Volume 26, N. 2, pp. 251-283, 2007

COVPUTATIONAL. 124
&APPLIED OpyrlghtCi)2007 SBMAC
MATHEMATICS  yppusciclo bricam

Classification of homogeneous quadratic
conservation laws with viscous terms

JANE HURLEY WENSTROM and BRADLEY J. PLOHR

IDivision of Science and Mathematics, Mississippi University for Women
Columbus, MS 39701
2Complex Systems Group, MS-B213, Theoretical Division
Los Alamos National Laboratory, Los Alamos, NM 87544

E-mails: jwenstro@muw.edu / plohr@lanhgo

Abstract. In this paper, we study systems of two conservation laws with homogeneous
quadratic flux functions. We use the viscous profile criterion for shock admissibility. This cri-
terion leads to the occurrence of non-classical transitional shock waves, which are sensitively
dependent on the form of the viscosity matrix. The goal of this paper is to lay a foundation for
investigating how the structure of solutions of the Riemann problem is affected by the choice of
viscosity matrix.

Working in the framework of the fundamental wave manifold, we derive a necessary and suffi-
cient condition on the model parameters for the presence of transitional shock waves. Using this
condition, we are able to identify the regions in the wave manifold that correspond to transitional
shock waves. Also, we determine the boundaries in the space of model parameters that separate

models with differing numbers of transitional regions.
Mathematical subject classification: 35L65, 35L67.

Key words: nonlinear non-strictly-hyperbolic conservation laws, Riemann problems, viscous

profiles.

#676/06. Received: 26/VI/06. Accepted: 25/1/07.
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1 Introduction

In this paper, we study the Riemann initial-value problem for a class of systems
of two conservation laws

Ui+ FU)x =0, (1.1)
the initial data being
U if X < 0,
U, 0 = (1.2)
UR if x> 0.

We assume that the flux functidhis a homogeneous quadratic function that is
strictly hyperbolic away from the origin,e., F'(U,) has distinct real eigenval-
uesii(U,) < Ax(U,) for all stated, # 0. The origin is therefore an isolated
umbilic point (a point at which the Jacobian is a multiple of the identity matrix).
The present and previous studies [18, 19, 22, 10, 11, 12, 21, 7] have been mo-
tivated by the observation that a general system of two conservation laws can
be approximated by such a quadratic system in the neighborhood of an isolated
umbilic point.

We seek scale-invariant weak solutions of Riemann problems comprising
(continuous) centered rarefaction waves and (discontinuous) centered shock
waves (sees.g, Ref. [23] for a general discussion of Riemann problems). In or-
der for solutions to be unique, shock waves are required to satisfy an admissibility
criterion. One criterion is the characteristic criterion of Lax [13], which imposes
certain inequalities relating shock and characteristic velocities. An alternative
is the viscous profile criterion of Gelfand [5], which requires each shock wave
to be the limit, ag — O™, of traveling wave solutions of a particular family of
parabolic systems

Ut + F(U)x = €[Q(U)Uxlx, (1.3)

for which the original system (1.1) is an approximation. A comparison of these
admissibility criteria appears in Section 2. The previous studies of the Riemann
problem for quadratic models with isolated umbilic points have used either the
Lax criterion or the viscous profile criterion wit@® being the identity matrix.
Here and in related work [6, 25] we explore more general possibilities for the
viscosity matrixQ.
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There exist shock waves satisfying the Lax criterion but not the viscous profile
criterion, as well as shock waves satisfying the viscous profile criterion but notthe
Lax criterion. Among the latter are transitional [9] (or undercompressive [22])
shock waves. Transitional shock waves are constrained by one more condition
than are Lax shock waves, and their end states must lie in special regions of state
space. Moreover, the set of transitional shock waves is sensitively dependent
on the viscosity matrixQ appearing in system (1.3). As a resul}, and its
associated transitional waves play a key role in solving Riemann problems. In
fact, the arrangement of transitional regions determines the qualitative structure
of solutions of Riemann problems for quadratic models [6, 25]. The main results
of the present paper are (1) a characterization of the set of transitional waves in
terms of model parameters and coefficients of viscosity and (2) a corresponding
classification of models.

