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Abstract. This work concerns the practical computation of the volumetric modulus, also

called normalized volume, of a convex cone in a Euclidean space of dimension beyond three.
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1 Introduction

Convex cones play a prominent role in many branches of applied mathemat-

ics. Throughout this work, 4(Rn) stands for the collection of nontrivial closed

convex cones in Rn . That a convex cone is nontrivial simply means that it is

different from the singleton {0} and different from the whole space Rn .

Which is the most relevant information concerning the geometric nature of

an element K taken from 4(Rn)? The answer to this question depends very

much upon the specific context under consideration. From a measure-theoretic

point of view, a natural question is whether or not K occupies a lot of room in

the space Rn in comparison with some reference set. The idea of volume of a

convex cone is captured by the next definition. Once and for all we assume that

n is greater than or equal to three.
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Definition 1.1. Let K ∈ 4(Rn). The volumetric modulus (or normalized

volume) of K is defined as the ratio

%(K ) =
voln(K ∩ Bn)

1
2 voln(Bn)

(1)

with Bn standing for the closed unit ball in Rn .

One truncates K with the ball Bn for obtaining a set with finite volume. Need-

less to say, “voln” refers to the n-dimensional volume. The coefficient 1/2 in

the denominator of (1) has been introduced on purpose. With such a calibration

factor, the ratio %(K ) indicates how much room occupies K when compared

with a half-space. In contrast to [20], we use a half-space as reference set and

not the whole space Rn . If one adopts Definition 1.1, then one has the follow-

ing properties:

{
%(K ) : K ∈ 4(Rn)

}
= [0, 1],

%(K ) = 0 if and only if K has empty interior, (2)

%(K ) = 1 if and only if K is a half-space.

Instead of focusing on the volume of the convex set K ∩ Bn , one could per-

fectly well put the emphasis on the surface that K produces over the unit sphere

Sn of Rn . Indeed, one has the formula

%(K ) =
voln−1(K ∩ Sn)

1
2 voln−1(Sn)

, (3)

where “areas” are computed with respect to the spherical Lebesgue measure in

Sn . The numerator of the ratio (3) is sometimes called the solid angle of K . The

literature on solid angles is quite extensive for the case n = 3, but there are still

important things to be said in higher dimensions.

2 Preliminaries

A convex cone is called solid if its interior is nonempty. The property (2) sug-

gests that %(K ) can be used as tool for measuring the degree of solidity of K .

The next proposition shows that the function % : 4(Rn) → R qualifies as index
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of solidity in the sense of [15]. As usual, one defines the distance between two

elements K1, K2 of the set 4(Rn) by means of the expression

δ
(
K1, K2

)
= haus

(
K1 ∩ Bn, K2 ∩ Bn

)

with haus(∙ , ∙) standing for the Pompeiu-Hausdorff metric on the collection of

all of compact nonempty subsets of Rn .

Proposition 2.1. One has:

(a) % : 4(Rn) → R is continuous with respect to the metric δ.

(b) % : 4(Rn) → R is monotonic in the sense that K1 ⊂ K2 implies %(K1) ≤

%(K2).

(c) %(Q(K )) = %(K ) for any K ∈ 4(Rn) and any orthogonal matrix Q of

order n.

Proof. The proof is essentially a matter of exploiting the general properties

of the n-dimensional Lebesgue measure (monotonicity, orthogonal invariance,

etc). �

There are only few examples of convex cones for which the volumetric mod-

ulus admits an explicit and easily computable formula. The oldest and best

known example is recalled below.

Example 2.2. Consider a polyhedral convex cone K in R3 generated by three

linearly independent unit vectors {g1, g2, g3}. The solid angle of K can be

computed by using the equality

tan
(

area(K ∩ S3)

2

)
=

|det[g1, g2, g3]|

1 + 〈g1, g2〉 + 〈g2, g3〉 + 〈g1, g3〉
. (4)

Hence, the volumetric modulus of K is given by

%(K ) =
1

π
arctan

(
|det[g1, g2, g3]|

1 + 〈g1, g2〉 + 〈g2, g3〉 + 〈g1, g3〉

)
. (5)
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If the argument of arctan is negative, then one adds 1 to the right-hand side of

(5). The triple product formula (4) is sometimes attributed to van Oosterom

and Strackee [21], but, as rightly pointed out by Eriksson [7], such equal-

ity appears already in Euler’s manuscript “De mensura angulorum solidorum”,

1781.

While working in higher dimensional spaces, the computation of a volumetric

modulus is usually a cumbersome task, a notable exception being the case of a

circular cone

Ra,ϑ =
{

x ∈ Rn : ‖x‖ cosϑ ≤ 〈a, x〉
}
.

The parameters a ∈ Sn and ϑ ∈ [0, π/2] stands, respectively, for the revolution

axis and the half-aperture angle of the cone. For notational convenience, we

introduce the positive constant

κn =
∫ π/2

0
(sin t)n−2dt =

√
π

2

0
(

n−1
2

)

0
(

n
2

)

whose explicit evaluation presents no difficulty. As usual, 0 stands for the Euler

gamma function.

Proposition 2.3 (cf. [23]). Let a ∈ Sn and ϑ ∈ [0, π/2]. Then,

%(Ra,ϑ ) = Fn(ϑ) :=
1

κn

∫ ϑ

0
(sin t)n−2dt. (6)

Furthermore,

0
(

n
2

)
(sin ϑ)n−1

0
(

n+1
2

) √
π cosϑ

[
1 −

(tan ϑ)2

n

]
≤ %(Ra,ϑ ) ≤

0
(

n
2

)
(sin ϑ)n−1

0
(

n+1
2

) √
π cosϑ

.

A short and simple proof of (6) runs as follows. Since % is orthogonally

invariant, there is no loss of generality in assuming that a is the first canonical

vector of Rn . The volume of Ra,ϑ ∩ Bn is given by the n-fold integral

2
∫ 1

0

∫ ϑ

0

∫ π

0
. . .

∫ π

0
rn−1(sin φ1)

n−2(sin φ2)
n−3 . . . (sin φn−2)

dr dφ1 dφ2 . . . dφn−1
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with r, φ1, . . . , φn−1 standing for the usual hyperspherical coordinates. By un-

folding the above integral, one gets

2
∫ 1

0
rn−1dr

∫ ϑ

0
(sin φ1)

n−2dφ1

∫ π

0
(sin φ2)

n−3dφ2

. . .

∫ π

0
sin φn−2dφn−2

∫ π

0
dφn−1.

