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1 Introduction

The importance of the study of set-valued analysis from a theoretical point of

view as well as from their application is well known [5, 7]. Many advances in set-

valued analysis have been motivated by control theory and dynamical games [6].

Optimal control theory and mathematical programming were a motivating force

behind set-valued analysis since the sixties [6]. Interval Analysis is a particular

case and it was introduced as an attempt to handle interval uncertainty that appears

in many mathematical or computer models of some deterministic real-world

phenomena. The first monograph dealing with interval analysis was given by

Moore [14]. Moore is recognized to be the first to use intervals in computational
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mathematics, now called numerical analysis. He also extended and implemented

the arithmetic of intervals to computers. One of his major achievements was to

show that Taylor series methods for solving differential equations not only are

more tractable, but also more accurate [15].

The following inequality is known in the literature as Ostrowski’s inequality
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∥
∥

∞ , (1)

where f ∈ C1([a, b]), x ∈ [a, b]. Inequality (1) is sharp, see [3]. Since 1938

when A. Ostrowski (see [16]) presented his famous inequality many researchers

have been working about and around it, in many different directions and with

a lot of applications. In the book edited by Dragomir and Rassias [11] and

recently in the book of Anastassiou [1] are given a brief review of state of art

about Ostrowski type inequalities and its applications.

Continuing that tradition, in [2] the Ostrowski type inequality has been ex-

tended to context of fuzzy-valued functions. In this context has been used the

concept of Hukuhara-derivative for fuzzy-valued functions. Note that interval-

valued functions are fuzzy-valued functions. Thus, the fuzzy Ostrowski type

inequalities obtained in [2] is valid for interval-valued functions. However, the

concept of H -derivative for interval-valued functions is very restrictive, see [8, 9].

Generalized Hukuhara differentibility it is the most general differentiability

concept for interval-valued functions, see [8, 9, 19].

Motivated by [1, 2, 3, 11] and [8, 9, 13, 19] we extend Ostrowski type inequal-

ity (1) for gH -differentiable interval-valued functions.

2 Basic concepts

Let R be the one-dimensional Euclidean space. Following [10], let KC denote

the family of all non-empty compact convex subsets of R, that is,

KC = {[a, b] | a, b ∈ R and a ≤ b}.

The Hausdorff metric H on KC is defined by

H(A, B) = max {d(A, B), d(B, A)} ,
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where

d(A, B) = max
a∈A

d(a, B) and d(a, B) = min
b∈B

d(a, b) = min
b∈B

|a − b| .

It is well known that (KC , H) is a complete metric space (see [5, 10]). The

Minkowski sum and scalar multiplication are defined by

A + B = {a + b | a ∈ A, b ∈ B} and λA = {λa | a ∈ A}. (2)

The space KC is not a linear space since it does not possess an additive inverse

and therefore subtraction is not well defined (see [5, 9, 10, 19]). Actually, KC

is a quasilinear space [4, 17].

A crucial concept in obtaining a useful working definition of derivative for

interval-valued functions is considering a suitable difference between two inter-

vals. Toward this end, one way is to use (2) by requiring

A − B = A + (−1)B.

However, this definition of difference has the drawback that

A − A 6= {0} (3)

in general (the exception is when we have a zero width interval, A = [a, a], that

is, a real number). One of the first attempts to overcome (3) was due to Hukuhara

[12] who defined what has become to be known as the Hukuhara difference (H -

difference). If A = B + C , then the H -difference of A and B, denoted by

A −H B, is equal to C . The H-difference of two intervals does not always exists

for arbitrary pairs of intervals. It only exists for intervals A and B for which the

widths are such that

μ(A) ≥ μ(B),

where for A = [a, a], μ(A) = a − a is the lenght of the interval A.

Recently, Stefanini and Bede [19] introduced the concept of generalized

Hukuhara difference of two sets A, B ∈ KC (gH-difference for short) and it

is defined as follows

A 	gH B = C ⇔






(a) A = B + C

or

(b) B = A + (−1)C.

(4)
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In case (a), the gH -difference is coincident with the H -difference. Thus, the

gH -difference is a generalization of the H -difference. On the other hand, gH -

difference exists for any two compact intervals A = [a, b], B = [c, d] ∈ KC

and

A 	gH B = [min{a − c, b − d}, max{a − c, b − d}] . (5)

For more details and properties of gH -difference see [19, 20].

