Volume 29, N. 1, pp. 19-30, 2010

COMPUTATIONAL o
& APPL]ED Opyrlght(-©2010 SBMAC

www.scielo.br/cam

Some derivative free quadratic and cubic convergence
iterative formulas for solving nonlinear equations

MEHDI DEHGHAN* and MASOUD HAJARIAN
Department of Applied Mathematics, Faculty of Mathematics and Computer Science,
Amirkabir University of Technology, No. 424, Hafez Avenue, Tehran 15914, Iran
E-mails: mdehghan@aut.ac.ir, mdehghan.aut@gmail.com / mhajarian@aut.ac.ir,

masoudhajarian@gmail.com

Abstract. Finding the zeros of a nonlinear equation f(x) = 0, is a classical problem which
has nice applications in various branches of science and engineering. In this paper, we introduce
four iterative methods which is based on the central-difference and forward-difference approxi-
mations to derivatives. It is proved that three of the four methods have cubic convergence and
another method has quadratic convergence. The best property of these methods are that do not
need to calculate any derivative. In order to demonstrate convergence properties of the introduced

methods, several numerical examples are given.
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1 Introduction

A large number of papers have been written about iterative methods for the
solution of the the nonlinear equations [3, 7, 8, 9, 10, 12, 13]. In this paper, we
consider the problem of finding a simple root x* of a function f : D C R — R
ie., f(x*) = 0and f'(x*) # 0. The famous Newton’s method for finding x*
uses the iterative method
S
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20 SOME DERIVATIVE FREE QUADRATIC AND CUBIC CONVERGENCE

starting from some initial value xo. The Newton’s method is an important and
basic method where converges quadratically in some neighborhood of simple
root x*. Chun [5] obtained the iterative method with convergence cubically

given by

f(Zn+l) - f(xn) where z =X + f(xn)
fla) T )

Also there is an modification of the Newton’s method with third-order conver-

(1.1)

Xp41 = Xy —

gence as [14]

f(yn+1) + f(xn) _ f(xn)
S'(xn) ’ f(xn)

It is well-known that the forward-difference approximation for f”(x) at x is

S +h) - fx)
p .

Xn+1 = Xp — where Yn+1 = Xy (12)

fx) ~
If the derivative f(x,) is replaced by the forward-difference approximation
with 7 = f(x,) i.e.

f(xn + f(xn)) - f(xn)
VAC ’

S'() ~

the Newton’s method becomes

- (f (6n))?
f(xn + f(xn)) - f(xn)’

which is the famous Steffensen’s method [11]. The Steffensen’s method is

Xn+1 = Xp

based on forward-difference approximation to derivative. This method is a
tough competitor of Newton’s method. Both the methods are of quadratic con-
vergence, both require two functions evaluation per iteration but in contrast to
Newton’s method, Steffensen’s method is derivative free. Chen [4] studied a
particular class of these methods which contain the Steffensen’s method as a
special case. In [1], a modified Steffensen’s method for the numerical solution
of the system of nonlinear equations is studied. Amat et al. [2] considered a
class of the generalized Steffensen iterations procedures for solving nonlinear

equations on Banach space without any derivative.
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Sometimes the applications of the iterative methods depending on derivatives
are restricted in engineering. In this paper we introduce some methods which
are based on the approximations to the derivative f”(x,) in each iteration. These
methods are based on the central-difference and forward-difference approxima-
tions to the derivatives, respectively. The central-difference approximation for
f'(x)atxis

S+ fx) - flx—fx)
2f(x) '

We know that the leading errors in forward and central-difference formulae are

fx) ~

O(h) and O(h?), respectively. It follows that the central-difference approx-
imation is a more efficient than the forward-difference approximation to the
derivative f’(x). Ifin (1.1) and (1.2) we replace derivatives f’(x,) by
f(xn + f(xn)) - f(xn - f(xn))
21 (xn) ’

we obtain two free derivative methods as follows:

2 f(xn) [f(zn+1) - f(xn)]

n = An — s 1.3
T T e S G) — f G — [ o)) (1.3)
where 2£1 )2
Xn
nil = X, s 1.4
P = T o) — G — f ) (14)
nd 210 [f Gui) + £ )]
Xn Vn+1) + Xn
n — An — s 1.5
T ey G — f @ — £ () (15)
where 5 ,
Vot J ) (1.6)

