6= τk, t ∈ R,

1x = Bk x, t = nτk, k ∈ Z+.

(3.1)

Comp. Appl. Math., Vol. 29, N. 1, 2010
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Then we introduce the following conditions:

(H1) A(∙) ∈ PC(R,Cn×n) and A(t + τ) = A(t) (t ∈ R),

(H2) Bk ∈ Cn×n, det(E + Bk) 6= 0, τk < τk+1 (k ∈ Z+),

(H3) There exists a h ∈ Z+, such that Bk+h = Bk, τk+h = τk + τ(k ∈ Z+).

Let 8(t) be a fundamental matrix of (3.1), then there exists a unique non-

singular matrix M ∈ Cn×n such that:

8(t + τ) = 8(t)M (t ∈ R). (3.2)

By equality (3.2) there corresponds to the fundamental matrix 8(t) the constant

matrix M which we call the monodromy matrix of (3.1) (corresponding to the

fundamental matrix of 8(t)). All monodromy matrices of (3.1) are similar and

have the same eigenvalues. The eigenvalues λ1, λ2, ∙ ∙ ∙ , λn of the monodromy

matrices are called the Floquet multipliers of (3.1).

Lemma 3.1. (Floquet theory). Let conditions (H1 − H3) hold. Then the linear

τ periodic impulsive equation (3.1) is

(1) stable if and only is all multipliers λ j ( j = 1, 2, ∙ ∙ ∙ , n) of equation (3.1)

satisfy the inequality |λ j | ≤ 1 and, moreover, to those λ j for which

|λ j | = 1 there correspond simple elementary divisors.

(2) asymptotically stable if and only if all multipliers λ j ( j = 1, 2, ∙ ∙ ∙ , n) of

equation (3.1) satisfy the inequality |λ j | < 1.

(3) unstable if |λ j | > 1 for some j = 1, 2, ∙ ∙ ∙ , n.

Lemma 3.2. There exists a positive constant M such that S(t) ≤ M; E(t) ≤

M; I (t) ≤ M, for each solution (S(t), E(t), I (t)) of system (1.1) with positive

initial values, where t is large enough.

Proof. Let

V (t) = S(t)+ E(t)+ I (t). (3.3)

Comp. Appl. Math., Vol. 29, N. 1, 2010



“main” — 2010/3/1 — 10:33 — page 8 — #8

8 PEST MANAGEMENT SEI MODEL WITH NONLINEAR INCIDENCE RATE

Then V (t) ∈ V0 and the upper right derivative of V (t) along a solution of (1.1)

is described as

D+V (t)
∣
∣
∣
(1.1)

+ μV (t) = (r + μ)S(t)−
r S2(t)

K
≤ L0, (3.4)

where L0 = K (r+μ)2

4r , when t = nτ , we obtain

V (nτ+) = V (nτ)+ p. (3.5)

According to Lemma 2.2, we have

V (t, x(t)) ≤ V (0+)exp(−μt)+
∫ t

0
L0exp(−μ(t − s))ds

+
∑

0<nτ<t

p exp
(∫ t

nτ
(−μ)ds

)

≤ V (0+)exp(−μt)+ L0
μ
(1 − exp(−μt))

+ pexp(−μ(t−τ ))
1−exp(μτ) + pexp(μτ)

exp(μτ)−1

→ L0
μ

+ pexp(μτ)
exp(μτ)−1 , t → ∞.

Therefore V (t) is ultimately bounded by a constant and there exists a constant

M > 0, such that S(t) ≤ M, E(t) ≤ M, I (t) ≤ M for each solution x(t) =

(S(t), E(t), I (t)) of (1.1) with all t large enough.

Theorem 3.1. The pest-eradication periodic solution (0, 0, Ĩ (t)) is globally

asymptotically stable provided

A1 : rτ <
pqβ(1 − exp(−qμτ))

qμ[1 − exp(−μτ)]q
.

