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Abstract. Let X1, X2, . . . be a strictly stationary and negatively associated sequence of

random variables with mean zero and positive, finite variance, set Sn = X1 + ∙ ∙ ∙ + Xn ,

Mn = max1≤k≤n |Sk |. Under appropriate moment conditions, we obtain precise rates in law

of the logarithm for the moment convergence of Sn and Mn .
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1 Introduction and main results

A finite family of random variables, X1, X2, . . . , Xn, is said to be negatively

associated if, for every pair of disjoint subsets T1 and T2 of {1, 2, . . . , n},

Cov
(

f1(Xi , i ∈ T1), f2(X j , j ∈ T2)
)

≤ 0,

whenever f1 and f2 are coordinatewise increasing and the covariance exists.

An infinite family is negatively associated if every finite subfamily is negatively

associated. This definition was introduced by Alam and Saxena [1] and Joag-

Dev and Proschan [7], and has found many applications in percolation theory,

multivariate statistical analysis and reliability theory [2].
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Under appropriate conditions, lots of results have been obtained for negatively

associated sequences, the central limit theorem (CLT) [13], probability inequal-

ities [15, 17], weak convergence [19, 20], almost sure convergence [12], law of

the iterated logarithm (LIL) [16] and complete convergence [8, 9], precise rates

[5, 21, 22].

Let X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.)

random variables. Gut and Spǎtaru [6] obtained a result below.

Theorem A. Suppose that E X1 = 0 and E X 2
1 = σ 2 < ∞. Then, for

0 ≤ δ ≤ 1,

lim
ε↓0

ε2δ+2
∞∑

n=1

(log n)δ

n
P

(
|Sn| ≥ ε

√
n log n

)
=

σ 2δ+2 E |N |2δ+2

δ + 1
. (1.1)

where N is a standard normal random variable.

Liu and Lin [11] proved the following theorem for i.i.d. random variables.

Theorem B. Suppose that

E X1 = 0, E X2
1 = σ 2 and E X 2

1(log+ |X1|)
α < ∞. (1.2)

for 0 < α ≤ 1. Then

lim
ε↓0

ε2α

∞∑

n=2

(log n)α−1

n2
E S2

n I
(
|Sn| ≥ ε

√
n log n

)
=

σ 2α+2

α
E |N |2α+2. (1.3)

Conversely, if (1.3) is true, then (1.2) holds.

The purpose of the present paper is to investigate precise asymptotics in com-

plete moment convergence, our results not only extend (1.3) to negatively as-

sociated sequences, but give a maximal analog of (1.3) and other versions. To

formulate our results,we need some extra notation. Let X1, X2, . . . be strictly

stationary and negatively associated random variables, E X1 = 0, E X 2
1 < ∞,

σ 2 = E X 2
1 +2

∑∞
n=2 E X1 Xn > 0, set Sn = X1+∙ ∙ ∙+Xn , Mn = max1≤k≤n |Sk |,

write log for the natural logarithm, log x = loge(x ∨ e), [z] denotes the integer

part of z, C stands for a positive constant whose value may be different from

line to line. Our results read as follows.
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Theorem 1.1. If E X 2
1

(
log |X1|

)1−2/δ
< ∞ for any δ > 2, then we have

lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ
E S2

n I
(
|Sn| ≥ εσ

√
n(log n)1/δ

)

=
δ(

√
2)δ

√
π(δ − 2)

0

(
δ + 1

2

)
,

(1.4)

and

lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ
E M2

n I
(
Mn ≥ εσ

√
n(log n)1/δ

)

=
2δ(

√
2)δ0

(
δ+1

2

)

√
π(δ − 2)

∞∑

n=0

(−1)n

(2n + 1)2δ+2
.

(1.5)

Conversely, if (1.5) is true, then E X 2
1(log |X1|)1−2/δ < ∞. Where 0(∙) is the

Gamma function.

