
“main” — 2010/2/28 — 17:44 — page 19 — #1

Volume 29, N. 1, pp. 19–30, 2010
Copyright © 2010 SBMAC
ISSN 0101-8205
www.scielo.br/cam

Some derivative free quadratic and cubic convergence
iterative formulas for solving nonlinear equations

MEHDI DEHGHAN* and MASOUD HAJARIAN
Department of Applied Mathematics, Faculty of Mathematics and Computer Science,

Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15914, Iran

E-mails: mdehghan@aut.ac.ir, mdehghan.aut@gmail.com / mhajarian@aut.ac.ir,

masoudhajarian@gmail.com

Abstract. Finding the zeros of a nonlinear equation f (x) = 0, is a classical problem which

has nice applications in various branches of science and engineering. In this paper, we introduce

four iterative methods which is based on the central-difference and forward-difference approxi-

mations to derivatives. It is proved that three of the four methods have cubic convergence and

another method has quadratic convergence. The best property of these methods are that do not

need to calculate any derivative. In order to demonstrate convergence properties of the introduced

methods, several numerical examples are given.
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1 Introduction

A large number of papers have been written about iterative methods for the

solution of the the nonlinear equations [3, 7, 8, 9, 10, 12, 13]. In this paper, we

consider the problem of finding a simple root x∗ of a function f : D ⊂ R → R

i.e., f (x∗) = 0 and f ′(x∗) 6= 0. The famous Newton’s method for finding x∗

uses the iterative method

xn+1 = xn −
f (xn)

f ′(xn)
,
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starting from some initial value x0. The Newton’s method is an important and

basic method where converges quadratically in some neighborhood of simple

root x∗. Chun [5] obtained the iterative method with convergence cubically

given by

xn+1 = xn −
f (zn+1) − f (xn)

f ′(xn)
, where zn+1 = xn +

f (xn)

f ′(xn)
. (1.1)

Also there is an modification of the Newton’s method with third-order conver-

gence as [14]

xn+1 = xn −
f (yn+1) + f (xn)

f ′(xn)
, where yn+1 = xn −

f (xn)

f ′(xn)
. (1.2)

It is well-known that the forward-difference approximation for f ′(x) at x is

f ′(x) ≈
f (x + h) − f (x)

h
.

If the derivative f ′(xn) is replaced by the forward-difference approximation

with h = f (xn) i.e.

f ′(xn) ≈
f (xn + f (xn)) − f (xn)

f (xn)
,

the Newton’s method becomes

xn+1 = xn −
( f (xn))

2

f (xn + f (xn)) − f (xn)
,

which is the famous Steffensen’s method [11]. The Steffensen’s method is

based on forward-difference approximation to derivative. This method is a

tough competitor of Newton’s method. Both the methods are of quadratic con-

vergence, both require two functions evaluation per iteration but in contrast to

Newton’s method, Steffensen’s method is derivative free. Chen [4] studied a

particular class of these methods which contain the Steffensen’s method as a

special case. In [1], a modified Steffensen’s method for the numerical solution

of the system of nonlinear equations is studied. Amat et al. [2] considered a

class of the generalized Steffensen iterations procedures for solving nonlinear

equations on Banach space without any derivative.
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Sometimes the applications of the iterative methods depending on derivatives

are restricted in engineering. In this paper we introduce some methods which

are based on the approximations to the derivative f ′(xn) in each iteration. These

methods are based on the central-difference and forward-difference approxima-

tions to the derivatives, respectively. The central-difference approximation for

f ′(x) at x is

f ′(x) ≈
f (x + f (x)) − f (x − f (x))

2 f (x)
.