T T Gt @) — G — S )

Now we use the forward-difference approximation. If in (1.1) and (1.2), we
replace derivatives f’(x,) by

f(xn + f(xn)) - f(xn)

) (1.7)
S (xn)
we get two free derivative methods by the following
Xpyl = Xp — S (xn) [f(Zn-i-l) - f(xn)] (1.8)

f(xn + f(xn)) - f(xn) '
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where

and

where
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F()?
n = Xp s 1.9
A T o) — G (1.9)
F ) [f Gner) + f )]

n = Xp — s 1.10
B e S ) — S o) (1.19)
2
Ynt1 = S ) (1.11)

T G+ S — )

In the next section, we derive the convergence results of the iterative methods
given by (1.3)-(1.6) and (1.8)-(1.11).

2 Main results

In this section we give the main results of this paper. We will give here the

mathematical proof for the order of convergence of the methods given by (1.3)-
(1.6) and (1.8)-(1.11).

Theorem 2.1. Letx*™ € D be a simple zero of sufficiently differentiable function

f: D — R for an open interval D. If xq is sufficiently close to x*, then the
method defined by (1.3) and (1.4) has cubic convergence, and it satisfies the

error equation

326G+ DD

€nt1 = e, + (9(62),

6/ (x*)? "

where e, = x,, — x*.

Proof. Lete, ande

*

%41 be the errors in x,, and z,,4| respectively, i.e.

Xy, =e,+x" and z, =e,  +x". 2.1

By using Taylor’ theorem, we can get

f(xn) = f(X* +e,) = f/(X*)en +

S 2 f(3)(X*)e3

4
o e, 3 w+0(,), (2.2)

f@)? = [ +e)? = /(" e + /() f(xe, + Ofey), (2.3)
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SO+ fn) = fx"+e+ f(x* +ep))
e[S+ A+ &N,

=1+ /&) f (x5en + 5 e,
' (2.4)
N [/ fO* +30+ /&)@ + 1+ f/(x*))3f(3)(x*)]e3
3! n
+ O,
and
f(xn - f(xn)) = f(X* +e, — f(X* +en))
1k [ % 1 — f/(x* 2
=_(1_f/(x*))f/(x*)en+f (x )[ f(x )2;+_( f(x )) ]eﬁ
' (2.5)
N [/ G D) +3(=14 &) [ = (-1 + f/(x*)ﬁﬂ”(x*)]e3
3! n
+ 0.
It follows that
FOn+ () = £ — fGx) = 21/ (x%) e, + 31/ (%) [ (x e,
1 (2.6)
+ (f”(x*)2 SV ACRICES FUCRBYAR (x*)) e, + 0(e)).
Now by substituting (2.3) and (2.6) into (1.4), we have
. _ B f//(x*) )
e}’l-‘rl - Ze” 2f/(x*) en
372 — SR+ (D) fOx) D
X — X X X 3 4
* 6/ () o Ol
Again using Taylor’s theorem we can write
fens) = fGF+ b))
_ o SN 5 36 = SR+ 1)) D)
= f1(x") {26,, 2f’(x*)e" 6 f(x*)2 €n (2.8)
f//(x*) 5 B 2f//(x*) 3 4
+ o {46,, D) en} + O(e,).
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Thus we get

3
S i) =21 en + 2 (e
2.9)

+ {—f”oc*)2 VA AR RO YARICS
f‘/(x*) 6f/(x*)

Now it is not difficult to obtain

} ez + O(ei).

21 C) [fnr) = fO)] = 2" (0 2es + 31/ (x%) f" (0 De, + O(e)).
Now by using all the previous expressions, we obtain

21 (xn) [f(ZnH) - f(xn)]
f(xn + f(xn)) - f(xn - f(xn))
—e {3f“(x*)2 +2/' )G+ /) D)
- 6/ (x*)?
Therefore we get the error equation
o= {3f”(x>")2 +216H)G+ &) SO
Sl 6./ (x*)?
The proof'is finished. O

(2.10)

} +(9(e)

}4+0@) (2.11)

Theorem 2.2. Under the assumptions of Theorem 2.1, the method given by

(1.5) and (1.6) has cubic convergence, and it verifies the error equation

1 (%) 2
2ff/( *))2 e+ 0eh.