Theorem 1.2. If E X 2
1(log |X1|)δ < ∞ for any δ > 0, then we have

lim
ε↓0

ε2δ

∞∑

n=2

(log n)δ−1

n2
E S2

n I
(
|Sn| ≥ εσ

√
n log n

)

=
2δ+1

√
πδ

0

(
δ +

3

2

)
,

(1.6)

and

lim
ε↓0

ε2δ

∞∑

n=2

(log n)δ−1

n2
E M2

n I
(
Mn ≥ εσ

√
n log n

)

=
2δ+20

(
δ + 3

2

)

√
πδ

∞∑

n=0

(−1)n

(2n + 1)2δ+2
.

(1.7)

Conversely, if (1.7) is true, then E X 2
1

(
log |X1|

)δ
< ∞.

Without loss of generality, throughout the paper, we will suppose that

σ 2 = 1.

2 Proof of Theorem 1.1

In order to verify this result, we first give three elementary but useful lemmas.
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Lemma 2.1. [13]. Let {Xn : n ≥ 1} be a strictly stationary and negatively

associated sequence of random variables with mean zero and

0 < σ 2 = E X 2
1 + 2

∞∑

n=2

E X1 Xn < ∞,

then

Sn/σ
√

n
D
→ N (0, 1) as n → ∞. (2.1)

Lemma 2.2. [18]. Let {Xn : n ≥ 1} be strictly stationary and negatively asso-

ciated sequence of random variables, E X1 = μ, 0 < V ar X1 = σ 2 < ∞ and

B2 = E X 2
1 + 2

∑∞
n=2 E X1 Xn > 0, set Sm =

∑m
k=1 Xk, write

Wn(t) =
1

B
√

n

(
Sm + (nt − m)Xm+1 − ntμ

)
, m ≤ n < m + 1, 0 ≤ t ≤ T .

Then

Wn(t)
D
→ W (t) in C[0, T ], (2.2)

where {W (t) : t ≥ 0} is a standard Wiener process and C[0, T ] is the usual C

space on [0, T ].

Lemma 2.3. [10]. Let {Xn : n ≥ 1} be a negatively associated sequence of

random variables with mean zero, E X2
n < ∞, set Sn =

∑n
k=1 Xk, B2

n =
∑n

k=1 E X 2
k . Then, for any a > 0 and b > 0, we have

P
(

max
1≤k≤n

|Sk | ≥ a
)

≤

2P
(

max
1≤k≤n

|Xk | ≥ b
)

+ 2e exp
(

a

b
−

(
a

b
+

B2
n

b2

)
log

(
1 +

ab

B2
n

))
.

(2.3)

Observe the following formula.
∞∑

n=2

1

n2(log n)2/δ
E S2

n I
(
|Sn| ≥ ε

√
n(log n)1/δ

)

= ε2
∞∑

n=2

1

n
P

(
|Sn| ≥ ε

√
n(log n)1/δ

)
(2.4)

+
∞∑

n=2

1

n2(log n)2/δ

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|Sn| ≥ x

)
dx . (2.5)
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Similarly, one can obtain the corresponding equation for Mn . In the rest of this

section, we give the following propositions.

Proposition 2.1. We have

lim
ε↓0

εδ

∞∑

n=2

1

n
P

(
|N | ≥ ε(log n)1/δ

)
=

(
√

2)δ
√

π
0

(δ + 1

2

)
, (2.6)

and

lim
ε↓0

εδ

∞∑

n=2

1

n
P

(
sup

0≤t≤1
|W (t)| ≥ ε(log n)1/δ

)

=
2(

√
2)δ0

(
δ+1

2

)

√
π

∞∑

n=0

(−1)n

(2n + 1)2δ+2
,

(2.7)

where N is a standard normal random variable and {W (t) : t ≥ 0} is a standard

Wiener process.

Proposition 2.2. Under the conditions of Theorem 1.1, we have

lim
ε↓0

εδ

∞∑

n=2

1

n

∣
∣
∣P

(
|Sn| ≥ ε

√
n(log n)1/δ

)
− P

(
|N | ≥ ε(log n)1/δ

)∣∣
∣ = 0, (2.8)

and

lim
ε↓0

εδ

∞∑

n=2

1

n

∣
∣
∣P

(
Mn ≥ ε

√
n(log n)1/δ

)

− P
(

sup
0≤t≤1

|W (t)| ≥ ε(log n)1/δ

) ∣
∣
∣ = 0.