Proof. Firstly, we prove the local stability of a τ -period solution (0, 0, Ĩ (t))

may be determined by considering the behavior of small-amplitude perturbations

(x(t), y(t), z(t)) of the solution.

Define

S(t) = x(t), E(t) = y(t), I (t) = z(t)+ Ĩ (t),

Comp. Appl. Math., Vol. 29, N. 1, 2010
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where x(t), y(t), z(t) are small perturbations, there may be written as





x(t)

y(t)

z(t)




 = 8(t)






x(0)

y(0)

z(0)




 ,

where 8(t) satisfy

d8(t)

dt
=






r − β Ĩ q(t) 0 0

β Ĩ q(t) −(μ+ α) 0

0 α −μ




8(t)

with 8(0) = I , where I is the identity matrix. The resetting impulsive condi-

tions of (1.1) becomes





x(nτ+)

y(nτ+)

z(nτ+)




 =






1 0 0

0 1 0

0 0 1











x(nτ)

y(nτ)

z(nτ)




 .

Hence, if absolute values of all eigenvalues of

M =






1 0 0

0 1 0

0 0 1




8(τ) = 8(τ),

are less than one, the τ -periodic solution is locally stable. By calculating,

we have

8(τ) =








exp
(∫ τ

0
(r − β Ĩ q(t))dt

)
0 0

∗ exp(−(α + μ)τ) 0

∗ ∗ exp(−μτ)







,

there is no need to calculate the exact form of (∗) as it is not required in the

analysis that follows. Then the eigenvalues of M denoted by λ1, λ2 and λ3 are

the following:

λ1 = exp
(∫ τ

0
(r − β Ĩ q(t))dt

)
,

λ2 = exp(−(α + μ)τ) < 1,

λ3 = exp(−μτ) < 1,

Comp. Appl. Math., Vol. 29, N. 1, 2010
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it follows that |λ1| < 1 if and only if condition A1 holds true. According to

Lemma 3.1, the pest-eradication solution (0, 0, Ĩ (t)) is locally asymptotically

stable.

In the following, we prove the global attractivity. Choose sufficiently small

ε > 0 such that

δ = exp
(∫ τ

0

(
r − β( Ĩ (t)− ε)q

)
dt

)
< 1. (3.6)

From the first equation of system (1.1), we obtain

Ṡ(t) ≤ r S(t)
(

1 −
S(t)

K

)
.

Consider the following impulsive differential equation:





u̇(t) = ru(t)
(

1 − u(t)
K

)
, t 6= nτ,

1u(t) = S(0), t = nτ,

we have S(t) ≤ u(t) and u(t) → K as t → ∞. Thus, there exists a ξ > 0, such

that S(t) ≤ K + ξ for t large enough. Without loss of generality, we assume

S(t) ≤ K + ξ for all t > 0. Noting that İ (t) ≥ −μI (t), consider the following

impulsive differential equation:





v̇(t) = −μv(t), t 6= nτ,

1v(t) = p, t = nτ.
(3.7)

By Lemma 2.3, system (3.7) has a globally asymptotically stable positive peri-

odic solution

ṽ(t) =
pexp(1 − μ(t − nτ ))

1 − exp(−μτ)
= Ĩ (t), nτ < t ≤ (n + 1)τ.

So by Lemma 2.2, we get

I (t) ≥ v(t) > Ĩ (t)− ε. (3.8)

From system (1.1), we obtain that





Ṡ(t) ≤ S(t)
(
r − β( Ĩ (t)− ε)q

)
, t 6= nτ,

1S(t) = 0, t = nτ.
(3.9)

Comp. Appl. Math., Vol. 29, N. 1, 2010
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Integrating (3.9) on (nτ, (n + 1)τ ], which yields

S((n + 1)τ+) ≤ S(nτ)exp
(∫ (n+1)τ

nτ
(r − β( Ĩ (t)− ε)q)dt

)
= S(nτ)δ. (3.10)

Thus, S(nτ) ≤ S(0+)δn and S(nτ) → 0 as n → ∞. Therefore, S(t) → 0 as

t → ∞, since 0 < S(t) < S(nτ)δ for nτ < t ≤ (n + 1)τ .