We know that the leading errors in forward and central-difference formulae are

O(h) and O(h2), respectively. It follows that the central-difference approx-

imation is a more efficient than the forward-difference approximation to the

derivative f ′(x). If in (1.1) and (1.2) we replace derivatives f ′(xn) by

f (xn + f (xn)) − f (xn − f (xn))

2 f (xn)
,

we obtain two free derivative methods as follows:

xn+1 = xn −
2 f (xn)

[
f (zn+1) − f (xn)

]

f (xn + f (xn)) − f (xn − f (xn))
, (1.3)

where

zn+1 = xn +
2 f (xn)

2

f (xn + f (xn)) − f (xn − f (xn))
, (1.4)

and

xn+1 = xn −
2 f (xn)

[
f (yn+1) + f (xn)

]

f (xn + f (xn)) − f (xn − f (xn))
, (1.5)

where

yn+1 = xn −
2 f (xn)

2

f (xn + f (xn)) − f (xn − f (xn))
. (1.6)

Now we use the forward-difference approximation. If in (1.1) and (1.2), we

replace derivatives f ′(xn) by

f (xn + f (xn)) − f (xn)

f (xn)
, (1.7)

we get two free derivative methods by the following

xn+1 = xn −
f (xn)

[
f (zn+1) − f (xn)

]

f (xn + f (xn)) − f (xn)
, (1.8)
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where

zn+1 = xn +
f (xn)

2

f (xn + f (xn)) − f (xn)
, (1.9)

and

xn+1 = xn −
f (xn)

[
f (yn+1) + f (xn)

]

f (xn + f (xn)) − f (xn)
, (1.10)

where

yn+1 = xn −
f (xn)

2

f (xn + f (xn)) − f (xn)
. (1.11)

In the next section, we derive the convergence results of the iterative methods

given by (1.3)-(1.6) and (1.8)-(1.11).

2 Main results

In this section we give the main results of this paper. We will give here the

mathematical proof for the order of convergence of the methods given by (1.3)-

(1.6) and (1.8)-(1.11).

Theorem 2.1. Let x∗ ∈ D be a simple zero of sufficiently differentiable function

f : D → R for an open interval D. If x0 is sufficiently close to x∗, then the

method defined by (1.3) and (1.4) has cubic convergence, and it satisfies the

error equation

en+1 =
3 f ′′(x∗)2 + 2 f ′(x∗)(3 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)2
e3

n + O(e4
n),

where en = xn − x∗.

Proof. Let en and e∗
n+1 be the errors in xn and zn+1 respectively, i.e.

xn = en + x∗ and zn+1 = e∗
n+1 + x∗. (2.1)

By using Taylor’ theorem, we can get

f (xn) = f (x∗ + en) = f ′(x∗)en +
f ′′(x∗)

2!
e2

n +
f (3)(x∗)

3!
e3

n + O(e4
n), (2.2)

f (xn)
2 = f (x∗ + en)

2 = f ′(x∗)2e2
n + f ′(x∗) f ′′(x∗)e3

n + O(e4
n), (2.3)
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f (xn + f (xn)) = f (x∗ + en + f (x∗ + en))

= (1 + f ′(x∗)) f ′(x∗)en +
f ′′(x∗)

[
f ′(x∗) + (1 + f ′(x∗))2

]

2!
e2

n

+

[
f ′(x∗) f (3)(x∗) + 3(1 + f ′(x∗)) f ′′(x∗)2 + (1 + f ′(x∗))3 f (3)(x∗)

]

3!
e3

n

+ O(e4
n),

(2.4)

and

f (xn − f (xn)) = f (x∗ + en − f (x∗ + en))

= −(1 − f ′(x∗)) f ′(x∗)en +
f ′′(x∗)

[
− f ′(x∗) + (1 − f ′(x∗))2

]

2!
e2

n

+

[
− f ′(x∗) f (3)(x∗) + 3(−1 + f ′(x∗)) f ′′(x∗)2 − (−1 + f ′(x∗))3 f (3)(x∗)

]

3!
e3

n

+ O(e4
n).