In keeping with the view of quadratic models as approximations to general
models near umbilic points, we limit our investigation to viscosity matrices that
are constant. Furthermore, the discussion in Section 2 motivates our assumption
that Q be symmetric and strictly positive definite when the quadratic model is
put in the normal form of Schaeffer-Shearer [18]. To characterize the set of
transitional waves for such a model, we first construct its fundamental wave
manifold [8], which parameterizes all shock wave solutions, and we determine
various important subsets (see Section 3). Then, in Section 4, we derive a
condition, involving the parameters of the model and the coefficients of viscosity,
that determines whether, and where, transitional shock waves occur. Finally, in
Section 5, we use this condition to classify quadratic models according to the
occurrence of transitional shock waves.

2 Shock wave admissibility criteria

A centered shock wave is a discontinuous solution of the form

U_ if x <st,
Ux,t) = 2.1)
U+ if x> St,

where the propagation velocityand the stateld_ andU . are constant. For this
wave to be a weak solution, the quantitegs)_, andU_ must be related by the
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254 QUADRATIC CONSERVATION LAWS WITH VISCOUS TERMS

Rankine-Hugoniot condition
—s[Uy —U_]1+ FU,) — FU_) =0. (2.2)

As is well known, not all shock waves represent physically relevant solutions.
We therefore impose an admissibility criterion to select appropriate solutions.

2.1 The characteristic and entropy criteria

The Lax characteristic criterion [13] was developed for weak shock waves in
systems of conservation laws that are strictly hyperbolic and genuinely nonlinear.
This criterion guarantees that the initial-value problem for the linearization of
the conservation laws around the shock wave solution (2.1) is well-posed [23].

For the system of two conservation laws (1.1), the Lax criterion requires that,
of the four characteristics on the two sides of a shock wave, precisely three
impinge on the wave. This means that one of the following sets of inequalities
is satisfied:

s < am(UL), AUy < s < AUy, (2.3)

or
AU < s < A (UD), rUy) < s (2.4)

A shock wave satisfying inequalities (2.3) (respectively, inequalities (2.4)) is
called aLax 1-shock wavéresp.,Lax 2-shock wave

Because genuine nonlinearity fails for system (1.1) at certain states, the admis-
sibility criterion must allow for composite waves, which consist of shock waves
adjoining rarefaction waves of the same family (s=g, Ref. [15]). Therefore
we regard the Lax criterion as allowirsgpnicLax 1-shock waves (respectively,
2-shock waves), for which one or both of the inequalitied) ;) < s < A1(U_)
(resp..A2(Uy) < s < Ax(UL)) is replaced by an equality.

Lax also introduced the entropy criterion [14]. Antropyn for system (1.1) is
a smooth real-valued function such théE’ = g’ for someq, called theentropy
flux. Because a smooth solutidhof the parabolic system (1.3) satisfies

n(U) + [aU) — en'(U)QU)Ux], = —en"(U)(Ux, QU)IUy),  (2.5)

the entropy is required to bebmpatiblewith the viscosity matrix [23, p. 399]
in the sense that the quadratic fonf{U..) (-, Q(U,)-) is strictly positive definite
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for all statedU,.; whenQ(U) = I, this means tha is strictly convex. A so-
lution U for the conservation laws admissiblewith respect to the entropy
provided that

n(U) +qU)x <0 (2.6)

in the sense of distributions. For the shock wave solution (2.1), this condition
reduces to

—s[n(U;) —n(U)] +aqUy) —qU-) <O0. (2.7)

2.2 The viscous profile criterion

The viscous profile criterion [5] for viscosity matr@requires a shock wave to be
the limit, asce — 0", of a traveling wave solution of the parabolic equation (1.3).
This criterion is appropriate when parabolic terms model physical effects that
have been neglected in the hyperbolic system (1.1).

