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Abstract. In this paper, we consider a Cauchy problem for the Helmholtz equation at fixed
frequency, especially we give the optimal error bound for the ill-posed problem. Within the
framework of general regularization theory, we present some spectral regularization methods and
a modified Tikhonov regularization method to stabilize the problem. Moreover, Holder-type sta-
bility error estimates are proved for these regularization methods. According to the regularization

theory, the error estimates are order optimal. Some numerical results are reported.
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1 Introduction

The Cauchy problem for Helmholtz equation arises from inverse scattering prob-
lems. Specific backgrounds can be seen in the existing literature, we can refer
to [1]-[6] etc. A number of numerical methods for stabilizing this problem are
developed. Several boundary element methods combined with iterative, conju-
gate gradient, Tikhonov regularization and singular value decomposition method
are compared in [6]. However, these numerical methods are short of stability
analysis and error analysis. Recently, in [5] many applications for a model of
Helmholtz equation are introduced, a Fourier regularization method [7] (also is
known as a method by cutting off high frequency directly) is applied for solving
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a Cauchy problem for Helmholtz equation, some error estimates are also ob-
tained. In [8], for sideways heat equation we connect the Fourier regularization
method with general regularization theory, we discover that Fourier regulariza-
tion method can be considered as the ‘generalized’ TSVD method [9]. Based on
some ideas of [8], in this paper, we use some spectral methods [10] to solve the
Cauchy problem. In addition, a revised Tikhonov regularization method is also
considered. Since the numerical implementation for our methods is similar to
the method provided by [5], we only give some numerical results.

This aim of this paper is to give some regularization methods within the
framework of general regularization theory, which are different from “Approxi-
mate solution of a Cauchy problem for the Helmholtz equation” by T. Reginska
and K. Reginski [5], where Fourier regularization method is only an ‘isolated’
method. Moreover, we find that for the Cauchy problem Fourier regularization
method is one of the considered spectral methods.

2 Model problem and optimal error bound

Let Q = R? x (0,d) c R3. The first two variable are denoted by= (x, y).
In addition, there are two boundarie§y, = {(r,0),r € R?} c Q, T =
{(r,d), r € R?} C 9. Let us consider the following problem for Helmholtz
equation
Au+ku=0 inQ
ur,d)y=g@r) reR?
aur,d)=0 r e R?,
uG-,z) e L2R? ze(0,d),

(2.1)

where Au = (32u)/(3x?) + (92u)/(dy?) + (9%u)/(3z%) andk > O is the
wavenumber(real constant). We want to obtain the solutign z) for 0 <

z < d. Since the datag(-) are based on (physical) observations and are not
known with complete accuracy, we assume that andg’(-) satisfy

lg() = Ol <8, (2.2)

whereg(-) andg’(-) belong toL?(R?), g’(-) denotes the measured data @nd
denotes the noise level, || denotes thd?(R?)-norm.
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In order to use Fourier transform technique with respect to varialdeR?,
we define the Fourier transform

1
T 2r

0, 2) /RZ e '&Pu(r, z)dr, £ € R? (2.3)

The problem (2.1) can be reformulated in the frequency space as

022(57 Z) = (|§|2 - k2)0(§7 Z)v 5 € R29 Ze (01 d)
agg, d) = g(), £ e R?, (2.4
9,0(€,d) =0, £ e R2

If uis the solution of (2.1), then its Fourier transfofims the solution to
problem (2.4) and is given by

a(&, 2) = cosh((d — 2)v/|£12 — k?)§(&), (2.5)

wheret = (&1, &), [£[% = £2 + &2,

From (2.5) and Parseval identity, we will see thatjit) decays rapidly at
|€| — oo in frequency domain, then the solution of problem (2.1) liek3<2).

If |&] < k, then|&]? — k® < 0, cosh(d — 2)\/|£]2 —k?) = cog(d —
2)v/k2 — |£|2). Thus, (2.5) becomes

a(¢, 2) = co(d — 2)vk? — £[2)§(8). (2.6)
If || > k, then|£|2 — k? > 0, it is easy to see that if
Us(&, 20 = (§(§) + 6) cosh(d — 2)V/|€]? — k?),

then
0s(€, 2) — Q(&, 2) = s cosh(d — 2)v/|€]? — k?).