(2.5)

It follows that

f (xn + f (xn)) − f (xn − f (xn)) = 2 f ′(x∗)2en + 3 f ′(x∗) f ′′(x∗)e2
n

+
(

f ′′(x∗)2 +
1

3
f ′(x∗)(4 + f ′(x∗)2) f (3)(x∗)

)
e3

n + O(e4
n).

(2.6)

Now by substituting (2.3) and (2.6) into (1.4), we have

e∗
n+1 = 2en −

f ′′(x∗)

2 f ′(x∗)
e2

n

+
3 f ′′(x∗)2 − f ′(x∗)(2 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)2
e3

n + O(e4
n).

(2.7)

Again using Taylor’s theorem we can write

f (zn+1) = f (x∗ + e∗
n+1)

= f ′(x∗)

{

2en −
f ′′(x∗)

2 f ′(x∗)
e2

n +
3 f ′′(x∗)2 − f ′(x∗)(2 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)2 e3
n

}

+
f ′′(x∗)

2!

{
4e2

n −
2 f ′′(x∗)

f ′(x∗)
e3

n

}
+ O(e4

n).

(2.8)
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Thus we get

f (zn+1) = 2 f ′(x∗)en +
3

2
f ′′(x∗)e2

n

+
{
−

f ′′(x∗)2

f ′(x∗)
+

3 f ′′(x∗)2 − f ′(x∗)(2 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)

}
e3

n + O(e4
n).

(2.9)

Now it is not difficult to obtain

2 f (xn)
[

f (zn+1) − f (xn)
]

= 2 f ′(x∗)2e2
n + 3 f ′(x∗) f ′′(x∗)e3

n + O(e4
n).

Now by using all the previous expressions, we obtain

2 f (xn)
[

f (zn+1) − f (xn)
]

f (xn + f (xn)) − f (xn − f (xn))

= en −
{

3 f ′′(x∗)2 + 2 f ′(x∗)(3 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)2

}
e3

n + O(e4
n).

(2.10)

Therefore we get the error equation

en+1 =
{

3 f ′′(x∗)2 + 2 f ′(x∗)(3 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)2

}
e3

n + O(e4
n). (2.11)

The proof is finished. �

Theorem 2.2. Under the assumptions of Theorem 2.1, the method given by

(1.5) and (1.6) has cubic convergence, and it verifies the error equation

en+1 =
f ′′(x∗)2

2 f ′(x∗)2
e3

n + O(e4
n).

Proof. Let e∗
n+1 = yn+1 − x∗, by using the obtained equations in the proof of

Theorem 2.1, we get

e∗
n+1 =

f ′′(x∗)

2 f ′(x∗)
e2

n

+
−3 f ′′(x∗)2 + f ′(x∗)(2 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)2
e3

n + O(e4
n),

(2.12)
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f (yn+1) = f (x∗ + e∗
n+1) =

1

2
f ′′(x∗)e2

n

+
−3 f ′′(x∗)2 + f ′(x∗)(2 + f ′(x∗)2) f (3)(x∗)

6 f ′(x∗)
e3

n + O(e4
n).

(2.13)

It is not difficult to get

2 f (xn)
[

f (yn+1) + f (xn)
]

= 2 f ′(x∗)2e2
n + 3 f ′(x∗) f ′′(x∗)e3

n + O(e4
n).

By some calculations, we can show that

2 f (xn)
[

f (yn+1) + f (xn)
]

f (xn + f (xn)) − f (xn − f (xn))
= en −

f ′′(x∗)2

2 f ′(x∗)2
e3

n + O(e4
n). (2.14)

Hence we obtain the error equation

en+1 =
f ′′(x∗)2

2 f ′(x∗)2
e3

n + O(e4
n).

The proof is completed. �

In the next theorems, we show that if the derivatives of the methods (1.1) and

(1.2) are replaced by the forward-difference approximations, only the rate of

convergence (1.8) and (1.9) is decreased and the obtained method has quadratic

convergence. But the method defined by (1.10), (1.11) has cubic convergence.