€nt1 =

Proof. Lete; , = y,41 — x¥, by using the obtained equations in the proof of
Theorem 2.1, we get

. f”(x*) 2

T 2

=376 + SN2+ S @)D D) 2
6/ (x*)?

(2.12)

2+ 0,

Comp. Appl. Math., Vol. 29, N. 1, 2010



MEHDI DEHGHAN and MASOUD HAJARIAN 25

1
fOni) = fG" + ey ) = Ef”(x*)eﬁ

(2.13)
3]”(36”‘)2 + xR+ f1(x)?) fO(x*) 2

6f"(x*)

s+ O(e ).
It is not difficult to get
21 ) [f i) + f)] =21 e + 3% [ (x%)e;, + O(ey).

By some calculations, we can show that

2f(xn) [f(yn—H) + f(xn)] —e f// *)2
SGo+ f) =[O — S " 22
Hence we obtain the error equation
// x* 2
61 = 3zl + O,
The proof is completed. U

S10Eh. (214

In the next theorems, we show that if the derivatives of the methods (1.1) and
(1.2) are replaced by the forward-difference approximations, only the rate of
convergence (1.8) and (1.9) is decreased and the obtained method has quadratic
convergence. But the method defined by (1.10), (1.11) has cubic convergence.

Theorem 2.3. Under the assumptions of Theorem 2.1, the method defined by

(1.8) and (1.9) has quadratic convergence, and it satisfies the error equation

enp1 = [ (x")ep + O(ep). (2.15)

Proof. Lete, =x, —x*ande, ; =z,; —x*, by substituting (2.3) and (2.4)

into (1.9) and some calculations, we obtain

(14 &™) /" (x™) &
2f7(x*)

e, =2e, — >+ 0(e). (2.16)

By using Taylor’s theorem, we have

f(Zn-H) = f(X* + €:+1) = 2f/(x*)en
1 (2.17)
+ {2f”<x*> -5+ f’(x*))f”(x*)} e; +0(e).
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Also we obtain
@D [fGur) + f)] = f/6)e; + O(ey).
Now by some calculations, it is not difficult to obtain
enp1 = [ (x")ep + O(ey). (2.18)

The proof is finished. 0

Theorem 2.4. Under the assumptions of Theorem 2.1, the method given by
(1.10) and (1.11) has cubic convergence, and it verifies the error equation
CH+3S ")+ D)@

417 (x")? e +0(ey). (2.19)

€yl =

Proof. Lete, =x, —x*ande; | =z, — x*, by substituting (2.3) and (2.4)
into (1.11) and some calculations, we have

o 0+ 5
1 = Wen

_ 1 (% /(- FN2\ £ (k)2 * 1 (- 1K\ 2\ £(3) (%
N 3242/ (x*)+ 21/ (")) 1 (x )12;?1‘*’)(; Y243 () + £ O (x )er3l (2.20)
X

+0(eh,

a+ f’(X*))f”(X*)ez

SOnt1) = 5

L T3CH26H + 2 CHD S+ 216+ 36D + @D 5 (2.21)
12/7(x%) g

+0(eh,

Hence we obtain

1
SE) SO + fan] = £/6 + 2L GG+ L6 1" ey + O(ey).
It follows from the above equations that

Q3G S
e 417 (x*)?

e+ 0. (2.22)

The proof is completed. O
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The method given
by (1.3) and (1.4)

-14.1011589883491
-14.1012697727344
-14.1012697727366

Method Xn |f (xn)l
-7 0.0701888458437128
-10.67709617664 0.0225666081098759
Newton’s method -13.2791673756327 0.00436601933391256
-14.0536558542692 0.000239019777052984
-14.1011099568664 | 7.99584812360976x 10~/
-7 0.0701888458437128
-10.708837736245 0.0222921271890313
Steffensen’s method -13.2995315760352 0.00425139483858206
-14.0562246958444 0.000226083226453122
-14.1011274539331 | 7.12043263462192x10~7
-7 0.0701888458437128
-13.0388144901168 0.00574574535987593

