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Abstract. In this paper, we are concerned with the fast solvers for higher order finite element

discretizations of H(div)-elliptic problem. We present the preconditioners for the first family

and second family of higher order divergence conforming element equations, respectively. By

combining the stable decompositions of two kinds of finite element spaces with the abstract

theory of auxiliary space preconditioning, we prove that the corresponding condition numbers of

our preconditioners are uniformly bounded on quasi-uniform grids.
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1 Introduction

Let� be a simply connected polyhedron inR3 with boundary0 and unit outward

normal ν. We define the Hilbert spaces H0(div;�) as follows

H0(div;�) =
{
u ∈ (L2(�))3

∣
∣ ∇ ∙ u ∈ L2(�), ν ∙ u = 0 on 0

}

with the inner product

(u, v)div = (u, v)+ (∇ ∙ u,∇ ∙ v),

where (∙, ∙) denotes the inner product in (L2(�))3 or L2(�).
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In this paper, we consider the following variational problem: Find

u ∈ H0(div;�) such that

a(u, v) = ( f , v) ∀ v ∈ H0(div;�), (1)

where f ∈ H0(div;�)′ is a given data and

a(u, v) = (∇ ∙ u,∇ ∙ v)+ τ(u, v), (2)

with the constant τ > 0.

The bilinear form a(∙, ∙) induces the energy norm

‖v‖2
A = a(v, v) ∀ v ∈ H0(div;�). (3)

Variational problem of the form (1) arises in numerous problems of practi-

cal import. Typical examples include the mixed method for second order elliptic

problems, the least squares method of the form discussed in [3], and the sequential

regularization method for the time dependent Navier-Stokes equation discussed

in [6]. For a more detailed discussion of applications, we refer to [1].

To avoid the repeated use of generic but unspecified constants, following [9],

we will use the following short notation: x . y means x ≤ Cy, x & y means

x ≥ cy, and x ≈ y means cx ≤ y ≤ Cy, where c and C are generic positive

constants independent of the variables that appear in the inequalities and espe-

cially the mesh parameters.

Outline. The remainder of this article is organized as follows. In the next

section, we introduce two kinds of higher order finite element equations, and

present the corresponding frame of constructing preconditioner. We construct

the preconditioners for two kinds of higher order divergence conforming element

equations, and prove that their corresponding condition number is uniformly

bounded in Section 3 and Section 4, respectively.

2 Finite element equations and framework of preconditioner

Let Th be a shape regular tetrahedron meshes of �, where h is the maximum

diameter of the tetrahedra in Th . Now, we present two families of divergence
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conforming finite elements spaces (see [7])

W k,1
h =

{
v

k,1
h ∈ H0(div;�)

∣
∣
∣ v

k,1
h |K ∈ (Pk−1)

3 ⊕ P̃k−1x, ∀K ∈ Th

}
,

W k,2
h =

{
v

k,2
h ∈ H0(div;�)

∣
∣
∣ v

k,2
h |K ∈ (Pk)

3 , ∀K ∈ Th

}
,

where Pk denote the standard space of polynomials of total degree less than or

equal to k, and P̃k denote the space of homogeneous polynomials of order k.

We consider the solution of systems of linear algebraic equations which arise

from the finite element discretization of variational problems (1): Find

uk,l
h ∈ W k,l

h (k ≥ 1, l = 1, 2) such that

a(uk,l
h , v

k,l
h ) = ( f , vk,l

h ) ∀v
k,l
h ∈ W k,l

h . (4)

Their algebraic systems can be described as

Ak,l
h U k,l

h = Fk,l
h . (5)

Since Ak,l
h is symmetric positive definite, we use precondition conjugate gra-

dient (PCG) methods to solve algebraic systems (5). In this paper, we will

construct the preconditioners for the cases of higher order finite equations, and

present some estimates of the corresponding condition numbers.

For this purpose, we need to introduce some auxiliary spaces and corre-

sponding operators.

Let V = W k,l
h with inner product a(∙, ∙) given by (2).