Obviously cosli(d — 2),/|€]2 — k?) — oo as|é| — oo, this factor can amplify
the errors arbitrarily.
In (2.5), settingz = 0, we have

U(¢, 0) = coshidy/|£]? — k?)§(&). (2.7)
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As usual, in order to obtain convergence rate, we assume that there exists an
a-priori bound for problem (2.1):

M = {u(r,2) | luC, O)ll 22 < E}, (2.8)

whereE is a given constant, throughout this paper, we use the same ndEation
Due to ill-posedness, problem (2.1) is unstable in numerical simulation and
requires regularization methods. What is the optimal error bound for solving
problem (2.1) by all regularization methods? In order to answer this question,
we review some results on optimality theory for ill-posed problems.
Consider an ill-posed inverse operator equation [9], [11], [12], [13]

Ax' =y (2.9)

whereA : X — Y is a bounded linear operator between infinite-dimensional
Hilbert spaceX andY. Lety’ e Y be the available noisy data wifly’ —y|| < §.
Any operatofi : Y — X can be seen as a special method for solving (2.9), the
approximate solution to (2.9) is then given fiy°.

Let M € X a bounded set. Define the worst case error according to

A, ) = sup{ IRy’ — x| ‘ xTe M,y eV, |AX — || < 5} . (2.10)

The worst case error characterizes the maximal error of the méthbdhe
solutionx™ of (2.9) varies in the sé¥l. A methoddi, is called

() optimal onthe seM if A(8, Ng) = infy.y_x A(S, N);
(i) order optimal on the sl if A(8, Ng) < cinfg.y_ x A(S, R) withc > 1.
Let the “source setM be given by

My.e = [x" e X|x" = [o(A"m)]" o, v] < E}, (2.11)

where the operator function(A*A) is well defined via spectral representation
@(A*A) = [T o(0)d E, whereA*A = [ Ad E; is the spectral decomposition
of A*A, {E,} denotes the spectral family of the operafdiA anda is a constant
with ||A*A|| < a. In addition,
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Assumption 2.1. The functionp : (0,a] — (0, o0) in (2.11) is continuous
and satisfies

(i) lim;~op() =0
(il) @(1) is strong monotonically increasing ag, aj
(i) p(A) =rp (M) : (0, ()] — (0, ap(a)] is convex.
Theorem 2.2. [12] Let M be given by(2.11), let Assumptior2.1 be satisfied

and §?/(E?) e o (A*Ap(A*A)) whereo (A*A) denotes the spectrum of the
operator A*A. Then

2

. X (8
(3. E) :=inf AG.9) = E [ 1(§> (2.12)

Based on Theorem 2.2, we can obtain the following results:

Theorem 2.3. Let$§?/E? < 1. Then under the assumpti@®.8) we have the
following optimal error bound for problern®2.1)

(8, E) = EY"54(1+ 0o(1)) for § — O. (2.13)

As for the proof of Theorem 2.3, we can refer to the Appendix.
Most regularization operators can be written in the form,

Ry 1= g (A*A) A* (2.14)
with some functiorg, satisfying
. 1
lim (%) =~ (2.15)

wherea > 0 plays the role of regularization parameter. Then for the regulariza-
tion solution with noisy data, we have := %,Yy’. For example,

Spectral method 1.

Qu (M) =

R IR >k
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Spectral method 2.

1
Xa )" Z (X,
ga()") — 1 N
_—, < a.
v ai
Spectral method 3 (TSVD method).
1
N} A Z o,
QM) =1 4
0, A<«
Tikhonov method. 1
(M) = ——.
G (%) o+ A

In general, the exact solutiof e X is required to satisfy a so-called source
condition, otherwise the convergence of the regularization method approximating
the problem can be arbitrarily slow. For problem (2.1), the condition (2.8) is
assumed for the above reason.

3 Error estimates on the Cauchy problem for the Helmholtz equation

In this section, we will analyze the error estimates by different regularization
methods.
By the similar method in [14], (2.1) can be formulated as an operator equation
in frequency domain
A@)0(E, 2) = §(5), (3.1)

obviously, the multiplication operatdi(z) is given by

. 1
A(z) = , 3.2
@ cosh(d — 2)/1£]% — k?) (3:2)
and
At (z) = ! A*(2)A@) = :
cosh(d — 2/ EZ - K2) |cosh(d — 2)v/1E2 = K2) |2
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Now we give a new interpretation for the Fourier regularization method pro-
vided by [5]. Applying the TSVD method for solving problem (2.1), we have

cosh(d — 2)\/|£[> — k?)§° (&), 1 > a,

>
| cosh(d—2)+/|E2—K2)|2

0 (6) = ) (3.3)
0, | cosh(d—2) /|6 [2—k?)[2 =
1
The inequality. < « IS equivalent to
T coshd — Ve~ 1)1 |
1
| cosh((d — 2)v/|§|2 — k?)| > ﬁ' (3.4)

If |£] > K, the (3.4) is equivalent to

2 e[ 1 ERYS
€] > k +[d_zarccos)—<ﬁ>].