(2.9)

Remark 2.1. The proofs of Propositions 2.1 and 2.2 are very standard, so we

omit them.

Proposition 2.3. Under the conditions of Theorem 1.1, we have

lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|N | ≥ x/

√
n
)
dx

=
2(

√
2)δ

√
π(δ − 2)

0
(δ + 1

2

)
,

(2.10)
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and

lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ

∫ ∞

ε
√

n(log n)1/δ

2x P
(

sup
0≤t≤1

|W (t)| ≥ x/
√

n
)

dx

=
4(

√
2)δ0

(
δ+1

2

)

√
π(δ − 2)

∞∑

n=0

(−1)n

(2n + 1)2δ+2
.

(2.11)

Proof. It follows that

lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ

∫ ∞

ε
√

n(log n)1/δ

2x P(|N | ≥ x/
√

n)dx

= lim
ε↓0

εδ−2
∫ ∞

2

1

y(log y)2/δ
dy

∫ ∞

ε(log y)1/δ

2x P(|N | ≥ x)dx

= δ

∫ ∞

0
t δ−3dt

∫ ∞

t
2x P(|N | ≥ x)dx

=
2δ

δ − 2

∫ ∞

0
x δ−1dx

∫ ∞

x

2
√

2π
exp

(
−u2

2

)
du

=
2(

√
2)δ

√
π(δ − 2)

0

(
δ + 1

2

)
.

Using the following result of Billingsley [3].

P
(

sup
0≤s≤1

|W (s)| ≥ x
)

= 1 −
∞∑

k=−∞

(−1)k P
(
(2k − 1)x ≤ N ≤ (2k + 1)x

)

= 2
∞∑

k=0

(−1)k P
(
|N | ≥ (2k + 1)x

)
,

one can obtain (2.11). �

Proposition 2.4. Under the conditions of Theorem 1.1, we have

lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ

∣
∣
∣

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|Sn| ≥ x

)
dx

−
∫ ∞

ε
√

n(log n)1/δ

2x P
(
|N | ≥ x/

√
n
)
dx

∣
∣
∣ = 0,

(2.12)
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and

lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ

∣
∣
∣

∫ ∞

ε
√

n(log n)1/δ

2x P(Mn ≥ x)dx

−
∫ ∞

ε
√

n(log n)1/δ

2x P
(

sup
0≤t≤1

|W (t)| ≥ x/
√

n
)

dx
∣
∣
∣ = 0.

(2.13)

Proof. We only prove (2.12), let H(ε) = [exp(M/εδ)], M > 4, 0 < ε <

1/4, δ > 2, denote 1n = supx |P(|Sn| ≥
√

nx) − P(|N | ≥ x)|, we have

∞∑

n=2

1

n2(log n)2/δ

∣
∣
∣

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|Sn| ≥ x

)
dx

−
∫ ∞

ε
√

n(log n)1/δ

2x P
(
|N | ≥ x/

√
n
)
dx

∣
∣
∣

=
∑

n≤H(ε)

1

n2(log n)2/δ

∣
∣
∣

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|Sn| ≥ x

)
dx

−
∫ ∞

ε
√

n(log n)1/δ

2x P
(
|N | ≥ x/

√
n
)
dx

∣
∣
∣

+
∑

n>H(ε)

1

n2(log n)2/δ

∣
∣
∣

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|Sn| ≥ x

)
dx

−
∫ ∞

ε
√

n(log n)1/δ

2x P
(
|N | ≥ x/

√
n
)
dx

∣
∣
∣

=: 61 + 62.

We first estimate 61, it follows that

61 ≤
∑

n≤H(ε)

1

n

( ∫ ∞

(log n)−1/δ1
−1/4
n

2(x + ε)P
(
|N | ≥ (x + ε)(log n)1/δ

)
dx

+
∫ (log n)−1/δ1

−1/4
n

0
2(x + ε)

∣
∣
∣P

(
|Sn| ≥ (x + ε)

√
n(log n)1/δ

)

−P
(
|N | ≥ (x + ε)(log n)1/δ

)∣∣
∣dx
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+
∫ ∞

(log n)−1/δ1
−1/4
n

2(x + ε)P
(
|Sn| ≥ (x + ε)

√
n(log n)1/δ

)
dx

)

=:
∑

n≤H(ε)

1

n
(63 + 64 + 65).