If limt→∞ S(t) = 0, for ε0 > 0 small enough, there exists a t1 > 0 such that

0 < S(t) < ε0 for t > t1. It is obviously by Lemma 3.2, for a sufficiently small

ε1 > 0, there exists a t2 > t1, such that βS(t)I q(t) < ε1 for t > t2. From the

second equation of system (1.1), we have

Ė(t) ≤ ε1 − (μ+ α)E(t), (3.11)

we obtain that

E(t) ≤ E(0+)exp(−(μ+ α)t)+
ε1

μ+ α
−

ε1

μ+ α
exp(−(μ+ α)t) → 0

as t → ∞ and ε1 → 0. Therefore, E(t) → 0 as t → ∞.

Next, we prove that I (t) → Ĩ (t) as t → ∞, for sufficiently small ε2 > 0,

there exists a t3 > t2 > 0 such that 0 < E(t) < ε2 for all t > t3. From system

(1.1), we have 




İ (t) ≤ αε2 − μI (t), t 6= nτ,

1I (t) ≤ p, t = nτ,
(3.12)

considering the following comparison system





ż(t) = αε2 − μz(t), t 6= nτ,

1z(t) = p, t = nτ.
(3.13)

By lemma 2.3, system (3.13) has a positive periodic solution

z̃(t) =
pexp(−μ(t − nτ ))

1 − exp(−μτ)
+
αε2

μ
, nτ < t ≤ (n + 1)τ,

which is globally asymptotically stable. Thus, for sufficiently small ε3, such that

I (t) ≤ z(t) < z̃(t)+ ε3. (3.14)

Combining (3.8) and (3.14), we obtain Ĩ (t) − ε < I (t) < z̃(t) + ε3 for t large

enough, let ε, ε3 → 0, we get z̃(t) → Ĩ (t), then I (t) → Ĩ (t) as t → ∞. This

completes the proof.

Comp. Appl. Math., Vol. 29, N. 1, 2010



“main” — 2010/3/1 — 10:33 — page 12 — #12

12 PEST MANAGEMENT SEI MODEL WITH NONLINEAR INCIDENCE RATE

4 Permanence

Definition 4.1. System (1.1) is said to be uniformly persistent if there is an

l > 0 (independent of the initial conditions) such that every solution (S(t),

E(t), I (t)) of system (1.1) satisfies

lim
t→∞

inf S(t) ≥ l, lim
t→∞

inf E(t) ≥ l, lim
t→∞

inf I (t) ≥ l.

Definition 4.2. System (1.1) is said to be permanent if there exists a compact

region 0 ⊂ int R3
+ such that every solution (S(t), E(t), I (t)) of system (1.1)

will eventually enter and remain the region 0.

Theorem 4.1. If

A2 : rτ >
pqβ(1 − exp(−qμτ))

qμ[1 − exp(−μτ)]q

holds, then there exists a positive constant m̃1 such that every positive solution

(S(t), E(t), I (t)) of system (1.1) satisfies S(t) ≥ m̃1 for t large enough.

Proof. In the following, we will prove that there exists a constant m1 > 0, such

that S(t) > m1 for t large enough. From system (1.1), we can see İ (t) > −μI (t),

then consider the comparison system

{
İ (t) = −μI (t), t 6= nτ,

1I (t) = p, t = nτ.
(4.1)

According to Lemma 2.2 and Lemma 2.3, we obtain for any ε > 0, I (t) >

Ĩ (t) − ε for t large enough. So, if we can find positive number m̃1 > 0 such

that S(t) ≥ m̃1 for t large enough, then our aim is reached. We will do it in

the following two steps for convenience.