Obviously, regularization method (3.3) stabilize problem (2.1) by cutting off
high frequency.
If the spectral method 1 is devoted to solving problem (2.1), then we get

—_ 2 _ k2\§° 1
. cosh(d — 2)y/[§]> — k?)§° (&), a2
u,(¢,2 = (3.5)
o 1 1

1 1 §° (£) <o
% cosh(d—2)+/1£12—K2) g | cosh((d—2) /|5 12—k?)[2

Because the three spectral methods in Section 2 are very similar, we only give
the approximation properties of the first spectral method.

Theorem 3.1. Supposed that(p, z) is exact solution with exact dagand
thatué (p, z) is approximate solution by spectral method 1 with noisy dita
If we have an a-priori boundu(-, 0)|| < E and the data functions satisfy
lg — @°|l < 8, and if we choose

Ja=1/ cosh(d ; z arccosk(%)) , (3.6)

then we can obtain the following error estimate o> O:

luc-,2) — U, 2l < 3- (%)a EX353(1+ o(1)) — O. (3.7)
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Proof. For the subsequent analysis, we define two séts= {¢ : |&| < k}
andl := {¢ : || > k}. Due to Parseval identity, we have

UG, 2) = Ug (-, D lLzey = 10C, 2) = 05 ¢, D[22
According toR? = W [ J I, there holds

~ 5 ~ 5
10, 2) — U, ¢, Dllewey = 10, 2) — U, (-, DlL2q)

. N (3.8)
+ 10(, 2) = U, ¢, D 2wy
Casel: |E°—Kk?*>0, ie, &€ l.
First define two sets
A {5 el ! > ]
= > o
| cosh(d — 2)/|£]2 — k?)|?
and
B [5;‘ el ! }
= <y,
| cosh((d — 2)/|£12 — k?)|2
due to the inequality/a + b < /a + /b, for a, b > 0, we have
1a¢-, 2) — 3, ey = </ | cosh((d — 2)/[£1% — k?)(§ — Q‘S)Izdé
A
/ 1 1 5
+ - g
5 % cosh(d—2)V[g> —k?) (3.9)
2 1/2
— cosh(d —2),/|£12 —k?)§ dé)
< li+12,

where

1/2
I = (/ | cosh(d — Z)\/m)(g - Q5)|2d5) ;

A
1 1

Iy = /— & — cost(d — 2,/ 12 — k2)g

(B % coshi(d — 2)v/[€|? — k?)

X 1/2
dg) |
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For 11, by noting the definition of the s&&, we obtain

1/2

I3 < sup|cosh(d — 2)v/[§|> — k?)| / (6 — §")|°dg
A A (3.10)

<—xé
=7
For I,, according to the triangle inequality

la—c+c—b| <lla—c|+|b—c]

and the formula (2.7), we have

|2§(/1 1 s 1 1
B

) 1/2
= ¢ - = g| de
% cosh(d — 2)y/|£|2 — k2) ¢ cosh(d — 2)V/|£|2 — k?)

1/2
1 1 2
+ (/ = g — cosh(d — 2),/1£12 — k2)§ ds)
B

¥ cosh(d — 2)V/|€|2 — k?)
1 1
, \12
d
] @11

< sup
B

1 ‘.3

% cosh(d — 2)VI£I2 — k?)

+ (/ (1 = ~ cost(d — 2,/ &2 —k2)>@
B

Ecosf((d - 2VIE12 - Kk2)
1 1

1 ‘.5

% cosh(d — 2)y/1£|2 — k?)

+(/
B
ac-, 0) 2 \12
- d— 2_ K2 >—‘ d
cosh(d — 2)+/ |€] )Coshd 70 s)

< I3+ g,

<sup
B

1 1
<°‘ cosh(d — 2)v/|£]%2 — k?)
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where
1
I3 := sup|— -6
B 1% cosh(d — 2)/|£[> — k?)