The estimate of 63 is easy. By Toeplitz’s lemma, one can complete the proof of

term 64. As to 65, taking a = ε
√

n(log n)1/δ, b = a/m in Lemma 2.3, it turns

out that
∑

n≤H(ε)

65

n
≤ C

∑

n≤H(ε)

1

n

∫ ∞

(log n)−1/δ1
−1/4
n

(y + ε)−2m+1n−m(log n)−2m/δ

(
m

∑n
k=1 E X 2

k

)−m dy

+ C
∑

n≤H(ε)

∫ ∞

(log n)−1/δ1
−1/4
n

(y + ε)P
(
|X1| ≥ (y + ε)

√
n(log n)1/δ/m

)
dy

=: 66 + 67.

An easy calculation leads to

66 ≤ C
∑

n≤H(ε)

1

n(log n)2m/δ

∫ ∞

(log n)−1/δ1
−1/4
n

(y + ε)−2m+1dy

≤ C
(log H(ε))1−2/δ

(log H(ε))1−2/δ

∑

n≤H(ε)

1

n(log n)2/δ
1(m−1)/2

n

= C
ε2−δ M1−2/δ

(log H(ε))1−2/δ

∑

n≤H(ε)

1

n(log n)2/δ
1(m−1)/2

n , (2.14)

by Toeplitz’s lemma, we have limε↓0 εδ−266 = 0. Turn to 67, it follows that

67 ≤ C
∑

n≤H(ε)

E
∫ ∞

(log n)−1/δ1
−1/4
n

(y + ε)I
(
m(y + ε) ≤ |X1|/

√
n(log n)1/δ

)
dy

≤ C
∑

n≤H(ε)

1

n(log n)2/δ
E X 2

1 I
(
m|X1| ≥

√
n
)

= C
(log H(ε))−2/δ+1

(log H(ε))−2/δ+1

∑

n≤H(ε)

1

n(log n)2/δ
E X 2

1 I
(
m|X1| ≥

√
n
)

≤ C
ε2−δ M1−2/δ

(log H(ε))−2/δ+1

∑

n≤H(ε)

1

n(log n)2/δ
E X 2

1 I
(
m|X1| ≥

√
n
)
, (2.15)
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applying Toeplitz’s lemma again, we have limε↓0 εδ−267 = 0. Now let us

consider 62, notice that

62 ≤ C
∑

n>H(ε)

1

n2(log n)2/δ

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|N | ≥ x/

√
n
)
dx

+ C
∑

n>H(ε)

1

n2(log n)2/δ

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|Sn| ≥ x

)
dx

=: 68 + 69.

Applying Markov’s inequality, one can complete the estimate of 68. By

Lemma 2.3, taking m > δ/2, it turns out

69 ≤ C
∑

n>H(ε)

1

n

∫ ∞

0

(y + ε)−2m+1n−m(log n)−2m/δ

(
m

∑n
k=1 E X2

k

)−m dy

+ C
∑

n>H(ε)

∫ ∞

0
(y + ε)P

(
|X1| ≥ (y + ε)

√
n(log n)1/δ/m

)
dy

≤ C
∑

n>H(ε)

1

n(log n)2m/δ

∫ ∞

0
(y + ε)−2m+1dy

+ C E
( ∫ ∞

0
(y + ε)

∑

n>H(ε)

I (
√

n(log n)1/δ ≤ m|X1|/(y + ε)dy
)

≤ Cε−2m+2
∑

n>H(ε)

1

n(log n)2m/δ

+ C E
( ∫ ∞

0

X2
1

(y + ε)
(log |X1| − log(y + ε))−2/δ I

(
y + ε ≤ m|X1|

)
dy

)

≤ Cε2−δ M−2m/δ+1 + C E X 2
1

((
log |X1|

)1−2/δ
− (log ε)1−2/δ

)
, (2.16)

we have limε↓0 εδ−269 = 0. The proof of (2.12) is now complete. �

Proof of Theorem 1.1. Combining Propositions 2.1 ∼ 2.4, we have

lim
ε↓0

εδ

∞∑

n=2

1

n
P

(
|Sn| ≥ ε

√
n(log n)1/δ

)
=

(
√

2)δ
√

π
0

(
δ + 1

2

)
, (2.17)
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lim
ε↓0

εδ−2
∞∑

n=2

1

n2(log n)2/δ

∫ ∞

ε
√

n(log n)1/δ

2x P
(
|Sn| ≥ x

)
dx

=
2(

√
2)δ

√
π(δ − 2)

0

(
δ + 1

2

)
.