A traveling wave solution takes the form

U(x,t):U(X_St), (2.8)

€

whereU (§) — U, asé — +oo. To be a solution of Eq. (1.3)) must satisfy
the ordinary differential equation

—s[U@E) —U_ 1+ FUE) - FU) =QUE)HTE).  (2.9)

The statéJ _ is automatically an equilibrium point for the dynamical system (2.9),
and, by the Rankine-Hugoniot condition (2.2), the statds too. A shock wave

is said to have aiscous profiléf there exists an orbit for system (2.9) that leads
fromU_ toU_; a shock wave with a viscous profile is said todaknissible For

a system of two conservation laws, the question of shock wave admissibility is
resolved by studying the family (2.9) of planar dynamical systems.

The properties of the viscosity matrix remain to be specified. Majda and
Pego [16] introduced a criterion which, in the context of strictly hyperbolic
systems of two conservation laws, reduces to the following: a viscosity matrix
Q is strictly stablefor system (1.1) at a staté, when

(a) the eigenvalues dd(U,) have positive real parts and
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(b) €;(U,)Q(U,r;(U,) > 0forj =1,2.

Herer;(U,) and¢;(U,), for j = 1, 2, are right and left eigenvectors, respec-
tively, of F'(U,) corresponding to the eigenvalug(U,), normalized so that
£;(Ur;(U,) = 1. Strict stability implies that the initial-value problem for the
linearization

Vi + F/(U) Vi = €Q(U.) Vi (2.10)

of Eq. (1.3) aroundl, is uniformly well-posed in_? ase — 0*.

A homogeneous quadratic model with an isolated umbilic point is strictly
hyperbolic except at the origin, so we requieto be strictly stable at each
stateU, # 0. Bearing in mind that the models considered in this paper arise as
approximations to general models near umbilic points, we also approxighate
by its value at the origin and thereby assume tRas constant. In Section 3.4
we prove the following result:

Proposition 2.1. Suppose that syste(i.1) is written in the normal form of
Schaeffer-Sheardl8] and equipped with a constant viscosity mat@xthat

has eigenvalues with positive real parts. Then the following statements are
equivalent.

(1) The viscosity matrixQ is strictly stable for systen(il.1l) at each state
U, #0.

(2) The symmetric part o is strictly positive definite.

(3) The functiom(U) = %|U |2 is an entropy for systeifi.1)that is compat-
ible with Q.

Therefore we assume that the symmetric pa®a$ strictly positive definite.
Motivated by Theorem 4.1 below, we also requ@do be symmetric.
2.3 Types of shock waves

Shock waves can be classified in various ways. One natural way is accord-
ing to the signs of the velocities of the characteristic families for the states
and U, relative to the shock velocitys, i.e, according to the signs of
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AU — s, AUD) — s, A1(Uy) — s, anda(U,) —s. For example: a Lax
1-shock wave has signs-, +, —, +); a Lax 1-shock wave that is sonic on the
right has signg+, +, 0, +); and acrossing shock wayehrough which both
families of characteristics cross, has sigas +, —, +).

Alternatively, shock waves can be classified in a manner related to the viscosity
matrix Q. To this end, let (U, s), ] = 1, 2, denote the eigenvalues of

QU =sl + F'(Uy], (2.11)

labeled so that Re;(U,, s) < Reuy(U,, s). If U, is an equilibrium point for
system (2.9), thep;(U,., S) anduz(U,, S) are the eigenvalues of the lineariza-
tion of system (2.9) around the solutieh) = U,. Moreover, the signs of
Reu1(U,, s) and Reuz(U,, s) determine theypeof the equilibrium poinu,:

o repellerif 0 < Reuy(U,, S);

e saddle poinif Re u1(U,, S) < 0 < Reuy(U,, S);

o attractorif Re u»(U,, s) < 0;

o repeller-saddléf Re 1 (U,, S) = 0 < Reuz(Uy, S);
o saddle-attractorif Re 1 (U, S) < 0 = Reuy(U,, S).

(As a consequence of Proposition 2.2 below, these are the only possibilities.
Also, the names repeller-saddle and saddle-attractor might not reflect the topo-
logical type of an equilibrium that is degenerate.) A shock wave can be classified
by the signs of Rei; (U_, ), Reur(U_, s), Reu1(U,, s), and Reux(U,, S), Or
equivalently by the equilibrium types &f_ andU,.