Let V̄1, ∙ ∙ ∙ , V̄J , J ∈ N, be Hilbert spaces endowed with inner products

ā j (∙, ∙), j = 1, ∙ ∙ ∙ , J . The operators Ā j : V̄ j 7→ V̄ ′
j are isomorphisms in-

duced by ā j (∙, ∙), namely

ā j (ū j , v̄ j ) =< Ā j ū j , v̄ j > ∀ū j , v̄ j ∈ V̄ j ,

here we tag dual spaces by ′ and use angle brackets for duality pairings. For

each V̄ j , there exist continuous transfer operators 5 j : V̄ j 7→ V . Then we can

construct the preconditioner for operator Ak,l
h as follows:

B =
J∑

j=1

5 j B̄ j5
∗
j , (6)
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where B̄ j : V̄ ′
j 7→ V̄ j are given preconditioners for Ā j , and 5∗

j are adjoint

operators of 5 j .

Now, we present the following theorem of an estimate for the spectral condition

number of the preconditioner given by (6).

Theorem 2.1. Assume that there exist constants c j , such that

‖5 j ū j‖A ≤ c j‖ū j‖ Ā j
, ∀ ū j ∈ V̄ j , 1 ≤ j ≤ J, (7)

and for ∀ u ∈ V , there exist ū j ∈ V̄ j such that u =
∑J

j=15 j ū j and




J∑

j=1

‖ū j‖
2
Ā j





1/2

≤ c0‖u‖A, (8)

then for the preconditioner B given by (6), we have the following estimate for

the spectral condition number

κ(B Ak,l
h ) ≤ max

1≤ j≤J
κ(B̄ j Ā j )c

2
0

J∑

j=1

c2
j . (9)

Proof. We define the space

V̄ = V̄1 × V̄2 × ∙ ∙ ∙ × V̄J

with the inner product

(ū, ū) Ā =
J∑

j=1

(ū j , ū j ) Ā j
, ū = (ū1, ū2, ∙ ∙ ∙ , ū J )

t , ūi ∈ V̄ j ,

and the following two operators

5 = (51,52, ∙ ∙ ∙ ,5J ) : V̄ 7→ V,

Ā = diag( Ā1, Ā2, ∙ ∙ ∙ , ĀJ ) : V̄ 7→ V̄ ,

B̄ = diag(B̄1, B̄2, ∙ ∙ ∙ , B̄J ) : V̄ 7→ V̄ .

Thus we can rewrite the definition of operator B given by (6):

B = 5B̄5∗.
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Using the definitions of inner product in V̄ , operators5 and B̄, and conditions

(7)-(8), then there exists a constant c̄2
1 :=

∑J
j=1 c2

j , such that

‖5ū‖A ≤ c̄1‖ū‖ Ā, ∀ ū ∈ V̄ ,

and for ∀ u ∈ V , there exists ū ∈ V̄ , such that u = 5ū and

‖ū‖ Ā ≤ c0‖u‖A.

From Corollary 2.3 of [5], we immediately get an estimate for the spectral

condition number of the preconditioned operator B

κ(B Ak,l
h ) ≤ κ(B̄ Ā)c2

0

J∑

j=1

c2
j .

The desired estimates then follow by combining the above inequality and the

following fact

κ(B̄ Ā) ≤ max
1≤ j≤J

κ(B̄ j Ā j ). �

The principal challenge confronted in the development of preconditioners by

applying Theorem 2.1 is to construct some appropriate spaces and operators

which satisfy (7) and (8). In the following two sections, we present the corre-

sponding spaces and operators for two kinds of divergence conforming element

spaces, respectively.

3 Preconditioner for finite element equations of first kind

We first introduce Sobolev functional space

H0(curl;�) =
{
u ∈ (L2(�))3

∣
∣∇ × u ∈ (L2(�))3, ν × u = 0 on 0

}

with the norm

‖u‖H(curl;�) =
(
‖u‖2

0 + ‖∇ × u‖2
0

)1/2
.

There exist two families of edge finite element spaces for the space

H0(curl;�) (see [2, 4, 7]).
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1. k order Nédélec element of first kind:

V k,1
h =

{
uk,1

h ∈ H0(curl;�)
∣
∣
∣uk,1

h |K ∈ Rk, ∀K ∈ Th

}
, (10)

where Rk = (Pk−1)
3 ⊕ { p ∈ (P̃k)

3 | p(x) ∙ x = 0}.