The half-volume of Bn is computed in the same way, except that integration

with respect to φ1 runs now from 0 to π/2. By passing to the quotient and

removing the terms that cancel out, one ends up with (6).

Proposition 2.3 was obtained and used by Shannon [23] for estimating error

probabilities while decoding optimal codes in a Gaussian channel. See [10] for

a more updated reference. This is just one of the many areas of application of

the concept of volumetric modulus.

Corollary 2.4. The n-dimensional Lorentz cone

Ln =
{

x ∈ Rn :
[
x2

1 + . . .+ x2
n−1

]1/2
≤ xn

}

has a volumetric modulus given by

%(Ln) =
1

κn

∫ π/4

0
(sin t)n−2dt.

Furthermore,

lim
n→∞

(
√

2)n−3√πn %(Ln) = 1.

Proof. The proof of the corollary is a matter of applying Proposition 2.3 with

ϑ = π/4. The asymptotic behavior of %(Ln) follows by combining the sandwich

0
(

n
2

)

0
(

n+1
2

) √
π

(√
2

2

)n−2 (
1 −

1

n

)
≤ %(Ln) ≤

0
(

n
2

)

0
(

n+1
2

) √
π

(√
2

2

)n−2

and Stirling’s approximation formula for factorials. �

3 Numerical integration method

We next address the problem of evaluating the volumetric modulus of a polyhe-

dral convex cone. The following result can be found in [20], although under a

slightly different notation.
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Lemma 3.1. Let K be a polyhedral convex cone in Rn generated by n linearly

independent unit vectors {g1, . . . , gn}. Then,

%(K ) = 2

√
detM

πn/2

∫

Rn
+

e−〈ξ,Mξ 〉dξ (7)

with M = [〈gi , g j 〉]i, j=1,...,n standing for the Gramian matrix associated to the

generators.

The multiple integral in (7) can be computed explicitly only in rare circum-

stances. One favorable situation occurs when the generators of the cone are

mutually orthogonal.

Corollary 3.2. Let K be a polyhedral convex cone in Rn generated by n mu-

tually orthogonal unit vectors. Then, %(K ) = (1/2)n−1.

Proof. By orthogonality, M is the identity matrix. Hence,

e−〈ξ,Mξ 〉 = e−ξ2
1 . . . e−ξ2

n ,

and (7) can be evaluated by repeated one-dimensional integration. �

The following result can be seen as an extension of Corollary 3.2. For a

symmetric matrix M , one writes

μmin(M) = min
ξ≥0, ‖ξ‖=1

〈ξ,Mξ 〉, (8)

μmax(M) = max
ξ≥0, ‖ξ‖=1

〈ξ,Mξ 〉, (9)

where ξ ≥ 0 indicates that each component of the vector ξ is nonnegative. The

above numbers appear once and over again in linear algebra and optimization.

For a practical computation of (8) and (9), one can use for instance the pre-activity

method of Seeger and Torki [22, Theorem 3].

Proposition 3.3. Let K be a polyhedral convex cone in Rn generated by n

linearly independent unit vectors. Let M be the Gramian matrix associated to

the generators. Then,
(

1

2

)n−1 √
detM

[μmax(M)]
n/2 ≤ %(K ) ≤

(
1

2

)n−1 √
detM

[μmin(M)]
n/2 . (10)
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Proof. From the definition of μmin(M) and μmax(M), one sees that

μmin(M)‖ξ‖
2 ≤ 〈ξ,Mξ 〉 ≤ μmax(M)‖ξ‖

2

for all ξ ∈ Rn
+. Lemma 3.1 completes the proof. �

If one does not wish to bother computing the numbers μmin(M) and μmax(M),

then one can use the coarser estimates
(

1

2

)n−1 √
detM

[λmax(M)]
n/2 ≤ %(K ) ≤

(
1

2

)n−1 √
detM

[λmin(M)]
n/2 (11)

with λmin(M) and λmax(M) denoting, respectively, the smallest and the largest

eigenvalue of M .

Example 3.4. Let K be the polyhedral convex cone in R4 generated by the

linearly independent unit vectors

g1 =
1

2








1

−1

−1

1







, g2 =

1

10








5

1

7

5







, g3 =

1

7








−4

4

1

4







, g4 =

1

11








−4

−5

8

4







.

In this example, the associated Gramian matrix

M =








1 1/10 −5/14 −3/22

1/10 1 11/70 51/110

−5/14 11/70 1 20/77

−3/22 51/110 20/77 1








has both positive and negative off-diagonal entries. A matter of computation

yields detM = 0.607185 and

{
λmin(M) = 0.475562, λmax(M) = 1.672900,

μmin(M) = 0.642857, μmax(M) = 1.607770.

In view of (11), one has 0.0348 ≤ %(K ) ≤ 0.4307. By using (10) one gets the

sharper estimates 0.0377 ≤ %(K ) ≤ 0.2357.
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As a general rule, the term e−〈ξ,Mξ 〉 goes fast to 0 as ‖ξ‖ → ∞. It is there-

fore reasonable to approximate the multiple integral appearing in (7) by using a

truncated integral

τ(M, b) =
∫

[0,b]n
e−〈ξ,Mξ 〉dξ,

which in turn can be evaluated with the help of any numerical integration tech-

nique. For instance, one may consider the quadrature formula

τN (M, b) =




N∑

k1=1

. . .

N∑

kn=1

e−〈ξ (k),Mξ (k)〉




(

b

N

)n

(12)

obtained with a regular partition of the integration box [0, b]n , and with function

evaluation at the center

ξ (k) = ξ (k1,...,kn) =
((

k1 −
1

2

)
b

N
, . . . ,

(
kn −

1

2

)
b

N

)

of each sub-box

V (k) = V (k1,...,kn) =
n∏

i=1

[

(ki − 1)
b

N
, ki

b

N

]
.

The quality of the numerical approximation technique can be controlled with

the help of the next proposition. As usual, the notation

erf[ ∙ ] =
2

√
π

∫ (∙)

0
e−t2

dt

stands for the Gaussian error function.

Proposition 3.5. Let K be a polyhedral convex cone in Rn generated by n

linearly independent unit vectors. Let M be the Gramian matrix associated to

the generators. Then,

%(K ) = 2

√
detM

πn/2
(τN (M, b)+ ε1 + ε2) . (13)

Here ε2 = τ(M, b)− τN (M, b) is the error induced by the quadrature formula

(12) and

ε1 =
∫

Rn
+\[0,b]n

e−〈ξMξ 〉dξ
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is the error due to the truncation of the domain of integration in (7). One has

1 −
[
erf

(
b
√
μmax(M)

)]n

[μmax(M)]
n/2 ≤

2n

πn/2
ε1 ≤

1 −
[
erf

(
b
√
μmin(M)

)]n

[μmin(M)]
n/2 .