3 Calculus for interval-valued functions

Henceforth T = [a, b] denotes a closed interval. Let F : T → KC be an

interval-valued function. We will denote F(t) = [ f (t), f (t)], where f (t) ≤

f (t), ∀t ∈ T . The functions f and f are called the lower and the upper

(endpoint) functions of F , respectively.

For interval-valued functions it is clear that F : T → KC is continuous at

t0 ∈ T if

lim
t→t0

F(t) = F(t0),

where the limit is taken in the metric space (KC , H). Consequently, F is con-

tinuous at t0 ∈ T if and only if its endpoint functions f and f are continuous

functions at t0 ∈ T .

We denote by C ([a, b],KC) the family of all continuous interval-valued

functions. Then, C ([a, b],KC) is a quasilinear spaces, see [4, 17]. On the

quasilinear space C ([a, b],KC) we can define a quasinorm ‖ ∙ ‖∞ given by

‖F‖∞ = sup
t∈[a,b]

H(F(t), {0}).

For more details and properties of quasilinear spaces and quasinorms see [4, 17].

Definition 3.1. ([5]) Let F : T → KC be an interval-valued function. The

integral (Aumann integral) of F over T is defined as
∫ t2

t1

F(t)dt =
{∫ t2

t1

f (t)dt | f ∈ S(F)

}
,

where S(F) is the set of all integrable selectors of F, i.e.:

S(F) = { f : T → R | f integrable and f (x) ∈ F(x) a.e.} .
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If S(F) 6= ∅, then the integral exists and F is said to be integrable (Aumann

integrable).

Note that if F is measurable then has a measurable selector (see [5, 7, 10])

which is integrable and, consequently, S(F) 6= ∅. More precisely.

Theorem 3.2. ([5]) Let F : T → KC be a measurable and integrably bounded

interval-valued function. Then it is integrable and
∫ b

a F(t)dt ∈ KC .

Corollary 3.3. ([5, 10]) A continuous interval-valued function F : T → KC is

integrable.

The Aumann integral satisfies the following properties.

Proposition 3.4. ([5, 10]) Let F, G : T → KC be two measurable and inte-

grably bounded interval-valued functions. Then

(i)
∫ t2

t1
(F(t) + G(t)) dt =

∫ t2
t1

F(t)dt +
∫ t2

t1
G(t)dt

(ii)
∫ t2

t1
F(t)dt =

∫ τ

t1
F(t)dt +

∫ t2
τ

F(t)dt, t1 < τ < t2.

Theorem 3.5. ([8]) Let F : T → KC be a measurable and integrably bounded

interval-valued function such that F(t) = [ f (t), f (t)]. Then f and f are

integrable functions and
∫ t2

t1

F(t)dt =
[∫ t2

t1

f (t)dt ,

∫ t2

t1

f (t)dt
]

.

The H -derivative (differentiability in the sense of Hukuhara) for interval-

valued functions was initially introduced in [12] and it is based on the H -

difference of intervals.

Definition 3.6. ([12]) Let F : T → KC be interval-valued function. We say

that F is differentiable at t0 ∈ T if there exists an element F ′(t0) ∈ KC such

that the limits

lim
h→0+

F(t0 + h) −H F(t0)

h
and lim

h→0+

F(t0) −H F(t0 − h)

h

exist and are equal to F ′(t0).
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Here the limits are taken in the metric space (KC , H). Note that the H -

derivative is very restrictive. For example, if we consider the interval-valued

function F(t) = (1− t3)[−2, 1], since F(0+h)−H F(0) = (1−h3)[−2, 1]−H

[−2, 1], the H -difference F(0 + h) −H F(0) does not exist as h → 0+. There-

fore, the H -derivative of F does not exist at t = 0. In general, if F(t) = C ∙ g(t)

where C is an interval and g : [a, b] → R+ is a function with g′(t0) < 0, then

F is not differentiable at t0 ([8, 9]). To avoid this difficulty, in [19] the authors

have introduced a more general definition of derivative for interval-valued

functions. For more details see [9, 19].

Definition 3.7. ([19]) The gH-derivative of an interval-valued function

F : T → KC at t0 ∈ T is defined as

F ′(t0) = lim
h→0

F(t0 + h) 	gH F(t0)

h
. (6)

If F ′(t0) ∈ KC satisfying (6) exists, we say that F is generalized Hukuhara

differentiable (gH-differentiable) at t0.

