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Abstract. A new trust-region SQP method for equality constrained optimization is considered.

This method avoids using a penalty function or a filter, and yet can be globally convergent to

first-order critical points under some reasonable assumptions. Each SQP step is composed of a

normal step and a tangential step for which different trust regions are applied in the spirit of Gould

and Toint [Math. Program., 122 (2010), pp. 155-196]. Numerical results demonstrate that this

new approach is potentially useful.
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1 Introduction

We consider nonlinear equality constrained optimization problems of the form
{

min f (x)

s.t. c(x) = 0,
(1.1)

where we assume that f : Rn → R and c : Rn → Rm with m ≤ n are twice

differentiable functions.
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A new method for first order critical points of problem (1.1) is proposed in

this paper. This method belongs to the class of two-phase trust-region methods,

e.g., Byrd, Schnabel, and Shultz [3], Dennis, El-Alem, and Maciel [6], Gomes,

Maciel, and Martínez [13], Gould and Toint [15], Lalee, Nocedal, and Plantenga

[17], Omojokun [21], and Powell and Yuan [23]. Also, our method, since it

deals with two steps, can be classified in the area of inexact restoration methods

proposed by Martínez, e.g., [1, 2, 8, 18, 19, 20].

The way we compute trial steps is similar to Gould and Toint’s approach [15]

that uses different trust regions. Each step is decomposed into a normal step and

a tangential step. The normal step is computed by solving a vertical subproblem

which aims to minimize the Gauss-Newton approximation of the infeasibility

measure within a normal trust region. The tangential step is computed by solving

a horizontal subproblem which aims to minimize the quadratic model of the

Lagrangian within a tangential trust region on the premise of controlling the

linearized infeasibility measure. Similarly, in Martínez’s inexact restoration

methods, a more feasible intermediate point is computed in the feasibility phase,

and then a trial point is computed on the tangent set that passes through the

intermediate point to improve the optimality measure.

In most common constrained optimization methods, penalty functions are used

to decide whether to accept trial steps. Nevertheless, there exist several diffi-

culties associated with using penalty functions, and in particular the choice of

penalty parameters. A too low parameter can result in an infeasible point being

obtained, or even an unbounded increase in the penalty. On the other hand, a

too large parameter can weaken the effect of the objective function, resulting

for example in slow convergence when the iterates follow the boundary of the

feasible region. To avoid using a penalty function, Fletcher and Leyffer [10] pro-

posed filter techniques that allow a step to be accepted if it sufficiently reduces

either the objective function or the constraint violation. For more theoretical and

algorithmic details on filter methods, see, e.g., [4, 9, 11, 14, 24, 25, 26, 27, 28].

The main feature of our method is that a new step acceptance mechanism that

avoids using a penalty function or a filter, and yet can promote global conver-

gence. In this sense, our method shares some similarities with Bielschowsky

and Gomes’ dynamic control of infeasibility (DCI) method [1] and Gould and
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Toint’s trust funnel method [15]. These methods adopt the idea of progressively

reducing the infeasibility measure. Of course, the new step acceptance mecha-

nism in this paper is quite different from the trust funnel and the trust cylinder

used in DCI.

The paper is organized as follows. In Section 2, we describe some main details

on the new algorithm. Assumptions and global convergence analysis are pre-

sented in Section 3. Section 4 is devoted to some numerical results. Conclusions

are made in Section 5.

2 The algorithm

2.1 Step computation. At the beginning of this section we define an infeasi-

bility measure as follows

h(x) ,
1

2
||c(x)||2 (2.1)

where || ∙ || denotes the Euclidean norm.

Each SQP step is composed of a normal step and a tangential step for which

different trust regions are used in the spirit of [15]. The normal step aims to

reduce the infeasibility, and the tangential step which approximately lies on the

plane tangent to the constraints aims to reduce the objective function as much as

possible.

The normal step nk is computed by solving the trust-region linear least-squares

problem, i.e., {
min 1

2 ||ck + Akv||2

s.t. ||v|| ≤ 1c
k .

(2.2)

Here ck = c(xk) and Ak = A(xk) is the Jacobian of c(x) at xk . We do not

require an exact Gauss-Newton step for (2.2), but a Cauchy condition

δ
c,n
k ,

1

2
||ck ||

2−
1

2
||ck+Aknk ||

2 ≥ κc||A
T
k ck || min

(
||AT

k ck ||

1 + ||AT
k Ak ||

,1c
k

)
(2.3)

for some constant κc ∈ (0, 1). In addition, we assume the boundedness condition

||nk || ≤ κn||ck || (2.4)

for some constant κn > 0. Note that the above two requirements on nk are very

reasonable in both theory and practice. If xk is a feasible point, we set nk = 0.
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After obtaining nk , we then aims to find a tangential step tk such that

||t || ≤ 1
f
k (2.5)

to improve the optimality on the premise of controlling the linearized infeasibil-

ity measure. Define a quadratic model function

mk(xk + d) , fk + 〈gk, d〉 +
1

2
〈d, Bkd〉,

where fk = f (xk), gk = ∇ f (xk), and Bk is an approximate Hessian of the

Lagrangian

L(x, λ) = f (x) + λT c(x).