(2.18)

Then, the proof of (1.4) follows from (2.17) and (2.18), similarly, one can ob-

tain (1.5).

For the sufficient part, using the standard method, we first show that

P
(

max
1≤k≤n

|Xk | ≥ ε
√

n(log n)1/δ

)
→ 0 as n → ∞. (2.19)

It is easy to see that

|Xn| = |Sn − Sn−1| ≤ |Sn| + |Sn−1|, (2.20)

furthermore, we have
(

max
1≤k≤n

|Xk | ≥ 2ε
√

n(log n)1/δ

)

⊂
(

max
1≤k≤n

|Sk | ≥ ε
√

n(log n)1/δ

)
∪

(
max

1≤k≤n−1
|Sk | ≥ ε

√
n(log n)1/δ

)
. (2.21)

Recalling (1.5) and (2.4), which yields

∞ >

∞∑

n=2

1

n
P

(
max

1≤k≤n
|Xk | ≥ ε

√
n(log n)1/δ

)

≥
C

2

∞∑

m=2

P
(

max
1≤k≤2m

|Xk | ≥ ε
√

2m(log 2m)1/δ

)
. (2.22)

Hence, we have

P
(

max
1≤k≤2m

|Xk | ≥ ε
√

2m(log 2m)1/δ

)
→ 0, (2.23)

So (2.19) follows from (2.22) and (2.23). We next show that

P
(

max
1≤k≤n

|Xk | ≥ ε
√

n(log n)1/δ

)
≥ C

n∑

k=1

P
(
|Xk | ≥ ε

√
n(log n)1/δ

)
. (2.24)
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By the result of Joag-Dev et al. [7], it turns out that

P
(

max
1≤k≤n

|Xk | ≥ ε
√

n(log n)1/δ

)

≥ 1 −
n∏

k=1

(
1 − P

(
|Xk | ≥ ε

√
n(log n)1/δ

))

≥ 1 − exp
(

−
n∑

k=1

P
(
|Xk | ≥ ε

√
n(log n)1/δ

))
, (2.25)

by (2.19), for sufficiently large n, we have
n∑

k=1

P
(
|Xk | ≥ ε

√
n(log n)1/δ

)
→ 0 for any ε > 0. (2.26)

By (2.26) and using elementary inequality, we have

P
(

max
1≤k≤n

|Xk | ≥ ε
√

n(log n)1/δ

)

≥
n∑

k=1

P
(
|Xk | ≥ ε

√
n(log n)1/δ

)(
1 −

n∑

k=1

P
(
|Xk | ≥ ε

√
n(log n)1/δ

))

≥ C
n∑

k=1

P
(
|Xk | ≥ ε

√
n(log n)1/δ

)
. (2.27)

Finally, the sufficient part follows from (2.27) together with

∞ >

∞∑

n=2

1

n

∫ ∞

0
2(x + 1)P

(
Mn ≥ (x + 1)

√
n(log n)1/δ

)
dx

≥ C
∞∑

n=N

∫ ∞

0
(x + 1)P

(
|X1| ≥ 2(x + 1)

√
n(log n)1/δ

)
dx

≥ C E




∫ ∞

0
(y + ε)

∑

n>H(ε)

I (
√

n(log n)1/δ ≤ m|X1|/(y + ε)dy





≥ C E
(∫ ∞

0

X2
1

(y + ε)
(log |X1| − log(y + ε))−2/δ I (y + ε ≤ m|X1|)dy

)

≥ C E X 2
1

(
log |X1|

)1−2/δ
.
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3 Proof of Theorem 1.2

According to the proof of Theorem 1.1, we only give the main ideas of the

proofs of (1.6) and (1.7). Observe (2.4) and (2.5), it is natural to give the follow-

ing Propositions.