1 1

- — cosh(d — 2)/|§]? - k2>]
Iy = sup L‘ cosh(d — 2)/|51> — k?) ‘
T % coshdy/|€ 2 — k?)

1/2
< /0(-,0)|2ds) .
B

Noting that the seB is equivalent to{n |1/ cosh(d — 2)n) < /a}, where

n = |€12 — k3, we have

8
I3 < N (3.12)

As for 4, via the formula (2.8), there holds

{1 — a| cosh(d — 2)/[E]Z — kZ)q

It is easy to see that the elements in theBeshtisfy
1— a|cosh(d — 2)y/|€2 - k?)]? < 0.
So by neglecting the negative term 1 , we have

acosh(d—2)4/|£[?—k?)

_ _ 2
< Sup[alcosf((d V£ — k2| i|/cosr(d e —K2) x E
B L afcosh(d — 2)/|£]? — k?)|

= supcosh(d — 2)\/|§[> — k?) / coshdy/|£]2 — k?)E.
B

On the one hand (n) := cosh(d — 2)n)/ coshdn) is decreasing with respect
ton for 0 < z < d, on the other hand, the sBtis equivalent to

cosh(d — z i or ! arccos i =:
{nl (d— )n)>ﬁ}, {n|n>d_z "(\/&)—-770},
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hence

f(n) < f(n) = %/ [cosh(dizarccos)(\/—_))] (3.15)

According to the selection (3.6) of, cosh(— arccosl(%)) = E/§ holds.
Thus

1
W 8
I f(nE = —. 3.16
4 = T(ME =< (E/cS) Ja (3.16)
Combination of (3.12) and (3.16) gives
Iy <20 (3.17)
2= ﬁ .

Hence by (3.9) (3.10) and (3.17), we get

||0(',Z)—l:|i(-, Z)|||_2(|) 538/\/_:38C05h(d

—? arccosf(%)) . (3.18)

According to the asymptotic expressinosh(t arccoshE) = E* (3)"™" (1 +
0o(1)),for§ — 0, 0 <t < 1in[14], we have

. (8\8
1G¢-,2) — (-, D)l L2, < 3Ed (§> (14+0(1)), fors — 0. (3.19)

Casell: |£]°—k?®<0, i.e.,, £ € W.
In this case, we note that cagt — z),/|£]2 — k?) = cos(d — 2)/k2 — |€]?).

It is easy to establish the following error estimate
10¢, 2) = 03¢, DIz < 8 = o (EX7467/9) . (3.20)
Therefore, via (3.8), (3.19), (3.20), we get the error estimate (3.7). O

Remark 3.2. For the other two spectral methods, if the regularization param-
etera is properly chosen, we can establish the error estimates similarly. We
formulate it as follows:

luC,2) —Ww(, 2| < CEYdsi(l+o0)+4s, fors—0, (3.21)
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whereC is a positive constant without depending®andE. From the theory
of Section 2, we can conclude that these three spectral regularization methods
are order optimal.

Now we will devote to the Tikhonov regularization method. According to
Section 2, similarly we have the following regularized solution in the frequency

domain:
@ - (2= COSA—2VIER — K 5.
TR = el coshd — 2V EP — k)2

If the 1+ o]cosh((d — 2)\/|£|2 — k?)|? is replaced by a faster filter 3
a| cosh(d)+/|£|2 — k2)|?, we have the revised Tikhonov approximate solution

[15, 16]
@ ()= OSNA—DVEP-K)
@RI 1+ o) coshdyEZ — k)2~

Lemma3.3. LetO<z<d,|¢] >k, a >0. Then

qup_COSN(@ — 2V /IEZ—K) <( 2 )
1=k 1+ | coshdy/[E[2 — k?)? '

cosi‘((d—z)\/m)cosr(dm) ( ) T
|s|>k 1+ | coshdy/|£]? — k?)|? — WV '

Proof. First we prove (3.24). Leh := /|£|2 — k2 and note that coglkd—
2)n) < exp((d — 2)n), we have
cosiid -2 _ expd —2)n) _ , expld —2)n]

=4 ) 3.26
1+ alcoshdn)|? = 14+ %fd'i) 4 4 o exp2dn] ( )

(3.22)

(3.23)

(3.24)

(3.25)

dexd(d — 2)n]