Step I: If rτ > pqβ(1−exp(−qμτ))
qμ[1−exp(−dτ)]q holds true, we can choose 0 < m1 < Kr

and ε′ small enough such that

δ1 = exp
(∫ (n+1)τ

nτ

(
r −

m1

K
− β( Ĩ (t)+ ε′)q

)
dt

)
> 1,
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we will prove there exist a t1 ∈ (0,∞), such that S(t1) ≥ m1. Otherwise

S(t) < m1 for all t > 0. From system (1.1), we obtain that

{
İ (t) ≤ αM − μI (t), t 6= nτ,

1I (t) = p, t = nτ,
(4.2)

consider the following comparison system

{
ẇ(t) ≤ αM − μw(t), t 6= nτ,

1w(t) = p, t = nτ,
(4.3)

by Lemmas 2.2 and 2.3 on (4.3), there exists a T1 > 0 such that I (t) ≤ w(t) <

w̃(t)+ ε ′ for t > T1, where

w̃(t) =
αM

μ
+

pexp(−μ(t − nτ ))

1 − exp(−μτ)
, t ∈ (nτ, (n + 1)τ ].

Thus, from system (1.1) we obtain that

Ṡ(t) ≥
(

r −
m1

K
− β(w̃(t)+ ε′)q

)
S(t). (4.4)

Let n1 ∈ Z+ and n1τ > T1, integrating (4.4) on (nτ, (n + 1)τ ], n ≥ n1, then

we obtain

S((n + 1)τ ) ≥ S(nτ)exp
(∫ (n+1)τ

nτ

(
r −

m1

K
− β(w̃(t)+ ε′)q

)
dt

)

= S(nτ)δ1.

Then S((n1 + k)τ ) ≥ S(n1τ)δ1
k, k → ∞, which is a contradiction to the

boundedness of S(t). Hence there exists a t1 > 0 such that S(t1) ≥ m1.

Step II: If S(t) ≥ m1 for all t ≥ t1, then our aim is obtained. Otherwise

S(t) < m1 for some t ≥ t1, setting t∗ = inf
t>t1

{S(t) < m1}, we have S(t) ≥ m1

for t ∈ [t1, t∗) and t∗ ∈ (n1τ, (n1 + 1)τ ], n1 ∈ Z+. It is easy to see S(t∗) = m1

since S(t) is continuous. Select n2, n3 ∈ Z+ such that

n2τ > −
1

μ
ln

ε′

M + p
, exp(η(n2 + 1)τ )δ1

n3 > 1,
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where η = r − m1
K − βMq < 0. We claim that there must exists a t ′ ∈ ((n1 +

1)τ, (n1 + 1)τ + T ] such that S(t) ≥ m1, otherwise S(t) < m1, t ∈ ((n1 +

1)τ, (n1 + 1)τ + T ], consider (4.3) with w((n1 + 1)τ+) = S((n1 + 1)τ+),

we have

w(t) = (w((n1 + 1)τ+)−
αM

μ
−

p

1 − exp(−μτ)
)exp(−μt)+ w̃(t),

for t ∈ (nτ, (n + 1)τ ], n1 + 1 ≤ n ≤ n1 + 1 + n2 + n3. Then |w(t)− w̃(t)| <

(M + p)exp(−μ(t − (n1 + 1)τ )) < ε ′, and w(t) ≤ I (t) < w̃(t) + ε′ for

(n1 + 1 + n2)τ ≤ t ≤ (n1 + 1)τ + T , which implies (4.4) holds for

(n1 + n2 + 1)τ ≤ t ≤ (n1 + 1)τ + T , system (1.1) gives

S((n1 + 1 + n2 + n3)τ ) ≥ S((n1 + 1 + n2)τ )δ1
n3 .