Then we have

mk(xk + nk) = fk + 〈gk, nk〉 +
1

2
〈nk, Bknk〉,

and

mk(xk + nk + t) = fk + 〈gk, nk + t〉 +
1

2
〈nk + t, Bk(nk + t)〉

= mk(xk + nk) + 〈gn
k , t〉 +

1

2
〈t, Bkt〉,

where gn
k = gk + Bknk .

Let Zk be an orthonormal basis matrix of the null space of Ak if rank(Ak) <

n. We assume tk satisfies the following Cauchy-like condition

δ
f,t

k , mk(xk + nk) − mk(xk + nk + tk) ≥ κ f χk min
(

χk

1 + ||Bk ||
,1

f
k

)
(2.6)

for some constant κ f ∈ (0, 1), where

χk , ||Z T
k gn

k ||. (2.7)

Meanwhile we also require tk does not increase the linearized infeasibility

measure too much in the sense that

||ck + Ak(nk + tk)||
2 ≤ (1 − κt)||ck ||

2 + κt ||ck + Aknk ||
2 (2.8)

for some constant κt ∈ (0, 1). This condition on tk can be satisfied if tk is

enforced to lie (approximately) on the null space of Ak . Achieving both of

Comp. Appl. Math., Vol. 31, N. 2, 2012



“main” — 2012/8/28 — 11:47 — page 411 — #5

XIAOJING ZHU and DINGGUO PU 411

(2.6) and (2.8) are quite reasonable since we can compute tk as a sufficiently

approximate solution to





min 〈gn
k , t〉 + 1

2 〈t, Bkt〉

s.t. Akt = 0,

||t || ≤ 1
f
k ,

which is equivalent to
{

min 〈Z T
k gn

k , v〉 + 1
2 〈v, Z T

k Bk Zkv〉

s.t. ||v|| ≤ 1
f
k .

The dogleg method or the CG-Steihaug method can therefore be applied [17].

When rank(Ak) = n, we set χk = 0 and tk = 0.

After obtaining tk , we define the complete step

sk = nk + tk .

To obtain a relatively concise convergence analysis, we further impose that

||sk || ≤ 1k , κs min(1c
k,1

f
k ) (2.9)

for some sufficiently large constant κs ≥ 1. In fact, (2.9) can be viewed as an

assumption on the relativity of the sizes of 1c
k and 1

f
k . It should be made clear

that κc, κ f , κn, κt , κs are not chosen by users but theoretical constants. It also

should be emphasized that the double trust regions approach applied here differs

from that of Gould and Toint [15]. They do not compute tk if nk lies out of the

ball {v : ||v|| ≤ κB min(1c
k,1

f
k ), κB ∈ (0, 1)} and require the complete step

sk = nk + tk lies within the ball {v : ||v|| ≤ min(1c
k,1

f
k )}. In our approach, the

sizes of nk and tk are more independent of each other, but a stronger assumption

(2.9) is made. For more details about the differences see [15].

Now we consider the estimation of the Lagrange multiplier λk+1. We do not

exactly compute

λk+1 = −[AT
k ]I gk,

where the superscript I denotes the Moore-Penrose generalized inverse, but com-

pute λk+1 approximately solving the least-squares problem

min
λ

1

2
||gk + AT

k λ||2 (2.10)
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such that

||gk + AT
k λ|| ≤ τ0||gk || (2.11)

for some tolerance τ0 > 0.

2.2 Step acceptance. After computing the complete step sk , we turn to face

with the task of accepting or rejecting the trial point xk + sk .

We do not use a penalty function or a filter, but establish a new acceptance

mechanism to promote global convergence. Let us now construct a dynamic

finite set called h-set,

Hk = {Hk,1, Hk,2, ∙ ∙ ∙ , Hk,l},

where the l elements are sorted in a decreasing order, i.e., Hk,1 ≥ Hk,2 ≥ ∙ ∙ ∙ ≥

Hk,l . The h-set is initialized to H0 = {u, ∙ ∙ ∙ , u} for some sufficiently large

constant

u ≥ max(1, h(x0)), (2.12)

where x0 is the starting point. We then consider the following three conditions:

• h(xk) = 0, h(xk + sk) ≤ Hk,1; (2.13)

• h(xk) > 0, h(xk + sk) ≤ βh(xk); (2.14)

• h(xk) > 0, f (xk + sk) ≤ f (xk) − γ h(xk + sk),

h(xk + sk) ≤ β Hk,2. (2.15)

Here β, γ are two constants such that 0 < γ < β < 1. Note that (2.14) and

(2.15) imply

f (xk + sk) ≤ f (xk) − γ h(xk + sk) or h(xk + sk) ≤ βh(xk). (2.16)

After xk+1 = xk + sk has been accepted as the next iterate, we may update the

h-set with a new entry

h+
k , (1 − θ)h(xk) + θh(xk+1), θ ∈ (0, 1). (2.17)

This means we replace Hk,1 with h+
k and then re-sort the elements of h-set in a

decreasing order. It is clear to see that the infeasibility measure of the iterates
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is controlled by the h-set, and that the length of the h-set l affects the strength

of infeasibility control although only Hk,1 and Hk,2 are involved in conditions

(2.13-2.15).