Denotez(n) := 47 o expi2dy] Differentiating¢ and setting’ (0) = 0, we
find 4 d-z 4

exp2dng) = — - —— < —, 3.27

Xp(2dno) = e drz = (3.27)

moreover, for

n>mno £ () <0, for n<no &) >0,

Comp. Appl. Math., Vol. 26, N. 2, 2007



XIANG-TUAN XIONG and CHU-LI FU 297

hencez (n) attains its uniqgue maximurtyax = ¢(no) at the pointng. Since
(3.27),

d—z

4z
gld=2m0 (eZUUO)% < (ﬂ) ’ .
o

So

d—z

d—z
_ 4expd — 2)n0) _ N7 _(2\7 (328
€00 = 30 oz < exp((d Z)no))§<a> —<ﬁ) . (3.28)
Due to (3.26), we have

coshi(d — 2)n)
1+ «| coshidn)|? = ¢ = £(Mo).

Noting (3.28), we have the inequality (3.24).
As for (3.25), noting costiln) < exp(dn) and (3.26), we obtain

cosh(d — 2)n) cosh(dn) 42021

d N —
1+ «| coshdn)|? = te? = 44 qe2dn B(). (3.29)

Repeating the process in the case of (3.24) gon) yields the inequality
(3.25). O

Theorem 3.4. Supposed thati(p, z) is exact solution with exact datand
that U}, (0. 2) is approximate solution by revised Tikhonov method with
noisy datag®. If we have an a-priori boungu(-, 0)|| < E and the data func-
tions satisfyllg — ¢’|| < §, and if we choose = (%)2, then we can obtain the
following error estimate fos — O:

UG-, 2) — U griC Il < 3-27FE383 — 0. (3.30)

Proof. Due to Parseval identity, we have
IuC, 2) — W (-, D2z = 1GC, 2) — G, 2) [l L2(r2)-
Similar to the proof of Theorem 3.1, there holds

~ 5 ~ 5
10, 2) — U, ¢, Dllewrey = 10C, 2) — U, (-, DLz

‘ b (3.31)
+ 14(, 2) — U, G, D[ 20w)-
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Casel: |£°—Kk?>>0, ie,&Eel.

In this case, noting the inequalities (3.24) and (3.25), we have
10¢, 2) — 0, gri> D2

= ([ )
~ \Ji 11+ «| coshd/[£|2 — K2)|12

N / cosh(d — 2)/|]2 — k2
I 11+ «|coshdy/ |2 — k?)|2
< Su

ol a7 ¥ (fna- 9)|2d$>12
 |g1>k 1+ o coshdy/|€]2 — k?)[2

. @cosh(d — 2)V/I¢2 — k)| costdy/[¢ [ — k)2 (/ |@|2d€)1/2
1+ a| coshidy/|€]2 — k2)|2 !

2\ %
<|— B
<(%)
_ 2 _ |2 2 _ 12 172
+a sup cosh(d — 2)+/|&|“ — k<) cosh(dy/|£]4 — k<) (/|0(§,0)|2d5>
1|5k 1+ a|coshdy/|€|2 — k2)|2 I

() e ()

Thus we take

g — cosh(d — 2)\/|£|2 — k2)§

5 \1/2
dé)

(3.32)

o

Hence we have

IA

I8¢, 2) — 0 griCs D2y < 2V dET98d 4227 dEdsa.  (3.33)

Casell: |£]°—k?®<0, i.e.,, £ € W.

In this case, we have
1G(-, 2) — Gy, Rle( )|l L2w) < §+8%/E = 0(E1*686) fors — 0. (3.34)

Thus, according to (3,31), (3.33), (3.34), it yields (3.30). O
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4 Numerical experiments

In this section, some numerical results are reported in order to show how the
regularization method works. In section 3, we have seen that the Fourier regu-
larization method in [5] is also the Spectral method 3 (TSVD). Since some nu-
merical results on Fourier regularization method has been investigated, here we
only provide numerical results for the revised Tikhonov regularization method.
For sake of comparison, we take the same numerical example as the one in [5].
The numerical experiments are accomplished by Matlab.
In our test problend = 1 andk = 4 are fixed. We take the function

T[Z 7T2
agx,y) = eXp(—m) eXp(_n?——yZ) 4.1)

as an exact data function dn := (—m, 7)2. For creatingg’, a normally
distributed noise of varianceis added tay. A matrix G? containing samples
from g° on an equidistant gri¢rs. 15|, for n = 64 is created firstly. Using the
2D fast Fourier transform (FFT2) to the matf®, we can obtain a new matrix
approximating the Fourier transform gf. Next, this new matrix is multiplied
by the matrix

|: cosh(d — 2),/|m2 — k?) i|
14+ o Coshdm”z me(0,n)x (0,n) ’

finally the 2D inverse FFT (IFFT2) is applied. The results are shown as follows:
From the above results, we can see that the revised Tikhonov regularization

works well. Furthermore from Fig. 1 to Fig. 2, from Fig. 3 to Fig. 4, we find

that the regularization parameteicannot be too small. Certainty can not be

too large. This accords with the regularization theory.