2. k order Nédélec element of second kind:

V k,2
h =

{
uk,2

h ∈ H0(curl;�)
∣
∣
∣uk,2

h |K ∈ (Pk)
3, ∀K ∈ Th

}
. (11)

We also need to introduce the following space of piecewise k−degree discon-

tinuous scalar elements on Th:

Xk
h =

{
qk

h ∈ L2(�)

∣
∣
∣ qk

h |K ∈ Pk for all K ∈ Th

}
.

The Sobolev spaces H0(div;�), H0(curl;�) and the corresponding finite

element spaces possess the exceptional exact sequence properties (see [4, 7])

H0(div0;�) := {w ∈ H0(div;�) : ∇ ∙ w = 0}

= ∇ × H0(curl;�), (12)

W k−1,l
h (div0) := {wk−1,l

h ∈ W k−1,l
h : ∇ ∙ w

k−1,l
h = 0}

= ∇ × V k,l
h , l = 1, 2, (13)

∇ ∙ W k,l
h ⊂ Xk−1

h , l = 1, 2. (14)

Assuming that u has the necessary smoothness, we can define two kinds of

interpolants: 5k,1
h,div and 5k

h , such that 5k,1
h,divu ∈ W k,1

h and 5k
h u ∈ Xk

h (more

details refer to [4, 7]). Especially, the interpolation 5k,1
h,div is not defined for a

general function in H0(div;�). Here let us quote a slightly simplified version

(see Theorem 5.25 of [7]).

Lemma 3.1. Suppose that there are constants δ > 0 such that u ∈

(H 1/2+δ(K ))3 for each K in Th. Then 5k,1
h,divu is well-defined, and we have

‖(I d −5
k,1
h,div)u‖0,K . h1/2+δ

K ‖u‖(H1/2+δ(K ))3 (15)

with a constant only depending on the shape regularity of Th.
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The finite element spaces W k,1
h is equipped with bases B(k, 1) comprising

locally supported functions. These bases are L2 stable in the sense that

v
k,1
h =

∑

b∈B(k,1)

vb, vb ∈ span{b},
∑

b∈B(k,1)

‖vb‖
2
0 ≈ ‖vk,1

h ‖2
0 ∀v

k,1
h ∈ W k,1

h , (16)

with constant only depending on the shape-regularity of Th .

Lemma 3.2. The interpolation operator 5k,1
h,div is bounded on (H 1

0 (�))
3 and

satisfies

‖(I d −5
k,1
h,div)ψ‖0 . h‖ψ‖(H1(�))3 ∀ ψ ∈ (H 1

0 (�))
3 (17)

with a constant only depending on the shape regularity of Th.

Furthermore, all above operators possess the following commuting diagram

property (see [7])

div 5k,1
h,div = 5k−1

h div. (18)

We may apply the quasi-interpolation operators for Lagrangian finite element

space introduced in [8] to the components of vector fields separately. This gives

rise to the projectors Qh : (H 1
0 (�))

3 7→ (S1
h)

3, which inherits the continuity

‖Qh9‖(H1(�))3 . ‖9‖(H1(�))3 ∀ 9 ∈ (H 1
0 (�))

3 (19)

and satisfies the local projection error esitmate

‖h−1(I d − Qh)9‖0 . ‖9‖(H1(�))3 ∀ 9 ∈ (H 1
0 (�))

3. (20)

Now, we present the stable decomposition of W k,1
h , k ≥ 2.

Lemma 3.3. For any uk,1
h ∈ W k,1

h , there exist
∑

b∈B(k,1) vb ∈ W k,1
h , vb ∈

Span{b}, uk−1,2
h ∈ W k−1,2

h , such that

uk,1
h =

∑

b∈B(k,1)

vb + uk−1,2
h , (21)

and



∑

b∈B(k,1)

‖vb‖
2
A + ‖uk−1,2

h ‖2
A





1/2

≤ c̃0‖uk,1
h ‖A, (22)
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where the constant c̃0 only depends on � and the shape regularity of Th.

Proof. For any given uk,1
h ∈ W k,1

h , using the continuous Helmholtz decomposi-

tion, there exist 9 ∈ (H 1
0 (�))

3, p ∈ H0(curl;�) such that

uk,1
h = 9 + ∇ × p, (23)

and

‖9‖(H1(�))3 . ‖∇ ∙ uk,1
h ‖0, ‖∇ × p‖0 . ‖uk,1

h ‖H(div;�), (24)

with constants only depending on �.