In connection with the endpoint functions of F we have the following result.

Theorem 3.8. ([9]) Let F : T → KC be an interval-valued function such that

F(t) = [ f (t), f (t)]. Then, F is gH-differentiable at t0 ∈ T if and only if one

of the following cases holds

(a) f and f are differentiable at t0 and

F ′(t0) =
[
min

{
( f )′(t0), ( f )′(t0)

}
, max

{
( f )′(t0), ( f )′(t0)

}]
;

(b) ( f )′
−(t0), ( f )′

+(t0), ( f )′
−(t0) and ( f )′

+(t0) exist and satisfy ( f )′−(t0) =

( f )′
+(t0) and ( f )′

+(t0) = ( f )′
−(t0). Moreover

F ′(t0) =
[
min

{
( f )′

−(t0), ( f )′
−(t0)

}
, max

{
( f )′

−(t0), ( f )′−(t0)
}]

=
[
min

{
( f )′

+(t0), ( f )′
+(t0)

}
, max

{
( f )′

+(t0), ( f )′+(t0)
}]

Example 3.9. Let the interval-valued function F : R → KC defined by

F(t) = [− |t | , |t |]. Then F is gH -differentiable in R but the endpoint func-

tions f and f are not differentiable at 0. Also, from Theorem 3.8 part (a) we
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have F ′(t) =
[
( f )′(t), ( f )′(t)

]
= [−1, 1] for all t ∈ (−∞, 0) and F ′(t) =

[
( f )′(t), ( f )′(t)

]
= [−1, 1] for all t ∈ (0, ∞). From part (b) we have F ′(0) =

[−1, 1].

From Example 3.9 we can see that on the interval (−∞, 0) the lenght of the

interval F(t) (for short, len(F(t))) is decreasing while on the interval (0, ∞)

the len(F(t)) is increasing and t = 0 is a switching point for the monotonicity

of len(F(t)), that is to say, in t = 0, len(F(t)) change its monotonicity. Thus,

we establish that (see [19]):

(I) F is differentiable at t0 ∈ T in the first form if f and f are differentiable

at t0 and

F ′(t0) =
[
( f )′(t0), ( f )′(t0)

]
;

(II) F is differentiable at t0 ∈ T in the second form if f and f are differentiable

at t0 and

F ′(t0) =
[
( f )′(t0), ( f )′(t0)

]
.

Even more, a point t0 ∈ T is said to be a switching point for the differen-

tiability of F , if in any neighborhood V of t0 there exist points t1 < t0 < t2
such that

(type I) F is differentiable at t1 in the first form while it is not differentiable

in the second form, and F is differentiable at t2 in the second form while

it is not differentiable in the first form, or

(type II) F is differentiable at t1 in the second form while it is not differen-

tiable in the first form, and F is differentiable at t2 in the first form while

it is not differentiable in the second form.

Next we give an interval version of the second fundamental theorem of calculus

which will be important to obtaining our main results.

Theorem 3.10. ([18]) Let F : [a, b] → KC be an interval-valued function. If

F is gH-differentiable in the first form (or second form) in [a, b] then

∫ b

a
F ′(t)dt = F(b) 	gH F(a).
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“main” — 2012/11/21 — 13:03 — page 464 — #8

464 OSTROWSKI TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS

Theorem 3.11. Let the interval-valued function F : [a, b] → KC gH-dif-
ferentiable on [a, b] with a finite number of switching points at a = c0 < c1 <

c2 < ∙ ∙ ∙ < cn < cn+1 = b and exactly at these points. Then we have

∫ b

a
F ′(x)dx =

n+1∑

i=1

[
F(ci ) 	gH F(ci−1)

]
.

Proof. For simplicity we consider only one switching point, the case of a

finite number of switching points follow similarly. Let us suppose that F is

differentiable on [a, c] in the first form and F is differentiable on [c, b] in the

second form. Then from Proposition 3.4 and Theorem 3.10 we have
∫ b

a
F ′(x)dx =

∫ c

a
F ′(x)dx +

∫ b

c
F ′(x)dx

= (F(c) 	gH F(a)) + (F(b) 	gH F(c)).