5 Concluding remark

In this paper, we obtained order optimal error estimates by spectral regularization
methods and a revised Tikhonov regularization method for a Cauchy problem
for the Helmeholtz equation. The Fourier regularization method in [5] can be
considered as the spectral method 3 (TSVD). Numerical results show that the
methods work well.
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Appendix: proof of theorem 2.3

In order to prove the Theorem 2.3, we formulate the problem of identifying
u(r, 2) from (unperturbed) datg(r) as an operator equation

A2u(r,z) = g(r) (A1)

Comp. Appl. Math., Vol. 26, N. 2, 2007



XIANG-TUAN XIONG and CHU-LI FU 301

0.055
0.08
0.05
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3
? 0.04
2 0.04
5 0.035
x
o
S 0.02 0.03
<
0.025
0.
-4 0.02
0.015
0.01
Figure 3:2=0.8, « = 0.01, e = 1073,
0.06
0.055
0.08
0.05
§ 0.06 0.045
E
a 0.04
2 0.04
£ 0.035
B
S 0.02 0.03
<
0.025
0
4 0.02
0.015
0.01

Figure 4:z=0.8, « = 1% 1078, ¢ = 1073,

with a linear operatoA(z) € L?(R?) — L2(R?). Equation (A.1) is equivalent
to the operator equation

A0, 2) =§¢E) with A = FAF? (A.2)
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whereF : L?(R) — L2(R) is the Fourier operator. From (2.5), the multiplica-
tion operatorA(z) is given by

A _ i — 2 _ K2
A(2) = cosd — 2’ with n = +/|&] k2, (A.3)
i.e.,
! &l <k
A(Z) — COS((d I Z)V k? — |‘§|2) (A4)
cosd =2 €] > K,
with
! &] <k
A*(Z) — COi(d ; Z)\/ k2 - |§|2) (A5)
cosh(d — 2)n)’ e
Thus,

(A.6)

Az — cog(d —2)vk? —[£]2), |&] <Kk,
cosh(d — 2)n), €] > k.

Obviously, A-%(z) is an unbounded multiplication operator in that c@sh—

2)n) — oo asn — oo. Hence we can call the the det= {¢ | |£| > k} istheill-
posed part of problem (A.2). For treating the ill-posed part, we need to transform
the source condition (2.8) into an equivalent condition in the frequency. First the
condition (2.8) is equivalent to

0, 20eM = {O@,z) e LAR?) | [|a(&, 0)
(A.7)

_ coshdp)

= W_Z)n)u@,z)” =< E}-

Proposition A.1. Consider the operator equatiaiA.2). Then the seM given
by (A.7) is equivalent to the general source set
My = {06 2 € L’®Y) | llp(A"@A@)) Y206 I < E]  (A8)
whereg (1) is given by (in parameter representation)

M) = 1/(cos((d —2)m), ¢(n) = costt(d —2)n)/ costt(dn), (A.9)

wherel < n < oo.
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Proof. Noting that (A.7) and (A.8), we can obtain (A.9) easily.

Proposition A.2. The functionp(i) given by(A.9) is continuous and satisfies
the properties:

(i) lim;—op(*) =0;
(i) @(r) is strong monotonically increasing;

(i) p(x) = rp~t(r) is strong monotonically and possesses the parameter
representation

A(n) = cosi((d — 2)n)/ cost(dn), p(n) = 1/(cost(dn)); (A.10)

(iv) p~t(») is strong monotonically increasing and possesses the parameter
representation

A(n) = 1/(costt(dn)), p~1(n) = cosi((d — 2)n)/ cosif(dn); (A.11)

(v) for the inverse functiop—* of p there holds for any fixed € (0, d)

o7t = WP41+ o)), for » — O. (A.12)

Proof. Consideri(n) given by (A.9), we have

_ (d—2)sinh((d — 2)n) -0

i) =
() cosk((d — 2)n)