Taking the div of both sides of (23) and using (14), we get

∇ ∙ 9 = ∇ ∙ uk,1
h ∈ Xk−1

h .

Owing to Lemma 3.2, 5k,1
h,div9 is well defined. Furthermore, the commuting

diagram property (18) implies

∇ ∙5k,1
h,div9 = 5k−1

h ∇ ∙ 9 = ∇ ∙ 9 ⇒ ∇ ∙ (I d −5
k,1
h,div)9 = 0.

This confirms that the third term in the splitting

9 = 5
k,1
h,div(I d − Qh)9 +5

k,1
h,div Qh9 + (I d −5

k,1
h,div)9 (25)

actually belongs to the kernel of div. By (12), then there esists q ∈ H0(curl;�)

such that

(I d −5
k,1
h,div)9 = ∇ × q. (26)

Noting that Qh9 ∈ (S1
h)

3 ⊂ W k,1
h , which leads to

5
k,1
h,div Qh9 = Qh9. (27)

Substituting (25), (26) and (27) into (23), we have

uk,1
h = 5

k,1
h,div(I d − Qh)9 + Qh9 + ∇ × (q + p). (28)

Since uk,1
h ,5

k,1
h,div(I d − Qh)9, Qh9 ∈ W k,1

h , we obtain ∇ × (q + p) ∈

W k,1
h (div0) by using (28), then observing (13), there exists qh ∈ V k,1

h , such

that

∇ × qh = ∇ × (q + p). (29)
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Let

ũk,1
h = 5

k,1
h,div(I d − Qh)9 =

∑

b∈B(k,1)

vb, vb ∈ Span{b}, (30)

uk−1,2
h = Qh9 + ∇ × qh . (31)

It’s easy to obtain uk−1,2
h ∈ W k−1,2

h by noting that Qh9 ∈ (S1
h)

3 ⊂ W k−1,2
h and

∇ × qh ∈ ∇ × V k,1
h ⊂ W k−1,2

h . Substituting (29), (30) and (31) into (28), we

conclude

uk,1
h =

∑

b∈B(k,1)

vb + uk−1,2
h , (32)

which completes the proof of (21).

Using (30), triangular inequality, Lemma 3.2, (20) and (24), we have

‖h−1ũk,1
h ‖0 = ‖h−15

k,1
h,div(I d − Qh)9‖0

≤ ‖h−1(I d −5
k,1
h,div)(I d − Qh)9‖0 + ‖h−1(I d − Qh)9‖0

. ‖(I d − Qh)9‖(H1(�))3 + ‖9‖(H1(�))3

. ‖9‖(H1(�))3 . ‖∇ ∙ uk,1
h ‖0,

which leads to

‖ũk,1
h ‖0 . h‖∇ ∙ uk,1

h ‖0. (33)

It follows readily from inverse estimate and (16) that

∑

b∈B(k,1)

‖vb‖
2
A =

∑

b∈B(k,1)

(
‖∇ ∙ vb‖

2
0 + τ‖vb‖

2
0

)

.
∑

b∈B(k,1)

(
‖h−1vb‖

2
0 + τ‖vb‖

2
0

)

.
(
h−2 + τ

)
‖ũk,1

h ‖2
0. (34)

Using inverse estimate again yields

‖ũk,1
h ‖2

A = ‖∇ ∙ ũk,1
h ‖2

0 + τ‖ũk,1
h ‖2

0 .
(
h−2 + τ

)
‖ũk,1

h ‖2
0. (35)
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By means of (33) and inverse estimate, we get

(
h−2 + τ

)
‖ũk,1

h ‖2
0 .

(
h−2 + τ

)
h2‖∇ ∙ uk,1

h ‖2
0

. ‖∇ ∙ uk,1
h ‖2

0 + τ‖uk,1
h ‖2

0

= ‖uk,1
h ‖2

A. (36)

In view of (32), triangular inequality (34), (35) and (36), we have

∑

b∈B(k,1)

‖vb‖
2
A + ‖uk−1,2

h ‖2
A ≤

∑

b∈B(k,1)

‖vb‖
2
A +

(
‖uk,1

h ‖A + ‖ũk,1
h ‖A

)2

.
(
h−2 + τ

)
‖ũk,1

h ‖2
0 + ‖uk,1

h ‖2
A

. ‖uk,1
h ‖2

A,

which completes the proof of (22). �

We rely on the stable decomposition for V = W k,1
h in Lemma 3.3 and apply

the abstract theory in Section 2 to define the preconditioner for finite element

equations of first kind.