Proof. Formula (13) is a direct consequence of Lemma 3.1. On the other

hand, it is clear that
∫

Rn
+\[0,b]n

e−μmax(M)‖ξ‖2
dξ ≤ ε1 ≤

∫

Rn
+\[0,b]n

e−μmin(M)‖ξ‖2
dξ .

But
∫

Rn
+\[0,b]n

e−a‖ξ‖2
dξ =

∫

Rn
+

e−a‖ξ‖2
dξ −

∫

[0,b]n
e−a‖ξ‖2

dξ

=
[∫ ∞

0
e−au2

du
]n

−
[∫ b

0
e−au2

du
]n

=
[ π

4a

]n/2 {
1 −

[
erf

(
b
√

a
)]n

}

for any positive real a. �

By proceeding in a standard way, one can obtain also an upper estimate for

|ε2|. Notice that

|ε2| =

∣
∣
∣
∣
∣
∣

N∑

k1=1

. . .

N∑

kn=1

{∫

V (k)
e−〈ξ,Mξ 〉dξ − e−〈ξ (k),Mξ (k)〉

(
b

N

)n}
∣
∣
∣
∣
∣
∣

≤
N∑

k1=1

. . .

N∑

kn=1

∫

V (k)

∣
∣
∣e−〈ξ,Mξ 〉 − e−〈ξ (k),Mξ (k)〉

∣
∣
∣ dξ

≤




N∑

k1=1

. . .

N∑

kn=1

γ (k)




(

b

N

)n

with

γ (k) = sup
ξ∈V (k)

∣
∣
∣e−〈ξ,Mξ 〉 − e−〈ξ (k),Mξ (k)〉

∣
∣
∣

bounding the quadrature error over the sub-box V (k). The above supremum

could be worked out in detail, but it is not worthwhile spending too much effort

on this point.
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We have tested the numerical integration method on the cone K of Exam-

ple 3.4. The same cone will be used later for testing other methods as well. The

impact of the truncation level b and the mesh size b/N can be seen in Table 1.

The best estimate of %(K ) is to be found in the right lower corner.

b/N b = 3 b = 4 b = 5

0.10 0.080797 0.080810 0.080810

0.05 0.080847 0.080861 0.080861

0.02 0.080862 0.080875 0.080875

Table 1 – Estimation of the volumetric modulus of the cone K of Example 3.4 by using the

numerical integration method.

It is important to choose the parameter b in an appropriate manner. For the

cone of Example 3.4, the truncation error ε1 is sandwiched as follows:

0.61685
1 − [erf (1.26798 b)]4

2.58492
≤ ε1 ≤ 0.61685

1 − [erf (0.80178 b)]4

0.41327
.

One sees that b = 4 yields already a fairly small truncation error, namely,

ε1 ≤ 3.4 × 10−5.

4 Multivariate power series method

The n-dimensional version of Example 2.2 has been treated by Ribando [20].

This author proposes estimating the volumetric modulus of a polyhedral convex

cone K with the help of a multivariate power series
∑

r ar zr in the n(n − 1)/2

variables

z =
(
〈g1, g2〉, . . . , 〈g1, gn〉, 〈g2, g3〉, . . . , 〈gn−1, gn〉

)
. (14)

The vector (14) collects the entries appearing in the upper triangular part of the

Gramian matrix M . The multinomial notation zr has its usual meaning, i.e.,

zr = 〈g1, g2〉r1,2 . . . 〈g1, gn〉r1,n 〈g2, g3〉r2,3 . . . 〈gn−1, gn〉rn−1,n .

The multi-index r = (r1,2, . . . , r1,n, r2,3, . . . , rn−1,n) in the summation symbol
∑

r runs over Nn(n−1)/2. The sum of all entries of r is denoted by

|r | =
∑

i< j

ri, j .
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Given that r is a vector, there is no risk of confusion with the absolute value

notation. We also need the notation

r j,i =

{
1 if j = i,

ri, j if j > i.

Theorem 4.1 (cf. [20]). Let K be a polyhedral convex cone inRn generated by

n linearly independent unit vectors {g1, . . . , gn}. Let M be the Gramian matrix

associated to the generators of K . Then,

(a) The volumetric modulus of K is given by

%(K ) =
(

1

2

)n−1 √
detM

∑

r

ar zr (15)

in case of convergence of the multivariate power series. Here, the coeffi-

cient ar is defined by

ar =
1

(π)n/2

(−2)|r |

∏
i< j (ri, j !)

n∏

`=1

0



1

2

n∑

j=1

r`, j



 .

(b) The convergence of the power series is guaranteed if the matrix M̂,

given by

M̂i, j =

{
1 if i = j,

−|〈gi , g j 〉| if i 6= j,
(16)

is positive definite.

As one can see, the coefficient ar is quite complicated. Besides, formula (15)

is only valid on the domain of convergence of the power series. Anyway, one

may consider evaluating the volumetric modulus of K by using a truncated form

of (15), namely,

%(K ) ≈
(

1

2

)n−1 √
detM

∑

|r |≤m

ar zr . (17)

We refer to (17) as the m-th order Ribando approximation of %(K ). One can

check that

ar =

{
1 if |r | = 0,

−2/π if |r | = 1,
(18)
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so the first-order Ribando approximation of %(K ) takes the form

%(K ) ≈
(

1

2

)n−1 √
detM



1 −
2

π

∑

i< j

〈gi , g j 〉



 .

Second and higher-order approximations must be worked out with the help of

the computer.

We have evaluated the volumetric modulus of the cone K of Example 3.4 by

using (17). For this particular cone, the matrix (16) is given by

M̂ =








1 −1/10 −5/14 −3/22

−1/10 1 −11/70 −51/110

−5/14 −11/70 1 −20/77

−3/22 −51/110 −20/77 1







.

Since λmin(M̂) = 0.25256 is positive, we are then in the region of validity of

formula (15). Table 2 shows the quality of the estimation (17) as function of the

truncation level m. As expected, the best results are obtained for large values of

m. The cases m = 20 and m = 40 are undistinguishable because the associated

estimates differ only after the sixth decimal place.

m = 0 m = 1 m = 2 m = 5 m = 10 m = 20 m = 40

0.097403 0.067204 0.082871 0.079939 0.080930 0.080878 0.080878

Table 2 – Estimation (17) of the volumetric modulus of the cone K of Example 3.4.