All iterations are classified into the following three types:

• f -type. At least one of (2.13-2.15) is satisfied and

χk > 0, δ
f

k , f (xk) − mk(xk + sk) ≥ ζ δ
f,t

k , ζ ∈ (0, 1). (2.18)

• h-type. At least one of (2.13-2.15) is satisfied but (2.18) fails.

• c-type. None of (2.13-2.15) is satisfied.

If k is an f -type iteration, we accept sk and set xk+1 = xk + sk if

ρ
f

k ,
f (xk) − f (xk + sk)

δ
f

k

≥ η, η ∈ (0, 1). (2.19)

1
f
k and 1c

k are updated according to

1
f
k+1 =






min
(

max(τ11
f
k , 1̄), 1̂

)
if ρ

f
k ≥ η,

τ21
f
k , if ρ

f
k < η,

(2.20)

and

1c
k+1 =






max
(
1c

k, 1̄
)

if ρ
f

k ≥ η,

1c
k, if ρ

f
k < η.

(2.21)

If k is an h-type iteration, we always accept sk and set xk+1 = xk + sk . 1
f
k

and 1c
k are updated according to

1
f
k+1 = max(1

f
k , 1̄), (2.22)

and

1c
k+1 = max(1c

k, 1̄). (2.23)

If k is a c-type iteration, we accept sk and set xk+1 = xk + sk if

δc
k > 0, ρc

k ,
h(xk) − h(xk + sk)

δc
k

≥ η (2.24)
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where

δc
k ,

1

2
||ck ||

2 −
1

2
||ck + Aksk ||

2.

1c
k and 1

f
k are updated according to

1c
k+1 =






min
(

max(τ11
c
k, 1̄), 1̂

)
if ρc

k ≥ η,

τ21
c
k, if ρc

k < η, ck 6= 0,

1c
k, if ρc

k < η, ck = 0.

(2.25)

and

1
f
k+1 =






max
(
1

f
k , 1̄

)
if ρc

k ≥ η,

τ21
f
k , if ρc

k < η, ck = 0,

τ21
f
k , if ρc

k < η, ck 6= 0, 1
f
k > 1̄,

1
f
k , if ρc

k < η, ck 6= 0, 1
f
k ≤ 1̄.

(2.26)

The parameters in (2.20-2.23), (2.25) and (2.26), τ1, τ2, 1̄, 1̂, are some positive

constants such that τ2 < 1 ≤ τ1, and 1̄ < 1̂.

One can easily make some conclusions from the update rules of the trust

regions. Firstly, we observe that if k is successful, we have

1
f
k+1 ≥ 1̄ and 1c

k+1 ≥ 1̄. (2.27)

Secondly, 1
f
k is left unchanged on unsuccessful c-type iterations whenever xk

is infeasible and 1
f
k ≤ 1̄, and 1c

k is left unchanged on unsuccessful f -type

iterations. Thirdly, 1
f
k is reduced on unsuccessful f -type iterations and maybe

reduced on unsuccessful c-type iterations, and 1c
k can only be reduced on un-

successful c-type iterations. These properties are very crucial for our algorithm.

2.3 The algorithm. Now a formal statement of the algorithm is presented as

follows.

Algorithm 1. A trust-region SQP algorithm without a penalty function or a filter.

Step 0: Initialize k = 0, x0 ∈ Rn , B0 ∈ Sn×n . Choose parameters 1c
0,1

f
0 ,

1̄, 1̂ ∈ (0, +∞) that satisfy 1̄ < 1c
0,1

f
0 < 1̂, β, γ, θ, ζ, η, τ2 ∈

(0, 1), τ1, u ∈ [1, +∞) and l ∈ {2, 3, ∙ ∙ ∙ }.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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Step 1: If k = 0 or iteration k − 1 is successful, solve (2.10) for λk+1.

Step 2: Solve (2.2) for nk that satisfies (2.3) and (2.4) if ck 6= 0. Set nk = 0

if ck = 0.

Step 3: Compute tk that satisfies (2.5), (2.6), (2.8) and (2.9) if rank(Ak) < n.

Set tk = 0 if rank(Ak) = n. Complete the trial step sk = nk + tk .

Step 4: ( f -type iteration) One of (2.13-2.15) is satisfied and (2.18) holds.

4.1: Accept xk + sk if (2.19) holds.

4.2: Update 1
f
k and 1c

k according to (2.20) and (2.21).

Step 5: (h-type iteration) One of (2.13-2.15) is satisfied but (2.18) fails.

5.1: Accept xk + sk .

5.2: Update 1
f
k and 1c

k according to (2.22) and (2.23).