Thus the proof is completed. �

Remark 3.12. In [19] was presented a similar result to Theorem 3.11, but

with different arguments used in the proof. Moreover if c ∈ [a, b] is the only

switching point for differentiability of F and F(c) is a singleton not necessarely
∫ b

a F ′(x)dx = F(b)	gH F(a). For instance, if F is considered as in the Example

3.9, we have F(0) = 0 and
∫ 1
−1 F ′(x)dx 6= F(1) 	gH F(−1). It corrects the

Theorem 30 in [19].

Next we present a version of mean value theorem for gH -differentiable

interval-valued functions. This result will be also important in the next section.

Theorem 3.13. Let F : [a, b] → KC be an gH-differentiability interval-value
function on [a, b] with a finite number of switching points at a = c0 < c1 < c2 <

∙ ∙ ∙ < cn < cn+1 = b and exactly at these points. Assume that F ′ is continuous.
Then

H(F(b), F(a)) ≤
∥
∥F ′

∥
∥

∞ (b − a).

Proof. Firstly we suppose that F is gH -differentiable with no switching point

in the interval [a, b] then, taking on account the Theorem 3.10, we have

H (F(b), F(a)) = H
(
F(b) 	gH F(a), {0}

)
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= H
(∫ b

a
F ′(t)dt , {0}

)

= H
(∫ b

a
F ′(t)dt ,

∫ b

a
{0}dt

)

≤
∫ b

a
H

(
F ′(t) , {0}

)
dt

≤
∥
∥F ′

∥
∥

∞ (b − a).

Now, we consider only one switching point, the case of a finite number of switch-

ing points follow similarly. Let us suppose that F is differentiable on [a, c] in

the first form and F is differentiable on [c, b] in the second form. Then

H (F(b), F(a))

≤ H (F(b), F(c)) + H (F(c), F(a))

≤ (b − c) sup
t∈[c,b]

H(F ′(t), {0}) + (c − a) sup
t∈[a,c]

H(F ′(t), {0})

≤ (b − a) sup
t∈[a,b]

H(F ′(t), {0})

=
∥
∥F ′

∥
∥

∞ (b − a).

So the Theorem is established. �

4 Ostrowski type inequalities

In this Section we present some Ostrowski type inequalities for gH -differentiable

interval-valued functions. We want to remark that the concept of gH -different-

iability is the more general concept of differentiability than another concept for

interval-valued fuctions. For more details see [9, 13, 19].

Theorem 4.1. Let F : [a, b] → KC be a continuously gH-differentiable
interval-valued function on [a, b] with a finite number of switching points at
a = c0 < c1 < c2 < ∙ ∙ ∙ < cn < cn+1 = b and exactly at these points. Then, for
x ∈ [a, b] we have

H
(

1

b − a

∫ b

a
F(y)dy, F(x)

)
≤

∥
∥F ′

∥
∥

∞

(
(x − a)2 + (b − x)2

2(b − a)

)
. (7)

Comp. Appl. Math., Vol. 31, N. 3, 2012



“main” — 2012/11/21 — 13:03 — page 466 — #10

466 OSTROWSKI TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS

Proof. Taking in account Theorem 3.13 and properties of Hausdorff metric

we have

H
(

1

b − a

∫ b

a
F(y)dy, F(x)

)

= H
(

1

b − a

∫ b

a
F(y)dy ,

1

b − a

∫ b

a
F(x)dy

)

≤
1

b − a

∫ b

a
H(F(y), F(x))dy

≤
1

b − a

∫ b

a
sup

y∈[a,b]
H(F ′(y), {0}) |y − x | dy

=
1

b − a
sup

y∈[a,b]
H(F ′(y), {0})

∫ b

a
|y − x | dy

=
∥
∥F ′

∥
∥

∞

(
(x − a)2 + (b − x)2

2(b − a)

)
.

And the inequality (7) is proved. �

Proposition 4.2. Inequality (7) is sharp at x = a, in fact attained by F(y) =

(y − a)(b − a)A, with A ∈ KC being fixed.