Let V = W k,1
h and choose two auxiliary spaces and the corresponding transfer

operators as follows.

1. V̄1 = W k,1
h , with inner product ā1(∙, ∙) which is defined by

ā1(ū1, v̄1) :=< Ā1ū1, v̄1 >=
∑

b∈B(k,1)

a(ub, vb),

where

ū1 =
∑

b∈B(k,1)

ub, v̄1 =
∑

b∈B(k,1)

vb, ub, vb ∈ span{b}.

The transfer operator is 51 = I d .

2. V̄2 = W k−1,2
h with inner product ā2(∙, ∙) = a(∙, ∙) in the sense that

ā2(ū2, v̄2) :=< Ā2ū2, v̄2 >= a(ū2, v̄2) ∀ū2, v̄2 ∈ V̄2,

which concludes that Ā2 = Ak−1,2
h . The transfer operator is 52 = I d.
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Making use of (6), the auxiliary space preconditioner for Ak,1
h reads

Bk,1
h = B̄1 + Bk−1,2

h , (37)

where Bk−1,2
h is the preconditioner of Ak−1,2

h , B̄1 is the preconditioners of Ā1.

Noting that Ā1 denotes the diagonal matrix of Ak,1
h , in the practical application,

we will take B̄1 as the Jacobi (or Gauss-Seidel) smoothing operator for Ak,1
h .

Obviously, this special choose satisfies

κ(B̄1 Ā1) ≤ C̃1, (38)

where the constant C̃1 is independent of the mesh parameters.

First, we prove that the above transfer operators satisfy the condition (7).

Due to the definitions of inner product and transfer operator in space V̄1, for

any given ū1 =
∑

b∈B(k,1) αbb ∈ V̄1, where αb ∈ R, we have

‖51ū1‖
2
A = ‖ū1‖

2
A =

∥
∥
∥
∥
∥
∥

∑

b∈B(k,1)

αbb

∥
∥
∥
∥
∥
∥

2

A

=
∑

K∈Th

∥
∥
∥
∥
∥
∥

M∑

j=1

αbb

∥
∥
∥
∥
∥
∥

2

A,K

≤ M
∑

K∈Th

∑

b∈B(k,1)

‖αbb‖2
A,K = M‖ū1‖

2
Ā1
, (39)

where the constant M bounds the number of basis functions whose support

overlaps with a single element K .

For any given ū2 ∈ V̄2, it’s easy to obain

‖52ū2‖A = ‖ū2‖A = ‖ū2‖ Ā2
. (40)

Combining (39) with (40), we conclude that (7) holds with the constants c1 =

M and c2 = 1.

Secondly, the above spaces and operators satisfy the condition (8) by using the

Lemma 3.3.

Summing up, we obtain the following theorem by using Theorem 2.1.

Theorem 3.4. For Bk,1
h given by (37), and B̄1 satisfies the condition of (38),

then we have

κ(Bk,1
h Ak,1

h ) . κ(Bk−1,2
h Ak−1,2

h ), (41)

with a constant only depending on the constants c̃0, C̃1 and the shape regularity

of Th.
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4 Preconditioner for finite element equations of second kind

Now, we present the another stable decomposition of W k−1,2
h with k ≥ 2.

Lemma 4.1. For any uk−1,2
h ∈ W k−1,2

h , there are uk−1,1
h ∈ W k−1,1

h and ϕh ∈ V k,2
h

such that

uk−1,2
h = uk−1,1

h + ∇ × ϕh, (42)

and
(
‖uk−1,1

h ‖2
A + ‖∇ × ϕh‖

2
A

)1/2
≤ c0‖uk−1,2

h ‖A, (43)

where the constant c0 only depends on � and the shape regularity of Th.