5.3: Update the h-set with h+
k .

Step 6: (c-type iteration) None of (2.13-2.15) is satisfied.

6.1: Accept xk + sk if (2.24) holds.

6.2: Update 1c
k and 1

f
k according to (2.25) and (2.26).

6.3: Update the h-set with h+
k if xk + sk is accepted.

Step 7: Accept the trial point. If xk + sk has been accepted, set xk+1 = xk + sk ,

else set xk+1 = xk .

Step 8: Update the Hessian. If xk + sk has been accepted, choose a symmetric

matrix Bk+1.

Step 9: Go to the next iteration. Increment k by one and go to Step 1.

Remarks. i) Conditions (2.3-2.6), (2.8) and (2.9) are some basic requirements

for step computations. We assume they are satisfied for all iterations. ii) h-

type iterations must be successful according to the mechanism of the algorithm.

iii) The mechanism of the algorithm implies that the h-set Hk is updated only on

h-type and successful c-type iterations. iv) Compared with the trust-cylinder of

Comp. Appl. Math., Vol. 31, N. 2, 2012
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DCI [1] and the trust-funnel [15], our h-set mechanism may be more flexible for

controlling the infeasibility measure.

3 Global convergence

Before starting our global convergence analysis, we make some assumptions as

follows.

Assumptions A

A1. Both f and c are twice differentiable.

A2. There exists a constant κB ≥ 1 such that, ∀ ξ ∈
⋃

k≥0[xk, xk + sk], ∀ k,

and ∀ i ∈ {1, ∙ ∙ ∙ , m},

1 + max
{
||gk ||, ||Bk ||, ||A(ξ)||, ||∇2ci (ξ)||, ||∇2 f (ξ)||

}
≤ κB . (3.1)

A3. f is bounded below in the level set,

L ,
{

x ∈ Rn | h(x) ≤ u
}
. (3.2)

A4. There exist two constants κh, κσ > 0 such that

h(x) ≤ κh =⇒ σmin(A(x)) ≥ κσ , (3.3)

where σmin(A) represents the smallest singular value of A.

In what follows we denote some useful index sets:

S ,
{
k | xk+1 = xk + sk

}

the set of successful iterations, F , H , and C, the sets of f -type, h-type, and

c-type iterations.

The first two lemmas reveal some useful properties of the h-set. These prop-

erties play an important role in the following convergence analysis, particularly

in driving the infeasibility measure to zero.

Lemma 1. If k ∈ S and xk is a feasible point which is not a first order critical

point, then k must be an f -type iteration and therefore the h-set is left unchanged

in iteration k. Furthermore, each component of the h-set is strictly positive.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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Proof. Since xk is feasible, δc
k = 0 and therefore k cannot be a successful c-

type iteration according to (2.24). Since xk is a feasible point which is not a first

order critical point, it follows nk = 0, δ
f

k = δ
f,t

k and (2.18) holds. Thus k must

be an f -type iteration. Then, according to the mechanism of the algorithm, each

component of Hk must be strictly positive. �

Lemma 2. For all k, we have

h(x j ) ≤ Hk,1 ≤ u, ∀ j ≥ k, (3.4)

and Hk,1 is monotonically decreasing in k.

Proof. Without loss of generality, we can assume that all iterations are suc-

cessful. We first prove the following inequality

h(xk) ≤ Hk,1 (3.5)

by induction. According to (2.12), we immediately have that (3.5) is true for

k = 0. For k ≥ 1, we consider the following three cases.

The first case is that k − 1 ∈ F . Then one of (2.13-2.15) holds and therefore,

according to the hypothesis h(xk−1) ≤ Hk−1,1, we have from (2.13-2.15) that

h(xk) ≤ max(Hk−1,1, βh(xk−1), β Hk−1,2) = Hk−1,1.

Since the h-set is not updated on an f -type iteration, we have Hk,1 = Hk−1,1.

Thus (3.5) follows.

The second case is that k −1 ∈ H . Lemma 1 implies that xk−1 is an infeasible

point. Then one of (2.14) and (2.15) holds and Hk−1 is updated with h+
k−1. It

follows from condition (2.14) or (2.15) that

h(xk) ≤ β max(h(xk−1), Hk−1,2).

Therefore the update rules of the h-set, together with (2.17), implies that (3.5)

holds.

The third case is that k −1 ∈ C. Then, according to (2.17) and (2.24), we have

h(xk) < h+
k−1. Since Hk−1 is updated with h+

k−1, it follows h+
k−1 ≤ Hk,1. Hence

we obtain (3.5) from the above two inequalities.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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Since max(h(xk+1), h(xk)) ≤ Hk,1 we have h+
k ≤ Hk,1 from (2.17). Thus the

monotonic decrease of Hk,1 follows. Finally, (3.4) follows immediately from

(3.5) and the monotonic decrease of Hk,1. �

We now verify that our algorithm satisfies a Cauchy-like condition on the

predicted reduction in the infeasibility measure.