Remark 4.2. Positive definiteness of the matrix M̂ is a fundamental assump-

tion for the applicability of the power series method. For instance, if K is

generated by the vectors

g1 =






√
2/2

√
2/2

0




 , g2 =






√
2/2

0
√

2/2




 , g3 =







μ√
1−μ2

2√
1−μ2

2





 ,

then one observes the following two computational facts. Firstly, if one

chooses μ = 0.01, then

λmin(M̂) ≈ −0.0094 < 0.
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Numerical experimentation with this particular choice confirms the failure of

convergence of the power series
∑

r ar zr . And, secondly, if one chooses

μ = −0.01, then

λmin(M̂) ≈ 0.095 > 0.

As predicted by the theory, the power series
∑

r ar zr converges. However, it

does it very slowly because M̂ is nearly singular.

Besides its use as tool for computing volumetric moduli, Theorem 4.1 has

also some theoretical implications. By way of example, we state the following

corollary.

Corollary 4.3. Let K be a polyhedral convex cone in Rn generated by n lin-

early independent unit vectors. Suppose that all pairs of generators form the

same angle, say

ψ ∈
]

arccos
(

1

n − 1

)
, π − arccos

(
1

n − 1

)[
. (19)

Then,

%(K ) =
(√

1 − cosψ

2

)n−1 √
1 + (n − 1) cosψ P(cosψ) (20)

where P(x) =
∑∞

q=0 cq xq is a real variable power series whose general term is

given by

cq =
(−2)q

(π)n/2

∑

|r |=q

1
∏

i< j (ri, j !)

n∏

`=1

0



1

2

n∑

j=1

r`, j



 .

Proof. Let M be the Gramian matrix associated to the generators {g1, . . . , gn}

of the cone. By assumption, one has 〈gi , g j 〉 = cosψ whenever i 6= j . As

shown in [19, Lemma 3], this equi-angularity condition implies that

detM = (1 − cosψ)n−1[1 + (n − 1) cosψ].

One also has
∑

r

ar zr =
∞∑

q=0




∑

|r |=q

ar





︸ ︷︷ ︸
cq

(cosψ)q .
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By plugging all this information in (15), one arrives at the formula (20). On

the other hand,
∑∞

q=0 cq xq converges for any x ∈ R such that the matrix M̂ ,

given by

M̂i, j =

{
1 if i = j,

−|x | if i 6= j,

is positive definite. In other words, the power series P converges on
]
−1/(n −1),

1/(n− 1)
[
. This explains why we are asking ψ to satisfy the condition (19). �

In view of (18), one has c0 = 1 and c1 = −n(n − 1)/π . Evaluating the

coefficient c2 is a more involved task. A matter of computation shows that

ar =






1/2 if |r | = 2 and Case I occurs,

2/π if |r | = 2 and Case II occurs,

4/π2 if |r | = 2 and Case III occurs,

where Case I occurs when the multi-index r contains a “2”, Case II refers to

the configuration

ri1, j1 = 1, ri2, j2 = 1 with i1 = i2 or j1 = j2, (21)

and Case III refers to the the last possible alternative, i.e.,

ri1, j1 = 1, ri2, j2 = 1 with i1 6= i2 and j1 6= j2.

One gets in this way

c2 =
n(n − 1)

2

(
1

2

)
+ χn

(
2

π

)
+

[
n(n − 1)

4

(
n(n − 1)

2
− 1

)
− χn

](
4

π2

)
,

where

χn =
n(n − 1)(n − 2)

3
counts the number of ways of forming the configuration (21).

Remark 4.4. The condition (19) forces ψ to be in a rather narrow interval

around π/2. For the particular choice ψ = π/2, one obtains again the formula

of Corollary 3.2. Suppose now that ψ slightly deviates from orthogonality,

i.e. ψ = (π/2)+ ε. In such a case,

%(K ) ≈
(

1

2

)n−1 [
1 +

n(n − 1)

π
ε

]
.
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To see this, one needs to differentiate the right-hand side of (20) with respect

to the variable ψ , and then one has to evaluate the derivative at π/2. Of course,

second-order differentiation of (20) leads to an approximation formula that in-

corporates an additional term in ε2.

5 Random techniques

Let L(X) denotes the distribution law of a random vector X . An n-dimensional

random vector X has a spherically symmetric distribution if

L(X) = L(Q X) for all Q ∈ On, (22)

where On stands for the group of orthogonal matrices of order n. Spherically

symmetric distributions have been extensively studied in the literature, so we do

not need to indulge in the analysis of these mathematical objects.

The next proposition is a key result of this section. The formulation of Propo-

sition 5.1 is strikingly simple, but the consequences are manifold.

Proposition 5.1. Let K ∈ 4(Rn). Then,

%(K ) = 2P[X ∈ K ] (23)

for any absolutely continuous1 n-dimensional random vector X with spherically

symmetric distribution.

Proof. Absolute continuity and spherical symmetry ensure that the random

vector X/‖X‖ is well defined and uniformly distributed over Sn (cf. [5, Theo-

rem 2.1]). Hence,

P[X ∈ K ] = P
[

X

‖X‖
∈ K ∩ Sn

]
=

voln−1(K ∩ Sn)

voln−1(Sn)
=

1

2
%(K ) . �

For all practical purposes, think of X as a Gaussian vector, i.e., normally dis-

tributed with the origin as mathematical expectation and with the identity matrix

as covariance matrix. This is the most conspicuous example of an absolutely

1Absolute continuity is not strictly necessary in Proposition 5.1. The assumption P[X = 0] =

0 is all what is needed.
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continuous random vector satisfying the spherical symmetry requirement (22).

Another useful option is considering X as a random vector with uniform prob-

ability distribution over the unit sphere Sn . The advantage of latter choice is

that one does not have to worry about normalization since, by construction, the

random vector is already normalized.

Despite its simplicity, Proposition 5.1 is a powerful tool for computing the

volumetric modulus of a large variety of convex cones. As way of illustration,

we mention the case of a specially structured polyhedral convex cone arising in

maximum likelihood estimation (cf. [4, 11]).

Corollary 5.2. The downward monotonic cone

Dn =
{

x ∈ Rn : x1 ≥ . . . ≥ xn
}

has a volumetric modulus equal to 2/n!.