5.54270412900237x 1077
2.79776202205539x 10~ 14
1.68753899743024 x 10~ 14

The method given
by (1.8) and (1.9)

-14.1019247141922
-14.1012697730407
-14.1012697727234

7 0.0701888458437128
. -11.8591341170014 | 0.0133207790518093
The method given -14.0049302623335 |  0.000485292604529342
by (1.5) and (1.6) -14.1012609462887 | 4.41597016731521x 10~
-14.10126977274 0
7 0.0701888458437128
-13.1709615370047 | 0.00498098138198277

3.27659042276274x 10~°
1.50435219836709x 1012
8.28226376370367x 1014

The method given
by (1.10) and (1.11)

n
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

-7
-11.8867725141432
-14.009072627247
-14.101262092531
-14.10126977274

0.0701888458437128
0.0131262898051761
0.00046428970071144
3.84249230211964x 1078
0

Table 1 — The comparison of the introduced methods in this paper with Newton’s method and

Steffensen’s method for f(x) = e¢* — 1.5 — tan~! x.
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Method n Xn lgCxn)l
1 0 1
2 1 1.17797952259091
Newton’s method | 3 | 0.724644697567095 |  0.221820009620489
4| 0.64465890487027 |  0.0134025850038723
5 | 0.639177807467281 | 5.74817089998847x 10
1 0 1
2 | 0.459141139587212 0.38055490048224
Steffensen’s method | 3 | 0.611228478941219 |  0.0662370181759029
4 | 0.638317069569666 |  0.00202779223976352
5 | 0.639153314504489 | 1.89530859256992x 10~6
1 0 1
_ 2 | 0.360452364589399 |  0.548782536293577
The method given | 31 ) 576508750644072 | 0.144654947339254
by (13)and (1L4) |y 1 637057420142172 | 0.00289826619895661
5 | 0.639154087002152 | 2.26174761697173x10~8
1 0 1
, 2 | 0.633973846554925 |  0.0125070972128752
The method given | 511 c2015302812122 | 4.0777728727015% 10~
by (1.5) and (16) 1 4 1) 639154006332008 | 1.11022302462516x 1016
5 | 0.639154096332007 | 1.66533453693773% 1016
1 0 1
_ 2 | 0.182435774509363 | 0.797739575083025
The method given | 11 ) 3)0331547450106 | 0.598445908724964
by (18)and (1.9) |4 | 454070648621023 0.389819960978116
5 | 0.639143306963761 | 2.61554132035546x 10
1 0 1
, 2 | 0.633869550270125 |  0.0127578660747175
The method given | 21 ) (401 54041910595 | 1.31928625801692 107
by (110)and (LD 1 1} 630154006332008 | 1.11022302462516x 1016
5 | 0.639154096332007 | 1.66533453693773% 1016

Table 2 — The comparison of the introduced methods in this paper with Newton’s method and

Steffensen’s method for g(x) = cos x — xe* + x2.
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3 Numerical examples

In this section, in order to compare the methods introduced in this paper with
Newton’s method and Steffensen’s method, we present some numerical exam-
ples. For this purpose we take two examples from the literature. Consider two

nonlinear equations as
f(x)=¢" —1.5—tan"'x, (3.1)

g(x) = cosx — xe* +x°. (3.2)

Tables 1 and 2 demonstrate the comparison of these methods for f(x) and g(x),
respectively. All the tests are performed using MATLAB 7 which has a machine
precision of around 10~'¢ on a Pentium IV. The numerical results indicate that
the proposed iterative methods may be very efficient.

4 Conclusion

The problem of locating roots of nonlinear equations (or zeros of functions)
occurs frequently in scientific work. In this paper, we have introduced some
techniques for solving nonlinear equations. The techniques were based on the
central-difference and forward-difference approximations to derivatives. We
have shown that that three of the four methods have cubic convergence and
another method has quadratic convergence. The introduced methods can be used
for solving nonlinear equations without computing derivatives. Meanwhile, the
methods introduced in this paper can be used to more class of nonlinear equations.
The numerical examples shown in this paper illustrated the the efficiency of the
new methods. We used the well known software MATLAB 7 to calculate the

numerical results obtained from the proposed techniques.
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