Lemma 3. For all k, we have that

δc
k ≥ κtκc||A

T
k ck || min

(
||AT

k ck ||

1 + ||AT
k Ak ||

,1c
k

)
. (3.6)

Proof. It follows from (2.3) and (2.8) that

δc
k =

1

2
||ck ||

2 −
1

2
||ck + Aksk ||

2

≥
1

2
||ck ||

2 −
1

2
(1 − κt)||ck ||

2 −
1

2
κt ||ck + Aknk ||

2

=
1

2
κt(||ck ||

2 − ||ck + Aknk ||
2)

≥ κtκc||A
T
k ck || min

(
||AT

k ck ||

1 + ||AT
k Ak ||

,1c
k

)
.

�

The following lemma is a direct result of (3.1).

Lemma 4. For all k, we have that

1 + ||AT
k Ak || ≤ κ2

B . (3.7)

Proof. The proof is identical to that of the first part of Lemma 3.1 of [15]. �

The following lemma is a direct result of Taylor’s theorem.

Lemma 5. For all k, we have that

| f (xk + sk) − mk(xk + sk)| ≤ κB ||sk ||
2, (3.8)

and

| ||c(xk + sk)||
2 − ||ck + Aksk ||

2 | ≤ 2κC ||sk ||
2, (3.9)

where κC > κ2
B is a constant.
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Proof. The proof is similar to that of Lemma 3.4 of [15]. �

The following lemma is very important as for most of trust-region methods.

Lemma 6. Suppose that k ∈ F and that

1
f
k ≤

(1 − η)ζκ f χk

κBκ2
s

. (3.10)

Then ρ
f

k > η. Similarly, suppose that k ∈ C, ck 6= 0, and

1c
k ≤

(1 − η)κtκc||AT
k ck ||

κCκ2
s

. (3.11)

Then ρc
k > η.

Proof. The proof of both statements is similar to that of Theorem 6.4.2 of [5].

In fact, using (2.6), (2.18) and (3.1), we have

δ
f

k ≥ ζκ f χk min
(

χk

1 + ||Bk ||
,1

f
k

)
≥ ζκ f χk min

(
χk

κB
,1

f
k

)
.

Then it follows from (2.9) and (3.8) that if (3.10) holds then

|1 − ρ
f

k | =

∣
∣
∣
∣
∣

f (xk + sk) − mk(xk + sk)

δ
f

k

∣
∣
∣
∣
∣

≤
κB ||sk ||2

ζκ f χk min
(

χk
κB

,1
f
k

)

≤
κBκ2

s (1
f
k )2

ζκ f χk1
f
k

≤ 1 − η.

Hence, the first conclusion follows. Similarly, we use (2.9), (3.6), (3.7) and (3.9)

to obtain the second conclusion. �

We now verify below that our algorithm can eventually take a real iteration at

any point which is not an infeasible stationary point of h(x). We recall beforehand

the definition of an infeasibility stationary point of h(x).
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Definiton 1. We call x̂ an infeasible stationary point of h(x) if x̂ satisfies

A(x̂)T c(x̂) = 0 and c(x̂) 6= 0.

The algorithm will fail to progress towards the feasible region if started from

an infeasible stationary point since no suitable normal step can be found in this

situation. If such a point is detected, restarting the whole algorithm from a

different point might be the best strategy.

Lemma 7. Suppose that first order critical points and infeasible stationary

points never occur. Then we have that |S| = +∞.

Proof. Since xk + sk must be accepted if k is an h-type iteration, we only

consider k ∈ F ∪ C. First consider the case that xk is infeasible. Since the

assumption that xk is not an infeasible stationary point implies ||AT
k ck || > 0, it

follows from (3.6) that δc
k > 0 and from Lemma 6 that ρc

k ≥ η for sufficiently

small 1c
k . It also follows from Lemma 6 that ρ

f
k ≥ η for sufficiently small 1

f
k

if χk > 0. Note that k ∈ F\S implies χk > 0, χk+1 = χk , and 1
f
k+1 = τ21

f
k ,

and k ∈ C\S implies 1c
k+1 = τ21

c
k . Therefore, a successful iteration must be

finished at xk in the end.

Next we consider the case that xk is feasible. Since xk is not a first order

critical point we have χk > 0. Then it follows from Lemma 6 that ρ
f

k ≥ η for

sufficiently small 1
f
k . Furthermore, (2.13) must be satisfied if 1

f
k ≤

√
Hk,1
κC

.

Because, according to (3.9) and the fact that ck + Aksk = 0 when ck = 0 implied

by (2.8), we have h(xk + sk) ≤ κC ||sk ||2 ≤ Hk,1. Hence a successful iteration

must be finished at xk in the end. �

The following lemma is a crucial result of the mechanism of the algorithm.

Lemma 8. Suppose that, for some ε f > 0,

χk ≥ ε f . (3.12)

Then

1
f
k ≥ min

(

μ f , τ2

√
Hk,1

κC

)

, (3.13)
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where

μ f , τ2 min
(

(1 − η)ζκ f ε f

κBκ2
s

, 1̄

)
.