Proof. We denote by A = [a, a], with a ≤ a. Since (y − a)(b − a) ≥ 0

then F(y) = (y − a)(b − a)A = [(y − a)(b − a)a, (y − a)(b − a)a]. From

Theorem 3.8 F is a continuously gH -differentible interval-valued function and

F ′(y) = (b − a)A. Thus, we have that

H
(

1

b − a

∫ b

a
F(y)dy , {0}

)
= H

(∫ b

a
((y − a)A)dy , {0}

)

= H
((∫ b

a
(y − a)dy

)
A , {0}

)

= H
(

(b − a)2

2
A, {0}

)

=
(b − a)2

2
H (A, {0}) ,
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and
(

sup
t∈[a,b]

H
(
F ′(y), {0}

)
) [

(x − a)2 + (b − x)2

2(b − a)

]

=
(

sup
t∈[a,b]

H((b − a)A, {0})
)

(b − a)2

2(b − a)

=
(b − a)2

2
H (A, {0}) .

So, the equality in (7) is attained. �

Example 4.3. We consider the interval-valued function F : [0, π ] → KC

defined by
F(t) = [2, 4] cos(4t),

or equivalently

F(t) =






[2 cos(4t), 4 cos(4t)] if 0 ≤ t ≤ π/8;

[4 cos(4t), 2 cos(4t)] if π/8 ≤ t ≤ 3π/8;

[2 cos(4t), 4 cos(4t)] if 3π/8 ≤ t ≤ 5π/8;

[4 cos(4t), 2 cos(4t)] if 5π/8 ≤ t ≤ 7π/8;

[2 cos(4t), 4 cos(4t)] if 7π/8 ≤ t ≤ π.

Since g(t) = cos(4t) is a continuously differentiable function then F is contin-
uously gH -differentiable and F ′(t) = [−16, −8] sin(4t). So,

∥
∥F ′

∥
∥

∞ = 16.
On the other hand, F has seven switching points for its gH -differentiability in

(0, π) which are {π/8, π/4, 3π/8, π/2, 5π/8, 3π/4, 7π/8}.
Figure 1 shows the endpoint functions of F , the solid line curve represent the

lower function f and the dashed one represent the upper function f .
The left hand of the inequality (7) is given by

H
(

1

π

∫ π

0
[2, 4] cos(4t)dt , F

(π

8

))
= H

(
1

π
[−2, 2], {0}

)
=

2

π

while the right hand is

16

((
π
8

)2
+

(
7π
8

)2

2π

)

= 16
(

50π

128

)
=

25π

4

Comp. Appl. Math., Vol. 31, N. 3, 2012



“main” — 2012/11/21 — 13:03 — page 468 — #12

468 OSTROWSKI TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
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Figure 1 – The interval-valued function F .

So, the inequality (7) is valid for F .

Note that the inequality (7) is valid for any continuously gH -differentiable

interval-valued function on [a, b] with a finite number of switching points. From

the example above we can see that F is continuously gH -differentiable and (7) is

valid however the endpoint functions are not necessarely differentiables. For this

special case, when endpoint functions are differentiables we have the following

result, where we omitted that F has a finite number of switching points.

Theorem 4.4. Let F : [a, b] → KC be an interval-valued function such that the
endpoint functions f , f are continuously differentiables. Then, F is continuously
gHdifferentiable and for x ∈ [a, b]

H
(

1

b − a

∫ b

a
F(y)dy, F(x)

)
≤

∥
∥F ′

∥
∥

∞

[
(x − a)2 + (b − x)2

2(b − a)

]
. (8)

Proof. Taking in account the Ostrowski inequality (1) we have

H
(

1

b − a

∫ b

a
F(y)dy, F(x)

)

= H
(

1

b − a

∫ b

a

[
f (y), f (y)

]
dy ,

[
f (x), f (x)

])
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= H
([

1

b − a

∫ b

a
f (y)dy,

1

b − a

∫ b

a
f (y)dy

]
,

[
f (x), f (x)

])

= max
{∣
∣
∣
∣

1

b − a

∫ b

a
f (y)dy − f (x)

∣
∣
∣
∣ ,

∣
∣
∣
∣

1

b − a

∫ b

a
f (y)dy − f (x)

∣
∣
∣
∣

}

≤ max
{∥
∥
∥
∥

(
f
)′∥∥

∥
∥

∞

[
(x − a)2 + (b − x)2

2(b − a)

]
,

∥
∥
∥
∥

(
f
)′∥∥

∥
∥

∞

[
(x − a)2 + (b − x)2

2(b − a)

]}

=
[
(x − a)2 + (b − x)2

2(b − a)

]
max

{∥
∥
∥
∥

(
f
)′

∥
∥
∥
∥

∞

,

∥
∥
∥
(

f
)′
∥
∥
∥

∞

}

=
∥
∥F ′

∥
∥

∞

[
(x − a)2 + (b − x)2

2(b − a)

]
.