Proof. If X is an n-dimensional vector, then formula (23) yields

%(Dn) = 2P[X1 ≥ . . . ≥ Xn]

= 2
∫ ∞

−∞

∫ x1

−∞
∙ ∙ ∙

∫ xn−1

−∞

1

(2π)n/2
e−(x2

1+...+x2
n )/2dxn ∙ ∙ ∙ dx2dx1.

The above multiple integral can be evaluated by integrating first with respect to

xn , then with respect to xn−1, and so on. �

The upward monotonic cone

Un =
{

x ∈ Rn : x1 ≤ . . . ≤ xn
}

has the same volumetric modulus as Dn . In general,

%
({

x ∈ Rn : xσ(1) ≥ . . . ≥ xσ(n)
})

= 2/n!

for any permutation σ on {1, . . . , n}. This is a consequence of the fact that

% : 4(Rn) → R is orthogonally invariant.

In unimodal regression theory [2], a vector x ∈ Rn is called unimodal with a

mode at the q-th component (q-unimodal, for short) if

x1 ≤ . . . ≤ xq−1 ≤ xq ≥ xq+1 ≥ . . . ≥ xn.
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For applications of the concept of unimodality in other areas of mathematics,

see the interesting survey by Stanley [24]. Let Uq,n denote the set of all q-

unimodal vectors of Rn . Clearly, U1,n corresponds to the downward monotonic

cone Dn , and Un,n corresponds to the upward monotonic cone Un . In general,

the set Uq,n is a polyhedral convex cone because it is expressible as intersection

of n − 1 half-spaces.

Proposition 5.3. Let n ≥ 3. For any q ∈ {1, . . . , n}, one has

%(Uq,n) =
2

n!

(
n − 1

q − 1

)

=
2

n (q − 1)! (n − q)!
. (24)

In particular,

(a) %(Uq,n) = %(Un−q+1,n).

(b) %(Uq,n) is minimized at q = 1 and at q = n.

(c) If n is odd, then %(Uq,n) is maximized at q = (n + 1)/2.

(d) If n is even, then %(Uq,n) is maximized at q = n/2 and at q = (n/2)+ 1.

Proof. Let X be an n-dimensional Gaussian vector. Membership in Uq,n is

conditioned to membership in

Aq =
{

x ∈ Rn : max{x1, . . . , xq−1, xq+1, . . . , xn} ≤ xq
}
.

The fundamental law of conditional probabilities yields

P[X ∈ Uq,n] = P
[
X ∈ Uq,n

∣
∣X ∈ Aq

]
P

[
X ∈ Aq

]

+ P
[
X ∈ Uq,n

∣
∣X /∈ Aq

]

︸ ︷︷ ︸
= 0

P
[
X /∈ Aq

]
.

Clearly, P[X ∈ Aq] = 1/n. On the other hand, stochastic independence of the

components of X and Corollary 5.2 yield

P
[
X ∈ Uq,n

∣
∣X ∈ Aq

]
= P

[
X1 ≤ . . . ≤ Xq−1, Xq+1 ≥ . . . ≥ Xn

]

= P
[
X1 ≤ . . . ≤ Xq−1

]

︸ ︷︷ ︸
1/(q−1)!

P
[
Xq+1 ≥ . . . ≥ Xn

]

︸ ︷︷ ︸
1/(n−q)!

.

Proposition 5.1 completes the proof of (24). The by-products (a)-(d) are imme-

diate, see Table 3 for a quick overview. �
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q n = 3 n = 4 n = 5 n = 6

1 1/3 1/12 1/60 1/360

2 2/3 1/4 1/15 1/72

3 1/3 1/4 1/10 1/36

4 − 1/12 1/15 1/36

5 − − 1/60 1/72

6 − − − 1/360

Table 3 – Volumetric moduli of the unimodal cones Uq,n .

Proposition 5.1 can also be used for estimating the volumetric modulus of a

convex cone K having no structure whatsoever. The basic idea is producing a

large sample

X (1), X (2), . . . , X (N ) ≡

{
stochastically independent

n-dimensional Gaussian vectors

and counting the number of times that the target K is being hit. If one introduces

the Bernoulli variables

Yi =

{
1 if X (i) ∈ K ,

0 if otherwise,

then Proposition 5.1 and the law of large numbers yield the approximation

%(K ) ≈ 2
Y1 + . . .+ YN

N
. (25)

We have tested such a random approximation technique on the cone of Ex-

ample 3.4. As shown in Table 4, the size of the random sample is a key factor

for obtaining an acceptable degree of approximation. Confidence intervals at

a 99% confidence level are also provided. Of course, sharper confidence in-

tervals are obtained if one contents oneself with a confidence level at 95%,

as is common in practice.

Table 5 reports on the random estimation technique applied to the Lorentz

cone Ln , the Pareto cone Rn
+, and the downward monotonic cone Dn . The

estimates for the Pareto cone are consistent with the values predicted by the

formula %(Rn
+) = (1/2)n−1. Consistency is also observed in the case of the

downward monotonic cone whose volumetric modulus is given by Corollary

5.2, and in the case of the Lorentz cone whose volumetric modulus is given by

Corollary 2.4.
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Size of sample 107 108 109 1010

Estimation (25) 0.080770 0.080851 0.080884 0.080874

Confidence interval [0.080449, [0.080750, [0.080852, [0.080864,

at the 99% level 0.081091] 0.080952] 0.080916] 0.080884]

Table 4 – Random estimation technique for the volumetric modulus of the cone K of Example 3.4.

n = 4 n = 5 n = 6

%(Ln) 0.181690 0.116117 0.075587

0.181684 0.116119 0.075587

%(Rn
+) 0.125000 0.062500 0.031250

0.125000 0.062500 0.031252

%(Dn) 0.083333 0.016667 0.002778

0.083335 0.016665 0.002778

Table 5 – Volumetric moduli of the Lorentz cone, the Pareto cone, and the downward monotonic

cone. For each dimension n, one uses a sample of 1010 stochastically independent Gaussian

vectors. Exact values are indicated in bold characters.

6 Divide-and-conquer strategy

Sometimes it helpful to decompose a convex cone K as finite union

K = K1 ∪ . . . ∪ K`, (26)

and then compute the volumetric modulus of each component. Measure dis-

jointness of the components can be ensured by assuming a suitable separation

property. The rational behind such a divide-and-conquer method is explained in

the next proposition.