Moreover, (3.13) can be reduced to 1
f
k ≥ μ f if xk is infeasible. Similarly,

suppose that, for some εc > 0,

||AT
k ck || ≥ εc. (3.14)

Then,

1c
k ≥ μc , min

(
τ2(1 − η)κtκcεc

κCκ2
s

, 1̄

)
. (3.15)

Proof. The two statements are proved in the same manner, and immediately

result from (2.27), Lemma 6, the proof of Lemma 7 and the update rules of the

the trust-region radii. �

Now we consider the global convergence property of our algorithm in the case

that successful c-type and h-type iterations are finitely many.

Lemma 9. Suppose that |S| = +∞ and that |(H ∪ C) ∩ S| < +∞. Then

lim
k→∞,k∈S

χk = 0, (3.16)

and there exists an infinite subsequence K ⊂ S such that

lim
k→∞,k∈K

h(xk) = 0. (3.17)

Proof. Since all successful iterations must be f -type for sufficiently large k,

we can deduce from (2.18) and (2.19) that f (xk) is monotonically decreasing

in k for all sufficiently large k. For the purpose of deriving a contradiction, we

assume that (3.12) holds for an infinite subsequence K ⊂ S. Then (2.6), (2.18),

(3.1) and (3.13) together yield that, for sufficiently large k ∈ K,

δ
f

k ≥ ζκ f χk min
(

χk

1 + ||Bk ||
,1

f
k

)

≥ ζκ f ε f min

(
ε f

κB
, μ f , τ2

√
Hk,1

κC

)

.
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Then we have from (2.19) and the above inequality that, for sufficiently large

k ∈ K,

f (xk) − f (xk+1) ≥ ηδ
f

k ≥ ηζκ f ε f min

(
ε f

κB
, μ f , τ2

√
Hk,1

κC

)

.

Since the assumption of the lemma implies that the h-set is updated for finitely

many times, we have that Hk,1 is a constant for all sufficiently large k. This,

together with the monotonic decrease of f (xk), implies that limk→∞ f (xk) =

−∞. Since Lemma 2 implies {xk} is contained in the level set L defined by

(3.2), the below unboundedness of f (xk) contradicts the assumption A3. Hence

(3.12) is impossible and (3.16) follows.

Now consider (3.17). Assume that xk is infeasible for all sufficiently large

k; otherwise (3.17) follows immediately for some infinite subsequence K ⊂ S.

Then it follows from the monotonic decrease of f (xk), (2.16), and Lemma 1 of

[11] that limk→∞ h(xk) = 0, which also derives (3.17). �

Next we verify that the constraint function must converge to zero in the case

that h-type iterations are infinitely many.

Lemma 10. Suppose that |H | = +∞. Then limk→∞ h(xk) = 0.

Proof. Denote H = {ki }. Recalling that at least one of (2.13-2.15) holds on

h-type iterations and that xki is infeasible by Lemma 1, we deduce from (2.14),

(2.15), (2.17) and (3.4) that

h+
ki

= (1 − θ)h(xki ) + θh(xki +1)

≤ (1 − θ)Hki ,1 + θβ max(Hki ,2, h(xki ))

≤ (1 − θ + θβ)Hki ,1.

It then follows from the mechanism of the h-set that

Hki+l ,1 ≤ (1 − θ + βθ)Hki ,1.

Hence, from the above inequality and the monotonic decrease of Hk,1, we have

that

lim
k→∞

Hk,1 = 0. (3.18)

Thus, from (3.4) and (3.18), the result follows. �
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In what follows, to obtain global convergence, we will exclude a scenario for

successful c-type iterations which is less unlikely than being trapped into a local

infeasible stationary point. This scenario is

lim
k→∞,k∈C∩S

||AT
k ck || = 0 with lim inf

k→∞,k∈C∩S
||ck || > 0. (3.19)

We now verify below that the constraints also converges to zeros in the case that

successful c-type iterations are infinitely many provided that the above undesir-

able situation is avoided.

Lemma 11. Suppose that |C ∩ S| = +∞ and that (3.19) is avoided. Then

limk→∞ h(xk) = 0.

Proof. We first prove that

lim
k→∞,k∈C∩S

||AT
k ck || = 0. (3.20)

Assume, for the purpose of deriving a contradiction, that (3.14) holds for some

infinite subsequence indexed by K ⊂ C ∩ S. Recall that the h-set is updated on

successful c-type iterations and denote {ki } = K. It then follows from (2.17),

(2.24), (3.4), (3.6), (3.7), (3.14) and (3.15) that

Hki ,1 − h+
ki

≥ h(xki ) − h+
ki

= θ(h(xki ) − h(xki +1))

≥ θηδc
ki

≥ θηκtκc||A
T
ki

cki || min

(
||AT

ki
cki ||

1 + ||AT
ki

Aki ||
,1c

ki

)

≥ εh , θηκtκcεc min
(

εc

κ2
B

, μc

)
.