Thus, the proof is completed. �

Next we present another one generalization of the Ostrowski type inequal-

ity (1).

Theorem 4.5. Let the interval-valued function F : [a, b] → Kc gH-different-
iable in (a, b) such that the endpoint functions f , f are continuously different-
iables. Let α : [a, b] → [a, b] and β : (a, b] → [a, b], α(x) ≤ x , β(x) ≥ x.
Then, for all x ∈ [a, b] we have

H
( ∫ b

a
F(t)dt , (β(x) − α(x))F(x) + (b − β(x))F(b) + (α(x) − a)F(a)

)

≤

∥
∥
∥
∥F ′

∥
∥
∥
∥

∞

(
1

2

[(
b − a

2

)2

+
(

x −
a + b

2

)2]

+
(

α(x) −
a + x

2

)2

+
(

β(x) −
b + x

2

)2)
.

Proof. From Theorem 47 in [11] and properties of Hausdorff metric, we have
that

H
( ∫ b

a
F(y)dy , (β(x) − α(x))F(x) + (b − β(x))F(b) + (α(x) − a)F(a)

)

= H
( ∫ b

a

[
f (y), f (y)

]
dy , (β(x) − α(x))

[
f (x), f (x)

]
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+ (b − β(x))

[
f (b), f (b)

]
+ (α(x) − a)

[
f (a), f (a)

])

= max
{∣
∣
∣
∣

∫ b

a
f (y)dy − (β(x) − α(x)) f (x) + (b − β(x)) f (b) + (α(x) − a) f (a)

∣
∣
∣
∣ ,

∣
∣
∣
∣

∫ b

a
f (y)dy − (β(x) − α(x)) f (x) + (b − β(x)) f (b) + (α(x) − a) f (a)

∣
∣
∣
∣

}

≤ max
{∥
∥
∥
∥

(
f
)′∥∥

∥
∥

∞

(
1

2

[(
b − a

2

)2

+
(

x −
a + b

2

)2]

+
(

α(x) −
a + x

2

)2

+
(

β(x) −
b + x

2

)2)
,

∥
∥
∥
∥

(
f
)′∥∥

∥
∥

∞

(
1

2

[(
b − a

2

)2

+
(

x −
a + b

2

)2]

+
(

α(x) −
a + x

2

)2

+
(

β(x) −
b + x

2

)2)}

= max
{∥
∥
∥
∥

(
f
)′∥∥

∥
∥

∞
,

∥
∥
∥
∥

(
f
)′∥∥

∥
∥

∞

} (
1

2

[(
b − a

2

)2

+
(

x −
a + b

2

)2]

+
(

α(x) −
a + x

2

)2

+
(

β(x) −
b + x

2

)2)

=

∥
∥
∥
∥F ′

∥
∥
∥
∥

∞

(
1

2

[(
b − a

2

)2

+
(

x −
a + b

2

)2]

+
(

α(x) −
a + x

2

)2

+
(

β(x) −
b + x

2

)2)

So, the inequality is established. �

Remark 4.6. As a consequence of Theorem 4.5 we have the following special
inequality: Let the interval-valued function F : [a, b] → Kc satisfying the same
conditions of Theorem 4.5. Then, if α(x) = a+x

2 and β(x) = b+x
2 we have, for

all x ∈ [a, b],

H
(∫ b

a
F(t)dt ,

b − a

2

[
F(x) +

(
x − a

b − a

)
F(a) +

(
b − x

b − a

)
F(b)

])

≤
1

2

∥
∥F ′

∥
∥

∞

[(
b − a

2

)2

+
(

x −
a + b

2

)2
]
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Finally, we stablish that:

a) For this functions α and β we get the best bound for any x ∈ [a, b] because

the inequality in Theorem 4.5 contains a sum of squares and the minimun

of this expresion occurs when each quadratic terms are zero.

b) If x = a+b
2 (the midpoint of [a, b]) we obtain an even more accurate

formula from Remark 4.6. In fact,

H
(∫ b

a
F(t)dt ,

b − a

2

[
F

(
a + b

2

)
+

F(a) + F(b)

2

])

≤
1

2

∥
∥F ′

∥
∥

∞

(
b − a

2

)2
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