Proof. For any uk−1,2
h ∈ W k−1,2

h , we can interpolate uk−1,2
h by Lemma 3.1. Thus,

using (18), we have

∇ ∙5k−1,1
h,div uk−1,2

h = 5k−2
h ∇ ∙ uk−1,2

h . (44)

In view of (14), we have

∇ ∙ uk−1,2
h ∈ Xk−2

h . (45)

Making use of (45) and noting that 5k−2
h |Xk−2

h
= I d in (44), we get

∇ ∙5k−1,1
h,div uk−1,2

h = ∇ ∙ uk−1,2
h ,

namely

∇ ∙
(

uk−1,2
h −5

k−1,1
h,div uk−1,2

h

)
= 0. (46)

Noting that uk−1,2
h − 5

k−1,1
h,div uk−1,2

h ∈ W k−1,2
h , then by (46) and (13), there

exists ϕh ∈ V k,2
h , such that

uk−1,2
h = uk−1,1

h + ∇ × ϕh, (47)

where uk−1,1
h = 5

k−1,1
h,div uk−1,2

h , which completes the proof of (42).
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Using (47), (15) with δ = 1/2, and the inverse estimate, we obtain

‖∇ × ϕh‖0,K = ‖uk−1,2
h −5

k−1,1
h,div uk−1,2

h ‖0,K

. h‖uk−1,2
h ‖(H1(K ))3 . ‖uk−1,2

h ‖0,K .

Squaring and summing over all the elements, we get

‖∇ × ϕh‖
2
0 =

∑

K∈Th

‖∇ × ϕh‖
2
0,K

.
∑

K∈Th

‖uk−1,2
h ‖2

0,K = ‖uk−1,2
h ‖2

0. (48)

In view of (3) and (48), we find

‖∇ × ϕh‖
2
A = τ‖∇ × ϕh‖

2
0 . τ‖uk−1,2

h ‖2
0 ≤ ‖uk−1,2

h ‖2
A. (49)

Making use of (47), triangular inequality and (48), we have

‖uk−1,1
h ‖0 ≤ ‖uk−1,2

h ‖0 + ‖∇ × ϕh‖0 . ‖uk−1,2
h ‖2

0. (50)

A direct manipulation of (47) gives that

‖∇ ∙ uk−1,1
h ‖0 = ‖∇ ∙ uk−1,2

h ‖0. (51)

A combination of (49), (50) and (51) concludes (43). �

In this case, let V = W k−1,2
h . We choose the following two auxiliary spaces

and the corresponding transfer operator.

1. V̄1 = W k−1,1
h with inner product ā1(∙, ∙) = a(∙, ∙) in the sense that

ā1(ū1, v̄1) :=< Ā1ū1, v̄1 >= a(ū1, v̄1) ∀ū1, v̄1 ∈ V̄1,

which concludes that Ā1 = Ak−1,1
h . The corresponding transfer operator

is 51 = I d.

2. V̄2 = V k,2
h with inner product

ā2(ū2, v̄2) :=< Ā2ū2, v̄2 >= τ(∇ × ū2,∇ × v̄2) ∀ū2, v̄2 ∈ V̄2. (52)

The corresponding transfer operator is 52 = curl.
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Then by using (6), we obtain the auxiliary space preconditioner for Ak−1,2
h as

follows

Bk−1,2
h = Bk−1,1

h + curlB̄2curl∗, (53)

where Bk−1,1
h is the preconditioner of Ak−1,1

h , and B̄2 is the preconditioners of

Ā2 given by (52).

Especially, we adopt the preconditioner B̄2 in [10], this choice satisfy

κ(B̄2 Ā2) ≤ C1, (54)

where the constant C1 is independent of the mesh parameters.

It is easy to prove that the above transfer operators satisfy the conditions (7).

In fact, using the definitions of inner products and transfer operators in spaces

V̄l(l = 1, 2), we have

‖51v̄1‖A = ‖v̄1‖A = ‖v̄1‖ Ā1
, ∀ v̄1 ∈ V̄1, (55)

‖52v̄2‖2
A = ‖∇ × v̄2‖2

A = τ‖∇ × v̄2‖2
0 = ‖v̄2‖2

Ā2
, ∀ v̄2 ∈ V̄2, (56)

namely, the conditions (7) of Theorem 2.1 hold with the constants c1 = c2 = 1.

Applying Theorem 2.1 and using Lemma 4.1, we have the following Theorem.