Proposition 6.1. Let K ∈ 4(Rn) be decomposed as in (26), where {K1, . . . ,

K`} are elements of 4(Rn) satisfying the separation assumption

dim[span(Ki ∩ K j )] ≤ n − 1 for all i 6= j. (27)

Then, %(K ) =
∑`

i=1 %(Ki ).
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Proof. By De Moivre inclusion-exclusion principle for the volume of a finite

union, one has

vol(K ∩ Bn) = vol

(
⋃̀

i=1

(Ki ∩ Bn)

)

=
`∑

k=1

(−1)k−1
∑

I⊂{1,...,`}
card(I )=k

vol

(
⋂

i∈I

(Ki ∩ Bn)

)

.

The property (27) says that the linear space spanned by each intersection Ki ∩ K j

has dimension less than n. Hence, ∩i∈I (Ki ∩ Bn) has zero volume whenever

card(I ) ≥ 2. One gets in this way

vol(K ∩ Bn) =
`∑

i=1

vol (Ki ∩ Bn) ,

remaining now to divide on each side by the half-volume of Bn . �

Proposition 6.1 is fairly simple as a mathematical result. The two examples

below illustrates how such proposition works in practice.

Example 6.2. In the same way as Archimedes approximates a circle by a p-

sided polygon, one can approximate the three-dimensional Lorentz cone L3 by

a p-faced pyramidal cone

3p = cone
{
γ (t1), . . . , γ (tp)

}
, (28)

where γ (t) = (1/
√

2) (cos t, sin t, 1)T and ti = (2i − 1)π/p for all i ∈

{1, . . . , p}. Suppose that p ≥ 4. How to compute the volumetric modulus

of3p? In view of the linear dependence of the generators, neither the numerical

integration method, nor the power series method can be applied in this case. A

natural alternative is using a divide-and-conquer strategy: one decomposes (28)

as a union of p measure-disjoint pieces, namely, Ki = cone{γ (ti ), γ (ti+1), e3}.

Here e3 = (0, 0, 1)T and, by convention, tp+1 = t1. A matter of symmetry

shows that all the components Ki have the same volumetric modulus. Hence,

by applying Proposition 6.1 and the triple product formula (5), one gets

%(3p) = p %(K1) =
p

π
arctan

[
sin (2π/p)

3 + 2
√

2 + cos (2π/p)

]
.
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Note that lim p→∞ %(3p) = 1 − (
√

2/2) = %(L3), in consistency with Proposi-

tion 2.1 and Corollary 2.4.

Example 6.3. How to compute the volumetric modulus of a polyhedral convex

cone

K =
{

x ∈ Rn : 〈h j , x〉 ≥ 0 for all j = 1, . . . , n − 1
}

given by a collection {h1, . . . , hn−1} of only n − 1 linearly independents unit

vectors of Rn? Again, the numerical integration method and the power series

method must be ruled out. We introduce then an additional vector hn whose role

is cutting K into two measure-disjoint pieces:

K1 = {x ∈ K : 〈hn, x〉 ≥ 0},

K2 = {x ∈ K : 〈hn, x〉 ≤ 0}.

The separation property (27) holds because K1 ∩ K2 is contained in the hyper-

plane with normal vector hn . In the present situation, the cleverest way of

defining the missing vector hn is by solving the linear system

〈h j , hn〉 = 0 for all j ∈ {1, . . . , n − 1}.

With such a choice of hn , the components K1 and K2 have the same volumetric

modulus. By Proposition 6.1, one has %(K ) = 2%(K1). In order to evaluate

%(K1), one can use for instance the numerical integration method.

The purpose of Example 6.3 has been preparing the ground for handling a

more general situation. The next proposition comes now without surprise.

Proposition 6.4. Consider a polyhedral convex cone

K =
{

x ∈ Rn : 〈h j , x〉 ≥ 0 for all j = 1, . . . , r
}
, (29)

where r ≤ n − 1 and {h1, . . . , hr } is a collection of linearly independent unit

vectors of Rn. Then,

%(K ) = 2n−r%(K̂ ), (30)

where K̂ is any simplicial reduction of K in the sense that

K̂ =
{

x ∈ Rn : 〈h j , x〉 ≥ 0 for all j = 1, . . . , n
}
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with {hr+1, . . . , hn} forming an orthonormal basis of the linear subspace

[span{h1, . . . , hr }]⊥.

Proof. If {hr+1, . . . , hn} forms a basis of the orthogonal complement of

span{h1, . . . , hr }, then the full collection {h j }n
j=1 is linearly independent. Or-

thogonality of such basis ensures that the measure-disjoint pieces

Ki =
{

x ∈ K : 〈εi, j h
j , x〉 ≥ 0 for all j = r + 1, . . . , n

}
(31)

have the same volumetric modulus. Each Ki is associated to a vector

(εi,r+1, . . . , εi,n) in the lattice {−1, 1}n−r . The convex cone K̂ is just one of

the 2n−r pieces listed in (31). �

Recall that simplicial cone in Rn is a polyhedral convex cone generated by

n linearly independent vectors. This explains the use of the term “simplicial”

while referring to K̂ . The linearly independent generators {g1, . . . , gn} of K̂

are obtained by normalizing each column of the matrix H(H T H)−1, where

H = [h1, . . . , hn]. On the other hand, one uses the term “reduction” because K̂

is strictly contained in K .

Example 6.5. Let Vn be the set of n-dimensional vectors whose second-

order differences are nonnegative, i.e.,

Vn =
{

x ∈ Rn : x j+1 + x j−1 − 2x j ≥ 0 for all j = 2, . . . , n − 1
}
.

The set Vn is a polyhedral convex cone expressible as intersection of n − 2

half-spaces. A simplicial reduction of Vn can be constructed as follows. The

normal vector corresponding to the j-th hyper-space is

h j = (
√

6/6) (0, . . . , 0, 1,−2, 1, 0 . . . , 0)T ,

where “−2” appears in the j-th coordinate. The scalar
√

6/6 has been intro-

duced just to make sure that ‖h j‖ = 1, although one could dispense with this

normalization condition. The vectors

u = (1, 1, ..., 1)T ,

v = (1 − n, 3 − n, 5 − n, ...., n − 3, n − 1)T ,

are orthogonal among themselves, and also orthogonal to the vectors {h2, . . . ,

hn−1}. So, one can take h1 = u/‖u‖ and hn = v/‖v‖.
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7 Comparing % with other solidity indices

A solidity index in the axiomatic sense of [15] is a continuous function

g : (4(Rn), δ) → R such that

• g(K ) = 0 if and only if K is not solid,

• g(K ) = 1 if and only if K is a half-space,

• g is monotonic with respect to set inclusion,

• g is invariant with respect to orthogonal transformations.