Of course, ifQ(U) = | and the stateld _ andU, are strictly hyperbolic, these
two classification schemes coincide. From the perspective of the latter scheme:
for a Lax 1-shock wavel)_ is a repeller andJ, is a saddle point; for a Lax
1-shock wave that is sonic on the right,. is a repeller andJ, is a repeller-
saddle; and for a crossing shock wale, andU, are saddle points. This is the
classification used systematically in Ref. [20].

More generally, the two classification schemes coincide when the &lates
andU, are strictly hyperbolic and the viscosity matfxis strictly stable atJ_
andU_, as seen from the following result.
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Proposition 2.2. Suppose that the staté, is strictly hyperbolic and the vis-
cosity matrixQ is strictly stable atU,. Then the signs dReu1(U,, s) and
Reu2(U,, s) coincide with the signs of,(U,) — sandx,(U,) — s, respectively.

Proof. Let R(U,) denote the matrix with columns being the right eigenvectors
ry(U,) andr,(U,), and letL(U,) denote the matrix with rows being the left
eigenvectorg,(U,) and¢,(U,). ThenL(U,) = R(U,)~%. Consider the matrix
obtained by multiplying the matrix (2.11) on the right ByU,) and on the left

by L (U,). Taking its trace and determinant yields the following identities:

11Uy, ) 4+ 12(Us, 8) = €1(U) QUL " Mr(Uy) [A1(U,) — ]

) (2.12)
+ €2(U,) Q(U,) " r2(Uy) [A2(Uy) — 8],

n1(Us, ) 2(U,, s) = detQ(U,) ! [A(U,) — sl[A2(U,) — s]. (2.13)
Notice that

£1(U) QUL (U, = detQ(U,) 1 2(U) QU (U.), (2.14)
£2(U,) QU,) "r2(Uy) = detQ(U.,) ™ £1(U.) Q(U.)r1(U.). (2.15)

By assumption,r1(U,) and A»(U,) are real and distinct, and dé(U.,),
£1(U,) QU )r1(U,) and£,(U,) Q(U,)ro(U,) are positive. Alsou1(U,, s) and
u2(U,, s) are complex conjugates if they are not real. Now by considering the
several possibilities, one easily verifies, using identities (2.12) and (2.13), that
Reu1(U,, s) and Reu, (U, s) have the same signsagU,.) —sandi,(U,) —s,
respectively. O

Remark. The coincidence of the shock classification schemes is proved for
non-sonic Lax shock waves mcomponent conservation laws in Ref. [16, The-
orem 2.4] using a different argument; as pointed out to us by Prof. K. Zumbrun,
this argument can be augmented to cover sonic waves.

2.4 Non-classical shock waves

Certain shock waves that are admissible under the Lax criterion are also ad-
missible under the viscous profile criterion. However, not all Lax shock waves
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possess viscous profiles. Moreover, there are shock waves that do not satisfy
the Lax criterion and yet have viscous profiles. Snoh-classical shock waves
especially transitional shock waves, play an important role in the construction
of solutions of Riemann problems.

A transitional[9], or undercompressive [22], shock wave is one with a viscous
profile that joins two saddle points. According to Proposition 2.2, a transitional
shock wave is an admissible crossing shock wave. In contast to a Lax shock
wave, a transitional shock wave is not associated with a particular characteristic
family. By the Wave Structure Theorem of Ref. [20], a transitional wave group
can only appear in a solution of a Riemann problem situated between the 1- and
2-family wave groups. (In addition to strict hyperbolicity, Ref. [20] assumes that
QW) = I, but by virtue of Prop. 2.2, the Wave Structure Theorem extends to
the situation where, for each stafe in the Riemann solutiorQ(U.,,) is strictly
stable.) The appearance of transitional shock waves is one of the distinguishing
features of viscous profile solutions of Riemann problems. The occurrence of
these shock waves in homogeneous quadratic models is discussed in detail in
Section 4.

Another type of non-classical shock wave, an overcompressive shock wave
[22, 3], has a viscous profile that leads from a repeller to an attractor. Conse-
guently all characteristics impinge on it(U,) < s < A1(U_). For generic
quadratic models, overcompressive waves appear in Riemann solutions only for
a subset of Riemann dagbl, , Ug) of codimension one. In this context, over-
compressive waves do not play the important role in solving Riemann problems
that transitional waves do.