Theorem 4.2. For Bk−1,2
h given by (53), and B̄2 satisfies the condition of

(54), then we have

κ(Bk−1,2
h Ak−1,2

h ) . κ(Bk−1,1
h Ak−1,1

h ), (57)

with a constant only depending on the constants c0 and C1 and the shape regu-

larity of Th.

Combining Theorem 3.4 and Theorem 4.2, by using a Jacobi (or Gauss-Seidel)

smoothing, we can translate the construction of preconditioner for Ak,1
h into the

one of Ak−1,2
h . Furthermore, by using the preconditioner of H(curl;�)-elliptic

problem, we can translate the preconditioner for Ak−1,2
h into the one for Ak−1,1

h .

Since Hiptmair and Xu [5] have constructed an efficient preconditioner B1,1
h

for A1,1
h , we construct the efficient precondtioners for Ak,l

h (k = 1, l =

2 or k ≥ 2, l = 1, 2) and prove the corresponding spectral condition numbers

are uniformly bounded and independent of mesh size h and the parameter τ by

this recursive form.
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5 Implementation of algorithm and numerical experiments

For simplicity, we only give the description of the preconditioning algorithm

defined by (53) when k = 2.

Note that when k = 2, (53) turn to

B1,2
h = B1,1

h + curlB̄2curl∗. (58)

In the following, we first discuss the description of algorithm about the pre-

conditioner B1,1
h . For this purpose, we introduce the following operators

Pc
d : W 1,1 −→ ∇ × V 1,1,

Ps
d : W 1,1 −→ (S1

h)
3,

Ps
c : V 1,1 −→ (S1

h)
3,

and

A1,1
c = Pc

d A1,1
h (Pc

d )
T ,

As
d = Ps

d A1,1
h (Ps

d )
T ,

As
c = Ps

c A1,1
c (Ps

c )
T ,

then, the algorithm about the operator B1,1
h can be described by (see [5] for

more details)

Algorithm 5.1. For a given g ∈ W 1,1
h , then ug = B1,1

h g ∈ W 1,1
h can be obtained

as follows:

Step 1: Applying m1 times symmetric Gauss_Seidel iterations in variational

problem

a(ũ1, v
1,1
h ) = ( f , v1,1

h ) ∀v
1,1
h ∈ W 1,1

h

with a zero initial guess to get ũ1, where f = g.

Step 2: Computing ũ2 ∈ (S1
h)

3 by

(As
d ũ2, v2) = (g, v2), ∀v2 ∈ (S1

h)
3.
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Step 3: Computing ũ3 ∈ V 1,1
h by

(A1,1
c ũ3, ṽ3) = (g,∇ × ṽ3), ∀ṽ3 ∈ V 1,1

h , (59)

which can be obtained by

1. Applying m2 times symmetric Gauss_Seidel iterations in (59) with a

zero initial guess to get ũ4.

2. Computing ũ5 ∈ (S1
h)

3 by

(As
cũ5, v5) = (g, v5), ∀v5 ∈ (S1

h)
3. (60)

3. Set ũ3 = ũ4 + (Ps
c )

T ũ5.

Step 4: Set ug = ũ1 + (Ps
d )

T ũ2 + (Pc
d )

T ũ3.

By [5], the preconditioner B1,1
h defined by Algorithm 5.1 satisfy

κ(B1,1
h A1,1

h ) ≤ C1,

where the constant C1 is independent of the mesh size h and parameter τ .

Next, we give the description of algorithm for the operator curlB̄2curl∗.

Firstly, let

n = dim(V 2,1
h ), m = dim(W 1,2

h ),

and

V 2,1 = span{φi , i = 1, ∙ ∙ ∙ , n}, W 1,2 = span{ψ j , j = 1, ∙ ∙ ∙ ,m},

then we introduce the transfer matrix(or operator) Pc,2
d









∇ × φ1

∇ × φ2
...

∇ × φn









= Pc,2
d









ψ1

ψ2
...

ψm








,

By using Pc,2
d , we can define the following matrix(or operator)

A2,1
c = Pc,2

d A1,2
h (Pc,2

d )T .
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In view of (4.1) in [10], we can construct the preconditioner B̄2 for A2,1
c , and

its spectral condition number satisfy

κ(B̄2 A2,1
c ) ≤ C2,

where the constant C2 is independent of the mesh size h and parameter τ .