There are the following two cases for t ∈ (t∗, (n1 + 1)τ ]:

Case 1: If S(t) < m1 for t ∈ (t∗, (n1 + 1)τ ], then S(t) < m1 for all t ∈

(t∗, (n1 + 1 + n2)τ ]. System (1.1) gives

Ṡ(t) ≥
(

r −
m1

K
− βMq

)
S(t) = ηS(t). (4.5)

Integrating system (4.5) on this interval t ∈ (t∗, (n1 + 1 + n2)τ ], which yields

S((n1+1+n2)τ ) ≥ m1exp(η(n2+1)τ ). Then we have S((n1+1+n2+n3)τ ) ≥

m1exp(η(n2 + 1)τ )δ1
n3 > m1, which is a contradiction.

Let t̄ = inf
t>t∗

{S(t) ≥ m1}, then S(t̄) = m1 and (4.5) holds for t ∈ [t∗, t̄).

Integrating (4.5) on t ∈ [t∗, t̄)

S(t) ≥ S(t∗)exp(η(t − t∗)) ≥ m1exp(η(1 + n2 + n3)τ ) := m̃1.

For t > t̄ , the same arguments can be continued since S(t̄) ≥ m1. Hence

S(t) ≥ m̃1 for all t > t1.

Case 2: If there exists a t ′′ ∈ (t∗, (n1 + 1)τ ] such that S(t ′′) ≥ m1. Let

t̂ = inf
t>t∗

{S(t) ≥ m1}, then S(t) < m1 for t ∈ [t∗, t̂) and S(t̂) = m1. For

t ∈ [t∗, t̂), (4.5) holds and integrating (4.5) on [t∗, t̂), we have

S(t) ≥ S(t∗)exp(η(t − t∗)) ≥ m1exp(ητ) > m̃1.
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This process can be continued since S(t̂) ≥ m1, and we have S(t) ≥ m̃1 for

t > t1. Thus in both cases, we conclude S(t) ≥ m̃1 for all t > t1. The proof

is completed.

Theorem 4.2. Suppose rτ > pqβ(1−exp(−qμτ))
qμ[1−exp(−dτ)]q , then the system (1.1) is per-

manent.

Proof. Denote (S(t), E(t), I (t)) as any solution of the system (1.1), we get

İ (t) ≥ −μI (t). (4.6)

By the same argument as those in the proof of Theorem 4.1, we have

lim
t→∞

I (t) ≥ m̃3, (4.7)

where

m̃3 =
pexp(−μτ)

1 − exp(−μτ)
− ε.

In view of Theorem 4.1, the second equation of system (1.1) becomes

Ė(t) ≥ βm̃1m̃q
3 − (α + μ)E(t). (4.8)

It is easy to obtain lim
t→∞

E(t) ≥ m̃2, where m̃2 =
βm̃1m̃q

3
(α+μ) − ε. Let

0 =
{
(S, E, I ) : S ≥ m̃1, E ≥ m̃2, I ≥ m̃3, S + E + I ≤ M

}
.

By Theorem 4.1 and above discussion, we know that the set 0 ⊂ int R3
+ is global

attractor, i.e., every solution of system (1.1) will eventually enter and remain in

region 0. Therefore, system (1.1) is permanent. This completes the proof.

5 Conclusion

In this paper, we have investigated the dynamic behavior of a pest manage-

ment SEI model with nonlinear incidence and periodic releasing infected pests

at fixed times. The infected pests have the function similar to the microbial

pesticide and can infect the healthy pests, further weaken or disable their prey

function till death. We have shown that there exists an asymptotically stable

the pest-eradication periodic solution if rτ < pqβ(1−exp(−qμτ))
qμ[1−exp(−μτ)]q . However, from
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a pest control point of view, our aim is to keep pests at acceptably low levels,

not to eradicate them, only to control their population size. Therefore, when

rτ > pqβ(1−exp(−qμτ))
qμ[1−exp(−μτ)]q , the stability of pest-eradication periodic solution is lost,

system (1.1) is permanent.
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