Theorem 2.3. Under the assumptions of Theorem 2.1, the method defined by

(1.8) and (1.9) has quadratic convergence, and it satisfies the error equation

en+1 = f ′′(x∗)e2
n + O(e3

n). (2.15)

Proof. Let en = xn − x∗ and e∗
n+1 = zn+1 − x∗, by substituting (2.3) and (2.4)

into (1.9) and some calculations, we obtain

e∗
n+1 = 2en −

(1 + f ′(x∗)) f ′′(x∗)

2 f ′(x∗)
e2

n + O(e3
n). (2.16)

By using Taylor’s theorem, we have

f (zn+1) = f (x∗ + e∗
n+1) = 2 f ′(x∗)en

+
{

2 f ′′(x∗) −
1

2
(1 + f ′(x∗)) f ′′(x∗)

}
e2

n + O(e3
n).

(2.17)
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Also we obtain

f (xn)
[

f (yn+1) + f (xn)
]

= f ′(x∗)e2
n + O(e3

n).

Now by some calculations, it is not difficult to obtain

en+1 = f ′′(x∗)e2
n + O(e3

n). (2.18)

The proof is finished. �

Theorem 2.4. Under the assumptions of Theorem 2.1, the method given by

(1.10) and (1.11) has cubic convergence, and it verifies the error equation

en+1 =
(2 + 3 f ′(x∗) + f ′(x∗)2) f ′′(x∗)2

4 f ′(x∗)2
e3

n + O(e4
n). (2.19)

Proof. Let en = xn − x∗ and e∗
n+1 = zn+1 − x∗, by substituting (2.3) and (2.4)

into (1.11) and some calculations, we have

e∗
n+1 =

(1 + f ′(x∗)) f ′′(x∗)

2 f ′(x∗)
e2

n

+
−3(2 + 2 f ′(x∗) + 2 f ′(x∗)2) f ′′(x∗)2 + 2 f ′(x∗)(2 + 3 f ′(x∗) + f ′(x∗)2) f (3)(x∗)

12 f ′(x∗)2
e3

n

+O(e4
n),

(2.20)

f (yn+1) =
(1 + f ′(x∗)) f ′′(x∗)

2
e2

n

+
−3(2 + 2 f ′(x∗) + 2 f ′(x∗)2) f ′′(x∗)2 + 2 f ′(x∗)(2 + 3 f ′(x∗) + f ′(x∗)2) f (3)(x∗)

12 f ′(x∗)
e3

n

+O(e4
n),

(2.21)

Hence we obtain

f (xn)
[

f (yn+1) + f (xn)
]

= f ′(x∗)2 +
1

2
f ′(x∗)(3 + f ′(x∗)) f ′′(x∗)e3

n +O(e4
n).

It follows from the above equations that

en+1 =
(2 + 3 f ′(x∗) + f ′(x∗)2) f ′′(x∗)2

4 f ′(x∗)2
e3

n + O(e4
n). (2.22)

The proof is completed. �
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Method n xn | f (xn)|

1 -7 0.0701888458437128

2 -10.67709617664 0.0225666081098759

Newton’s method 3 -13.2791673756327 0.00436601933391256

4 -14.0536558542692 0.000239019777052984

5 -14.1011099568664 7.99584812360976×10−7

1 -7 0.0701888458437128

2 -10.708837736245 0.0222921271890313

Steffensen’s method 3 -13.2995315760352 0.00425139483858206

4 -14.0562246958444 0.000226083226453122

5 -14.1011274539331 7.12043263462192×10−7

1 -7 0.0701888458437128

2 -13.0388144901168 0.00574574535987593
The method given

3 -14.1011589883491 5.54270412900237×10−7

by (1.3) and (1.4)
4 -14.1012697727344 2.79776202205539×10−14

5 -14.1012697727366 1.68753899743024×10−14

1 -7 0.0701888458437128

2 -11.8591341170014 0.0133207790518093
The method given

3 -14.0049302623335 0.000485292604529342
by (1.5) and (1.6)