Noting that the operator B̄2 can be divided into three parts: the first part is to

use the Jacobi (or Gauss-Seidel) smoothing for (52) in space V 2,1
h , the second part

is to solve the restriction of (52) in (S1
h)

3, the third part is to solve the restriction

of (52) in ∇S2
h . We can drop the second and third parts by using the fact that

the second part is the same as (60) and curl ◦ grad ≡ 0. Hence the operator

curlB̄2curl∗ can be simplified.

Summing up, we can obtain the following algorithm of the preconditioner B1,2
h .

Algorithm 5.2. For g ∈ W 1,2
h , the solution ug = B1,2

h g ∈ W 1,2
h can be gotten as

follows:

Step 1: Computing u1 ∈ W 1,1
h by Algorithm 5.1.

Step 2: Applying m3 times symmetric Gauss_Seidel iterations to get u2 ∈ V 2,1

by

(A2,1
c u2, v2) = (g,∇ × v2), ∀v2 ∈ V 2,1.

Step 3: Set

ug = u1 + u2.

For variational problem (4), we apply Algorithm 5.2 to the following two

examples:

Example 5.1. The computational domain is� = [0, 1]× [0, 1]× [0, 1] and the

corresponding structured grids can be seen in Figure 1. For the convenience of

computing the exact errors, we construct an exact solution u = (u1, u2, u3) as





u1 = xyz(x − 1)(y − 1)(z − 1)

u2 = sin(πx) sin(πy) sin(π z)

u3 = (1 − ex)(1 − ex−1)(1 − ey)(1 − ey−1)(1 − ez)(1 − ez−1).
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Example 5.2. The computational domain is the spheres of radius 1 and the

corresponding unstructured grids can be seen in Figure 2, the exact solution

u = (u1, u2, u3) is 




u1 = x2 + y2 + z2 − 1

u2 = x2 + y2 + z2 − 1

u3 = x2 + y2 + z2 − 1.

Figure 1 Figure 2

Now, we present some numerical experiments with m1 = m2 = m3 = 3.

Table 1 gives the L2 and H(div) error estimates for Example 5.1 when τ = 1,

which shows that u1,2
h is the optimal convergence.

Th iter ‖u − u1,2
h ‖L2 err rate ‖u − u1,2

h ‖H(div) err rate

63 20 2.051e-2 2.040e-1

123 19 4.685e-3 4.378 1.026e-1 1.988

243 19 1.139e-3 4.113 5.141e-2 1.996

Table 1

The condition number estimates and iteration counts for Example 5.1 and

Example 5.2 are listed in Tables 2 – 5 for different values of the mesh size h and

the scaling parameter τ . By these Tables, we find that the condition number and

iteration counts are independent of the mesh size h and weakly dependent on the

parameter τ .
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τ

level #cells 10−5 10−2 1 102 105

1 6 × 63 9.577 9.578 10.008 13.282 21.403

2 6 × 123 10.258 10.261 10.254 12.363 19.396

3 6 × 243 10.301 10.291 10.294 11.030 18.098

Table 2 – Unit cube: spectral condition number of B1,2
h A1,2

h .

τ

level #cells 10−5 10−2 1 102 105

1 6 × 63 19 19 20 22 28

2 6 × 123 19 18 19 21 25

3 6 × 243 19 18 19 19 23

Table 3 – Number of PCG-iterations on unit cube.

τ

level #cells 10−5 10−2 1 102 105

1 2197 11.918 11.920 12.111 17.300 30.293

2 4462 11.745 11.746 11.881 16.783 30.015

3 8865 14.887 14.889 15.051 20.204 34.122

4 17260 16.936 16.937 17.049 22.816 34.089

5 46543 14.876 14.875 14.863 18.830 37.786

6 66402 17.839 17.840 16.524 22.420 43.861

Table 4 – Unit ball: spectral condition number of B1,2
h A1,2

h .

τ

level #cells 10−5 10−2 1 102 105

1 2197 13 17 20 24 30

2 4462 13 17 20 24 30

3 8865 14 17 21 25 31

4 17260 14 17 20 23 29

5 46543 15 17 20 23 28

6 66402 16 17 20 23 27

Table 5 – Number of PCG-iterations on unstructured grids in the unit ball.
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