As mentioned in Section 2, the volumetric modulus % qualifies as a solidity

index. Two other interesting examples of solidity indices are

%met(K ) = inf
Q∈4(Rn)
Q not solid

δ(Q, K ) (32)

and

%frob(K ) =

{
radius of the largest ball centered

at a unit vector and contained in K .
(33)

The “metric” solidity index (32) has been extensively studied in [15, 16, 18].

It has been established in [18, Corollary 2] that

%met(K ) = cos
[
θmax(K +)

2

]
, (34)

where K + stands for the dual cone of K and

θmax(P) = max
x,y∈P∩Sn

arccos〈x, y〉

denotes the maximal angle of P ∈ 4(Rn). Concerning the “Frobenius” solidity

index (33), a wide range of applications and relevant material can be found in

[6, 8, 9, 13, 14, 15].

Example 7.1. Consider the case of a downward monotonic cone. It has been

shown in [14] that

%frob(Dn) =

√
6

n(n − 1)(n + 1)
≈

√
6

n3/2
. (35)
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On the other hand, by relying on (34) and [12, Proposition 2] one can prove

that

%met(Dn) = cos
[(

1 −
1

n

)
π

2

]
≈

π

2n
. (36)

Note that %(Dn) = 2/n! is “much” smaller than both (35) and (36).

Example 7.2. Let a ∈ Sn . For a circular cone with half-aperture angle ϑ ∈

]0, π/2[ one obtains

%frob(Ra,ϑ ) = %met(Ra,ϑ ) = sin ϑ,

a number which is independent of n. By constrast, %(Ra,ϑ ) does depend on n

as one can see from Proposition 2.3.

Examples 7.1 and 7.2 will do by way of illustration. The question that we

would like to explore now is whether there is some kind of general relationship

between % and the other two solidity indices. Observe that

%frob(K ) ≤ %met(K ) for all K ∈ 4(Rn).

This is simply because %met is the largest one among all the solidity indices

that are nonexpansive (cf. [15]). The next definition will be useful.

Definition 7.3. Two solidity indices g1, g2 : 4(Rn) → Rn are:

i) linearly comparable if there are positive constants a and b, depending

possibly on n, such that ag2 ≤ g1 ≤ bg2.

ii) equivalent if there is an increasing surjection ϕ : [0, 1] → [0, 1] such that

g2 = ϕ ◦ g1.

We start by stating two negative results2.

Proposition 7.4. % is neither linearly comparable to %frob nor to %met.

2Note added in proof: We have been able, however, to prove that % ≤ %met. This result will

be presented in a forthcoming publication.
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Proof. We prove the following claim: there is no positive constant a such that

a %frob ≤ %. To do this, we show that

inf
K∈4(Rn)

K solid

%(K )

%frob(K )
= 0.

Let us evaluate the quotient %/%frob on a circular cone Ra,ϑ and then let ϑ go to

zero. By applying L’Hôpital’s rule, one gets

lim
ϑ→0+

%(Ra,ϑ )

%frob(Ra,ϑ )
= lim

ϑ→0+

Fn(ϑ)

sin ϑ
= lim

ϑ→0+

κ−1
n (sin ϑ)n−2

cosϑ
= 0.

The case of %met is treated in exactly the same way. �

Proposition 7.5. % is neither equivalent to %frob nor to %met.

Proof. The function Fn introduced in Proposition 2.3 is a bijection from

[0, π/2] to [0, 1]. Let ϑn be the unique solution to the nonlinear equation

Fn(ϑ) = (1/2)n−1. Then %(Ra,ϑn ) = %(Rn
+), regardless of the choice of a ∈ Sn .

But, on the other hand,

%met(Ra,ϑn ) = sin ϑn 6=
√

1/2 = %met(R
n
+).

This rules out the possibility of finding an increasing surjective function ϕ :

[0, 1] → [0, 1] such that % = ϕ ◦ %met. In short, % and %met are not equivalent.

One can also check that

%frob(Ra,ϑn ) = sin ϑn 6=
√

1/n = %frob(R
n
+).

Hence, % is not equivalent to %frob either. �

Despite the negative results stated in Propositions 7.4 and 7.5, there is a link

between % and %frob after all. However, such a link is nonlinear in nature and

quite sophisticated.

Theorem 7.6. For all K ∈ 4(Rn) one has

1

κn

∫ %frob(K )

0

tn−2

√
1 − t2

dt ≤ %(K ), (37)
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as well as

1 −
1

κn

∫ %frob(K +)

0

[√
1 − t2

]n−3
dt ≥ %(K ). (38)

Both inequalities become equalities if and only if K is a circular cone.

Proof. A natural idea that comes to mind is estimating %(K ) by using the

inner and outer circular approximations

K inn ≡ largest circular cone contained in K ,

Kout ≡ smallest circular cone containing K .

Let θinn(K ) and θout(K ) denote the half-aperture angles of Kinn and Kout, respec-

tively. As a consequence of Proposition 2.3, one gets

1

κn

∫ θinn(K )

0
(sin t)n−2dt ≤ ρ(K ) ≤

1

κn

∫ θout(K )

0
(sin t)n−2dt. (39)

Let us work out both sides of the above sandwich. It can be shown that

sin [θinn(K )] = %frob(K ), (40)

cos [θout(K )] = %frob(K
+). (41)

Formula (41) is obtained by combining [17, Theorem 7] and [15, Proposi-

tion 6.3]. Formula (40) is obtained from (41) by using duality arguments. Hence,

1

κn

∫ θinn(K )

0
(sin t)n−2dt = Gn(%frob(K )),

1

κn

∫ θout(K )

0
(sin t)n−2dt = Hn(%frob(K

+))

with Gn, Hn : [0, 1] → [0, 1] given respectively by

Gn(r) = Fn(arcsin r) =
1

κn

∫ r

0

tn−2

√
1 − t2

dt,

Hn(r) = Fn(arccos r) = 1 −
1

κn

∫ r

0

[√
1 − t2

]n−3
dt.

Finally, note that both inequalities in (39) become equalities if and only if

θinn(K ) = θout(K ). This is yet equivalent to saying that K is a circular cone. �
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Corollary 7.7. For all K ∈ 4(Rn) one has

1

(n − 1)κn

[
%frob(K )

]n−1
≤ %(K ). (42)

Proof. It is enough to observe that

tn−2

√
1 − t2

≥ tn−2.

Thus, the inequality (42) is a weakening of (37). �

We stated Corollary 7.7 just to indicate that % can be minorized by a positive

multiple of the power
[
%frob(∙)

]n−1
. Recall that % cannot be minorized by a

positive multiple of %frob itself.