4 -14.1012609462887 4.41597016731521×10−8

5 -14.10126977274 0

1 -7 0.0701888458437128

2 -13.1709615370047 0.00498098138198277
The method given

3 -14.1019247141922 3.27659042276274×10−6

by (1.8) and (1.9)
4 -14.1012697730407 1.50435219836709×10−12

5 -14.1012697727234 8.28226376370367×10−14

1 -7 0.0701888458437128

2 -11.8867725141432 0.0131262898051761
The method given

3 -14.009072627247 0.00046428970071144
by (1.10) and (1.11)

4 -14.101262092531 3.84249230211964×10−8

5 -14.10126977274 0

Table 1 – The comparison of the introduced methods in this paper with Newton’s method and

Steffensen’s method for f (x) = ex − 1.5 − tan−1 x .
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Method n xn |g(xn)|

1 0 1

2 1 1.17797952259091

Newton’s method 3 0.724644697567095 0.221820009620489

4 0.64465890487027 0.0134025850038723

5 0.639177807467281 5.74817089998847×10−5

1 0 1

2 0.459141139587212 0.38055490048224

Steffensen’s method 3 0.611228478941219 0.0662370181759029

4 0.638317069569666 0.00202779223976352

5 0.639153314504489 1.89530859256992×10−6

1 0 1

2 0.360452364589399 0.548782536293577
The method given

3 0.576508750644072 0.144654947339254
by (1.3) and (1.4)

4 0.637957420142172 0.00289826619895661

5 0.639154087002152 2.26174761697173×10−8

1 0 1

2 0.633973846554925 0.0125070972128752
The method given

3 0.63915392812122 4.0777728727015×10−7

by (1.5) and (1.6)
4 0.639154096332008 1.11022302462516×10−16

5 0.639154096332007 1.66533453693773×10−16

1 0 1

2 0.182435774509363 0.797739575083025
The method given

3 0.328331547459196 0.598445908724964
by (1.8) and (1.9)

4 0.454070648621023 0.389819960978116

5 0.639143306963761 2.61554132035546×10−5

1 0 1

2 0.633869550270125 0.0127578660747175
The method given

3 0.639154041910595 1.31928625801692×10−7

by (1.10) and (1.11)
4 0.639154096332008 1.11022302462516×10−16

5 0.639154096332007 1.66533453693773×10−16

Table 2 – The comparison of the introduced methods in this paper with Newton’s method and

Steffensen’s method for g(x) = cos x − xex + x2.
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3 Numerical examples

In this section, in order to compare the methods introduced in this paper with

Newton’s method and Steffensen’s method, we present some numerical exam-

ples. For this purpose we take two examples from the literature. Consider two

nonlinear equations as

f (x) = ex − 1.5 − tan−1 x, (3.1)

g(x) = cos x − xex + x2. (3.2)

Tables 1 and 2 demonstrate the comparison of these methods for f (x) and g(x),

respectively. All the tests are performed using MATLAB 7 which has a machine

precision of around 10−16 on a Pentium IV. The numerical results indicate that

the proposed iterative methods may be very efficient.

4 Conclusion

The problem of locating roots of nonlinear equations (or zeros of functions)

occurs frequently in scientific work. In this paper, we have introduced some

techniques for solving nonlinear equations. The techniques were based on the

central-difference and forward-difference approximations to derivatives. We

have shown that that three of the four methods have cubic convergence and

another method has quadratic convergence. The introduced methods can be used

for solving nonlinear equations without computing derivatives. Meanwhile, the

methods introduced in this paper can be used to more class of nonlinear equations.

The numerical examples shown in this paper illustrated the the efficiency of the

new methods. We used the well known software MATLAB 7 to calculate the

numerical results obtained from the proposed techniques.
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