Proposition 3.1. We have

lim
ε↓0

ε2δ+2
∞∑

n=2

(log n)δ

n
P

(
|Sn| ≥ ε

√
n log n

)
=

2δ+1

√
π(δ + 1)

0

(
δ +

3

2

)
, (3.1)

and

lim
ε↓0

ε2δ+2
∞∑

n=2

(log n)δ

n
P

(
Mn ≥ ε

√
n log n

)

=
2δ+20

(
δ + 3

2

)

√
π(δ + 1)

∞∑

n=0

(−1)n

(2n + 1)2δ+2
.

(3.2)

Proof. By a careful calculation, it follows that

lim
ε↓0

ε2δ+2
∞∑

n=2

(log n)δ

n
P

(
|N | ≥ ε

√
log n

)
=

2δ+1

√
π(δ + 1)

0

(
δ +

3

2

)
. (3.3)

Then, along the same lines as those of the proof of Proposition 2.2, we have

lim
ε↓0

ε2δ+2
∞∑

n=2

(log n)δ

n

∣
∣
∣P

(
|Sn| ≥ ε

√
n log n

)
−P

(
|N | ≥ ε

√
log n

)∣∣
∣ = 0. (3.4)

With the help of Billingsley’s result, one can complete the proof of (3.2).

Proposition 3.2. Under the conditions of Theorem 1.2, we have

lim
ε↓0

ε2δ

∞∑

n=2

(log n)δ−1

n2

∫ ∞

ε
√

n log n
2x P

(
|Sn| ≥ x

)
dx

=
2δ+1

√
πδ(δ + 1)

0

(
δ +

3

2

)
,

(3.5)
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and

lim
ε↓0

ε2δ

∞∑

n=2

(log n)δ−1

n2

∫ ∞

ε
√

n log n
2x P

(
Mn ≥ x

)
dx

=
2δ+20

(
δ + 3

2

)

√
πδ(δ + 1)

∞∑

n=0

(−1)n

(2n + 1)2δ+2
.

(3.6)

Proof. Recalling the proof of Proposition 2.3, it is easy to get

lim
ε↓0

ε2δ

∞∑

n=2

(log n)δ−1

n2

∫ ∞

ε
√

n log n
2x P

(
|N | ≥ x/

√
n
)
dx

=
2δ+1

√
πδ(δ + 1)

0

(
δ +

3

2

)
.

The following proof is similar to that of Proposition 2.4, so we have

lim
ε↓0

ε2δ

∞∑

n=2

(log n)δ−1

n2

∣
∣
∣

∫ ∞

ε
√

n log n
2x P

(
|Sn| ≥ x

)
dx

−
∫ ∞

ε
√

n log n
2x P

(
|N | ≥ x/

√
n
)
dx

∣
∣
∣ = 0.

(3.7)

The moment condition E X 2
1(log |X1|)δ < ∞ is used as follows, note the

corresponding part of 69, we have

C
∑

n>H(ε)

(log n)δ−1

n

∫ ∞

ε
√

n log n
2x P

(
|X1| ≥ x

)
dx

≤ C
∑

n>H(ε)

(log n)δ

∫ ∞

0
(y + ε)P

(
|X1| ≥ (y + ε)

√
n log n/m

)
dy

≤ C E




∫ ∞

0
(y + ε)

∑

n>H(ε)

(log n)δ I (
√

n log n ≤ m|X1|/(y + ε)dy





≤ C E
(∫ ∞

0

X2
1

(y + ε)
(log |X1| − log(y + ε))δ−1 I (y + ε ≤ m|X1|)dy

)

≤ C E X 2
1

(
(log |X1|)

δ − (log ε)δ
)
, (3.8)
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we then complete the proof of (3.5). Finally, observe that

P
(

sup
0≤t≤1

|W (t)| ≥ x
)

≤ 2P(|N | ≥ x),

along the same proof lines of (3.5), one can complete the proof of (3.6).

Proof of Theorem 1.2. By virtue of Propositions 3.1 and 3.2, one can obtain

(1.6) and (1.7). With the help of (2.27), the sufficient part is obvious.
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