It then follows from the above inequality, the monotonic decrease of Hk,1 and

the mechanism of the h-set that

Hki ,1 − Hki+l,1 ≥ εh.

This, together with |K| = +∞, yields that Hk,1 is unbounded below, which

is impossible. Hence (3.20) holds.
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Since (3.19) does not hold, it follows from (3.20) that

lim inf
k→∞,k∈C∩S

||ck || = 0.

Thus, there exists an infinite subsequence indexed by J ⊆ C ∩ S such that

lim
k→∞,k∈J

||ck || = 0.

Since h(xk+1) ≤ h(xk) for all k ∈ C ∩ S, the above limit implies

lim
k→∞,k∈J

h+
k = 0

by (2.17). Then (3.18) follows from the facts that the h-set is updated on suc-

cessful c-type iterations and that Hk,1 is monotonically decreasing. Therefore

the result follows immediately from (3.4) and (3.18). �

In what follows, we give the global convergence property of our algorithm in

the case that successful c-type and h-type iterations are infinitely many.

Lemma 12. Suppose that |(H ∪ C) ∩ S| = +∞ and that (3.19) is avoided.

Then

lim
k→∞

h(xk) = 0 (3.21)

and if β is sufficiently close to 1, we have

lim inf
k→∞

χk = 0. (3.22)

Proof. Limit (3.21) follows immediately from Lemmas 10 and 11. Then we

consider (3.22). It follows from (2.4) and (3.21) that

lim
k→∞

nk = 0. (3.23)

Therefore, from (3.1) and (3.23), we have

lim
k→∞

δ
f,n

k = 0, (3.24)

where

δ
f,n

k , f (xk) − mk(xk + nk) = −gT
k nk −

1

2
nT

k Bknk .
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Assume now again, for the purpose of deriving a contradiction, that (3.12) holds

for all k sufficiently large. Then, if xk is infeasible, we have from (2.6), (3.1),

and Lemma 8 that

δ
f,t

k ≥ κ f χk min
(

χk

1 + ||Bk ||
,1

f
k

)

≥ εt , κ f ε f min
(

ε f

κB
, μ f

)

for all k sufficiently large. It then follows from (3.24) that, for all sufficiently

large k,

|δ f,n
k | ≤ (1 − ζ )εt . (3.25)

It is easy to see that, for all sufficiently large k such that (3.25) holds, we have

δ
f

k

δ
f,t

k

= 1 +
δ

f,n
k

δ
f,t

k

≥ 1 − (1 − ζ ) = ζ (3.26)

and therefore (2.18) holds. If xk is feasible, then nk = 0 and therefore (2.18)

must hold. Thus k cannot be an h-type iteration for all sufficiently large k.

Now consider any sufficiently large k ∈ (H ∪ C) ∩ S so that (3.25) holds and

h(xk) ≤ κh. (3.27)

Since (3.25) holds, we have k ∈ C∩S by the above analysis. Note that Lemma 1

implies that xk is infeasible. It follows from (3.3), (3.6), (3.7) and (3.27) that

δc
k ≥ κtκc||A

T
k ck || min

(
||AT

k ck ||

1 + ||AT
k Ak ||

,1c
k

)

≥ κtκcκσ ||ck || min
(

κσ ||ck ||

κ2
B

,1c
k

)
.

(3.28)

Reasoning as in the proof of (3.15) in Lemma 8, one can conclude that

1c
k ≥ min

(
τ2(1 − η)κtκcκσ ||ck ||

κCκ2
s

, 1̄

)
.

This, together with limk→∞ ck = 0, implies that

1c
k ≥

τ2(1 − η)κtκcκσ ||ck ||

κCκ2
s

(3.29)
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for all sufficiently large k. Then (3.28) and (3.29) yield

δc
k ≥ κtκcκσ ||ck || min

(
κσ ||ck ||

κ2
B

,
τ2(1 − η)κtκcκσ ||ck ||

κCκ2
s

)

≥ κtκcκσ min
(

κσ

κ2
B

,
τ2(1 − η)κtκcκσ

κCκ2
s

)
||ck ||

2

≥
τ2(1 − η)κ2

t κ2
c κ2

σ

κCκ2
s

||ck ||
2

= κβh(xk),

(3.30)

where

κβ ,
2τ2(1 − η)κ2

t κ2
c κ2

σ

κCκ2
s

.

Since k ∈ C ∩ S, we have from (2.24) and (3.30) that

h(xk+1) ≤ h(xk) − ηδc
k ≤ (1 − ηκβ)h(xk).

Then the above inequality implies that if β ∈ (0, 1) is sufficiently close to 1,

more specifically, if

1 − ηκβ ≤ β < 1,

it follows

h(xk+1) ≤ βh(xk).

Then xk+1 satisfies condition (2.14) and therefore k cannot be a c-type itera-

tion, which contradicts k ∈ C. Hence (3.22) holds and the proof is now com-

pleted. �

We now present the main theorem on the basis of all the results obtained above.