(A.13)

We can see that(n) is strong monotonically decreasing with |jm., 2(17) = 0.
So,

limo(p(x) = lim cost((d — z)n)/costf(dn) =0, for d >z
— n—00

Thus conclusion (i) holds. Noting that the functiéix) = x tanh(x) is a strong
monotonically increasing, we have

_cost?((d —2)1)

[dtanh(dn) — (d — z) tanh((d — 2)5)] < 0. (A.14)
costt(dn)

o) =
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From (A.13) and (A.14), it is easy to seg(A) = % > 0. Thus, we

proved (ii). Obviouslyy~1(1) is strong monotonically increasing, consequenptiy,)
is strong monotonically increasing. (A.10) can be obtained by

A(n) = cosi((d — 2)n)/ costf(dn), ¢ (1) = 1/(cost((d — 2)n)).

Now (iv) is a direct conclusion of (iii). In order to prove (v), we need to prove
that lim,_.o F(A) = 1 whereF (1) is given by

FOo) = p t)@/n?e.

We use (A.11), note thak(n) is strong monotonically decreasing with
lim,_ . A(n) = 0, we have

lim F () = [cosIf((d — 2)n)/ cost(dn)] (coslF(dn))¥? = 1.

lim
n—>0o0

Thus, we proved (v).
Proposition A.3. The functione (1) given by(A.10) is strong convex.

Proof. Fromp” = ”*A;f* andi < 0 we get thatp” > 0 is equivalent to
pi < pi. Noting thati(n) = p(n)é () with ¢ () = cost((d — 2)n), hence
0" > 0 is equivalent to the inequality

pi — 24 < pp% (A.15)

Letx = dny andr = (d — 2)/d, by elementary calculations we find that (A.15)
is equivalent to the inequality

¥ (X) > 0, (A.16)

where
¥ (X) = xtanhx) [x coth(2x) — tx coth(2TXx)] . (A.17)

Sinceh(x) = xcoth(2x) is strong monotonically increasing d&t, we find
thaty (x) > 0 holds for anyx > 0 and O< 7 < 1. Hence (A.15) always holds,
i.e., p is strong convex.
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Now we apply Theorem 2.1 to our problem in the frequency domain. Accord-
ing to Proposition A.1-Proposition A.3, the conditions in Assumption 2.1 are
satisfied for the operatok(z). Due to (A.9),

o (A*Ap(A*A)) = o(1/ costf(dn) = (0, 1]
holds. If §2/E2 < 1, then obviouslys?/E2 € o (A*Ap(A*A)) holds. Noting
w(,N) = ir;‘f A, R)  with  A(S, %) = sup||Rg’(r) — u(r, 2) | L2r2)

where the supremum is taken o\@i(r) € L%(R?), |g’ — gl 2@z < § and
u(r, z) € M, we define

@@, M) = inf A, R)  with A3, ) = supllRE’* () — UE, 2)llL2wa),
n

where the supremum is taken o\@r¢) € L2(R?), |§° — §ll_2rz < & and
((£,2) € M. According to Parseval identity, we havwgs, #) = &5, ).
Moreover, according to the definition @d(s, i), &G, N) = & (S, R) +
dw(s, N), whered, (8, 9) and dw (s, i) denotes the optimal error bounds
on the setd andW, repectively.

Forl C R?, the best possible error bound in the frequency domain

z/d
&1 (8, N) = Ey/p~1(82/E?) = E <£> (1+ o(1)

E
= EYd5d(1+o(1)), for § — O.

For W C R?, a regularized multiplication operator satisfigs|| < ¢ where
c is a constant depending on regularization parameter. Moreover, there holds

A

IRG® — AC, DllL2wy < I9G° — AC, 2l 2(ge)
19G° — RGlL22) + 197G — A, D22
s + IRAAC, 2) — AC, D[l 22,

IA

IA

but

A

A DA A* A _l/
”9an(, Z) _ 0(, Z)”LZ(RZ) < Sup{ ‘(StA — 1) [(P(A*A)] ‘} Ea
R2
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from Section 3, for spectral cut-off method, the error estimates|fog® —
RG22 and |RG® — A(-, 2| 22, is 8 and 0, respectively. Hence W the
best possible error bourily (5, M) = 6.

Obviouslys = o (E}~d8d), for § — 0, hence we obtain Theorem 2.3.
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