8 By way of conclusion

In this work we have discussed several methods for computing the volumetric

modulus of a convex cone. Table 6 gives a general overview of the advantages

and disadvantages of each method. The details can be consulted in the corre-

sponding section.

Advantage Disadvantage

Numerical Availability of error High computational cost,

integration estimates Applies only to simplicial cones

Power Low computational Must satisfy convergence test,

series cost Applies only to simplicial cones

Random Applies beyond the class Random sample

technique of polyhedral cones must be huge

Divide Applies beyond Requires identifying

-and- the class of a measure-disjoint

conquer polyhedral cones partition

Table 6 – Methods for computing volumetric moduli.

So, one has several computational methods at hand, and one can combine them

to produce additional options. Despite this fact, there are important convex cones

arising in practice for which none of the above methods is applicable.
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The next example concerns a nasty convex cone arising in Moving Average

Estimation (cf. [1, 3]).

Example 8.1. Let d ≥ 2. One says that x = (x0, . . . , xd) ∈ Rd+1 is an

autocorrelation vector if there exists z = (z0, . . . , zd) ∈ Rd+1 such that

xk =
d−k∑

i=0

zi zi+k for all k ∈ {0, 1, . . . , d}.

Let Cd+1 denote the set of all autocorrelation vectors in Rd+1. It is known that

Cd+1 is representable in the form

Cd+1 =

{

x ∈ Rd+1 : x0 + 2
d∑

k=1

xk cos(kw) ≥ 0, ∀w ∈ [0, π ]

}

. (43)

By using this frequency-domain characterization, it is not difficult to show that

Cd+1 is a solid pointed closed convex cone.

The convex cone of Example 8.1 is not polyhedral. Hence, the numerical

integration method and the power series method must be ruled out. On the other

hand, it is not clear how to partition Cd+1 in terms of measure-disjoint convex

cones with easily computable volumetric moduli. We are left with the random

technique as only option. However, checking if a given vector belongs to Cd+1

is not a trivial matter, and the cost of this operation must be multiplied by the

size of the random sample. Note that the right-hand side of (43) is a set defined

by infinitely many contraints.

For dealing with a desperate situation like this, there are at least two possibil-

ities. The first option is estimating %(K ) by using the sandwich (39). In fact,

one does not need actually to compute the exact values of θinn(K ) and θout(K ).

Given the monotonicity of ϑ 7→
∫ ϑ

0 (sin t)n−2dt , it is perfectly acceptable to use

a lower bound for θinn(K ) and a upper bound for θout(K ). Let us see how this

principle works in the case of the cone of autocorrelation vectors.

Corollary 8.2. For d ≥ 2, one has

1

κd+1

∫ αd

0
(sin t)d−1dt ≤ %(Cd+1) ≤

1

κd+1

∫ βd

0
(sin t)d−1dt (44)
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with

αd = arcsin
[
1/

√
1 + 4d

]
,

βd = arccos
[
inf {x0 : x ∈ Cd+1, ‖x‖ = 1}

]
.

Proof. Write x = (x0, ξ) with x0 ∈ R and ξ ∈ Rd . For all w ∈ [0, π ], one has

x0 + 2
d∑

k=1

xk cos(kw) ≥ x0 − 2‖ξ‖

[
d∑

k=1

cos2(kw)

]1/2

≥ x0 − 2‖ξ‖
√

d.

By using these inequalities, one can show that the circular cone with axis a =

(1, 0, . . . , 0) ∈ Sd+1 and half-aperture angle αd is contained in Cd+1. Hence, αd

is a lower estimate for θinn(Cd+1). On the other hand,

cos
[
θout(Cd+1)

]
= sup

‖y‖=1
inf

x∈Cd+1
‖x‖=1

〈y, x〉

≥ inf {x0 : x ∈ Cd+1, ‖x‖ = 1},

i.e., βd is a upper estimate for θout(Cd+1). �

Table 7 displays the numerical values of the bounds (44) for the cases d = 2,

d = 3, and d = 4. The bounds for %(Cd+1) could be sharpened by using the exact

values of θinn(Cd+1) and θout(Cd+1). However, one should not be over optimistic

because Cd+1 is far from being a circular cone. The situation gets even worse

when d increases. We must say things as they are: the estimates given in Table 7

are very disappointing. The method of inner and outer approximation by circular

cones is ill suited in the case of the cone of autocorrelation vectors.

d αd βd lower bound for %(Cd+1) upper bound for %(Cd+1)

2 0.3398 0.6473 0.0572 0.2023

3 0.2810 0.7603 0.0093 0.1661

4 0.2450 0.8394 0.0013 0.1471

Table 7 – Bounding %(Cd+1) by using inner and outer circular approximations. Figures are

rounded to four decimals.
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A second and much better possibility for consideration is using an outer poly-

hedral approximation

C�d+1 =

{

x ∈ Rd+1 : x0 + 2
d∑

k=1

xk cos(kw) ≥ 0, ∀w ∈ �

}

(45)

of the cone Cd+1. Here� = {w0, . . . , wN } stands for a finite collection of points

in [0, π ]. One gets in this way the upper estimate

%
(
Cd+1

)
≤ %

(
C�d+1

)
.

In Table 8 one considers a regular partition of [0, π ], i.e., wi = iπ/N for all

i ∈ {0, 1, . . . , N }. This implies that (45) is a polyhedral convex cone defined

by card(�) = N + 1 contraints. The volumetric modulus of C�d+1 is estimated

by using the random technique. For obtaining each entry in Table 8, one works

with a sample of 108 stochastically independent Gaussian vectors.

d N = 10 N = 20 N = 50 N = 100

2 0.1091 0.1083 0.1080 0.1079

3 0.0387 0.0359 0.0357 0.0356

4 0.0137 0.0129 0.0126 0.0126

Table 8 – Volumetric modulus of C�d+1. Figures are rounded to four decimals.

As far as the first four decimals are concerned, the term %(C�d+1) does not

change significatively if the mesh parameter N goes beyond 100. Observe that

the upper bounds for %(Cd+1) provided by the last column of Table 8 are much

sharper than the corresponding upper bounds given in Table 7.

Remark 8.3. If � is a regular mesh whose cardinality goes to ∞, then C�d+1

converges to Cd+1 with respect to the metric δ. The proof of this fact is long

and tedious, so it will not be presented here. Such a convergence result indicates

that %(C�d+1) can be made arbitrarily close to %(Cd+1) by suitably refining the

mesh �.
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