Theorem 1. Suppose that first order critical points and infeasible stationary

points never occur and that (3.19) is avoided. Then there exists a subsequence

indexed by K such that

lim
k→∞,k∈K

ck = 0,

and if β is sufficiently close to 1,

lim
k→∞,k∈K

Z T
k gk = 0.

As a consequence, if β is sufficiently close to 1, any accumulation point of the

sequence {xk}k∈K is a first order critical point.
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Proof. It is easy to see that if

lim
k→∞,k∈K

ck = 0,

then we have from (2.4), (2.7) and (3.1) that

lim
k→∞,k∈K

χk = lim
k→∞,k∈K

Z T
k (gk + Bknk) = lim

k→∞,k∈K
Z T

k gk .

This means χk defined by (2.7) is actually an optimality measure for first-

order critical points. Then the desired conclusions immediately follow from

Lemmas 7, 9 and 12. �

4 Numerical results

In this section, we present some numerical results for some small size examples

to demonstrate our new method may be promising. All the experiments were

run in MATLAB R2009b. Details about the implementation are described as

follows.

We initialized the approximate Hessian to the identity matrix B0 = I and

updated Bk by Powell’s damped BFGS formula [22]. The dogleg method was

applied to compute both normal steps and tangential steps. Moreover, each

tangential step was found in the null space of the Jacobian. We computed the

Lagrangian multiplier by using MATLAB’s lsqlin function. The parameters for

Algorithm 1 were chosen as:

β = 0.9999, γ = θ = ζ = η = 10−4,

τ1 = 1.1, τ2 = 0.5, l = 3, u = max(500, 1.5h(x0)),

1c
0 = 0.5 max(||x0||2,

√
n), 1

f
0 = 1.21c

0, 1̂ = 101c
0, 1̄ = 10−4.

Now we compare the performance of Algorithm 1 with that of SNOPT Ver-

sion 5.3 [12] based on the numbers of function and gradient evaluations required

to achieve convergence. A standard stopping criterion is used for Algorithm 1,

i.e.,

||ck ||∞ ≤ 10−6(1 + ||xk ||2),

and

||gk + AT
k λk+1||∞ ≤ 10−6(1 + ||λk+1||2).
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The test problems here are all the equality constrained problems from [16].

We ran SNOPT under default options on the NEOS Server (http://www.neos-

server.org/neos/solvers/nco:SNOPT/AMPL.html). The corresponding results

are shown in Table 1, where Nit, Nf, and Ng represent the numbers of successful

iterations, of function evaluations and of gradient evaluations, respectively. It

can be observed from Table 1 that Algorithm 1 is generally superior to SNOPT

for these problems.

Problem Algorithm 1 SNOPT

Name n m Nit Nf Ng Nit Nf Ng

hs06 2 1 7 8 8 5 9 8

hs07 2 1 10 11 11 18 31 30

hs08 2 2 6 7 7 2 7 6

hs09 2 1 8 9 9 9 9 8

hs26 3 1 19 20 20 25 25 24

hs27 3 1 18 21 19 22 24 23

hs28 3 1 6 7 7 4 4 4

hs39 4 2 18 22 19 20 31 30

hs40 4 3 6 7 7 7 8 7

hs42 4 2 8 9 9 8 9 8

hs46 5 2 29 32 30 28 27 26

hs47 5 3 21 24 22 24 32 31

hs48 5 2 8 12 9 6 6 6

hs49 5 2 22 24 23 37 33 32

hs50 5 3 13 15 14 31 22 21

hs51 5 3 6 8 7 6 6 6

hs52 5 3 8 9 9 5 5 5

hs56 7 4 11 12 12 13 15 14

hs61 3 2 9 10 10 69 169 168

hs77 5 2 11 15 12 15 15 14

hs78 5 3 7 8 8 9 8 7

hs79 5 3 8 11 9 14 15 14

Table 1 – Numerical results.

We also plot the logarithmic performance profiles proposed by Dolan and
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Moré [7] in Figure 1. In the plots, the performance profile is defined by

πs(τ ) ,
no. of problems where log2 (rp,s) ≤ τ

total no. of problems
, τ ≥ 0,

where rp,s is the ratio of Nf or Ng required to solve problem p by solver s and the

lowest value of Nf or Ng required by any solver on this problem. The ratio rp,s

is set to infinity whenever solver s fails to solve problem p. It can be observed

from Figure 1 that Algorithm 1 outperforms SNOPT for these problems.

Figure 1 – Performance profiles.
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5 Conclusions

In this paper, a new double trust regions sequential quadratic programming

method for solving equality constrained optimization is presented. Each trial

step is computed using a double trust regions strategy in two phases, the first

of which aims feasibility and the second, optimality. Thus, the approach is

similar to inexact restoration methods for nonlinear programming. The most

important feature of this paper is to prove global convergence without using a

penalty function or a filter. We propose a new step acceptance technique, the

h-set mechanism, which is quite different from Gould and Toint’s trust-funnel

and Bielschowsky and Gomes’ trust cylinder. Numerical results demonstrate the

efficiency of this new approach.
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