3 Homogeneous quadratic models

In this section, we focus attention on homogeneous quadratic models with
isolated umbilic points.
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3.1 Schaeffer-Shearer normal form

Using the notatiolJ = (u, v)", we can write any system of two conservation
laws with a homogeneous quadratic flux as

us + %(aluz + 2buv + Cll)z)x =0,
(3.1)
v + 2(au? + 2bouv + Cu?)y = 0.

This system has six free parameteas, by, c;, ap, b, andc,. Schaeffer and
Shearer [18] showed that if the origin is an isolated umbilic point, then such a
system can be transformed, by means of invertible linear transformations of state
space and théx, t)-plane, into a system of the form

Uy 4 3(au? + 2buv + v?), =0,
3.2)
v+ %(bu2 + 2uv)y = 0.

This normal form has only two free parametersndb, subject to the condition
that
a#b?+1. (3.3)

A defining feature of the normal form (3.2) is that the Jacobdns sym-
metric, and thereford="T equals the gradientC’, of a homogeneous cubic
polynomialC.

Schaeffer and Shearer classified quadratic models with isolated umbilic points
by dividing the(a, b)-plane into four regions. This classification of models into
Cases I-1V is based on the structure of rarefaction curves through the origin. The
division of the parameter plane is illustrated in Figure 1. In detail, the curves
separating the regions are as follows:

e Case I/ll boundary: @ — 3b? = 0.
e Case Il/lll boundarya — b?> — 1 = 0.

e Case llIl/IV boundary:—32b*+[27 4 36(a — 2) — 4(a — 2)?| b*+ 4(a—
2)%=0.
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—1

S

-2

Figure 1 — The Schaeffer-Shearer b)-plane and case boundaries.

3.2 Fundamental wave manifold for homogeneous quadratic models

Many of the computations presented in this paper are based on the construc-
tion of the fundamental wave manifol’, which was introduced for quadratic
models by Marchesin and Palmeira [17] and extended to general systems of con-
servation laws in Ref. [8]. Points oW represent shock wave solutions of the
conservation laws. To each point W is associated a dynamical systenz,,
Eqg. (2.9); whether or not a connection exists determines whether or not the shock
is admissible.

The wave manifoldW is constructed by considering solutioft$_, U, s) of
the Rankine-Hugoniot condition (2.2). Although the solution set has a singularity
at each point wherd_ = U, this singularity can be removed by introducing a
new set of variableJ, R, ¢, s). HereU = (T, )" is the midpoint (U_ +U.)
betweenU, andU_, whereasR € R and¢ € (—n/2, /2] represent the
separation and orientation of the vectbr — U_. More precisely(U, R, ¢, s)
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is mapped tqU_, U, s) through the relationships

U, =0+ R (C‘_)S‘p) . (3.4)
2 sing

This map remains smooth if each poid, R, 7/2, s) is glued to the point
(U, —R, —/2, s), so we regard its domain & x M, x R, whereM; is the
Mobius strip parameterized big andg. Expressed in terms alU, R, ¢, s),
the Rankine-Hugoniot condition contains an explicit fad®rcorresponding
to trivial solutionsU, = U_, which we eliminate. The remaining equation
definesw.

For homogeneous quadratic models, the Rankine-Hugoniot condition is equiv-
alentto

R [=sl + F'@)] <C9S‘p) —0, (3.5)
sing
with F’ being linear. Solutions satisfy eith& = 0 or
a(p)U+ B(p)v =0, (3.6)
&)U+ B@v =S5, 3.7)

wherew, 8, @, andB are homogeneous quadratic polynomials ingesid sinp
defined by

()T + B()T = (~sing, cosg) F'(U) (Cf’s“’) , (3.8)
sing

&)U + B(@)v = ( cosg, sing) F'(0) (C‘,’Sg") . (3.9)
sing

The wave manifoldW comprises pointsU, v, R, ¢, s) satisfying Egs. (3.6)
and (3.7).
For the normal form (3.2), we have

a(p) = bcog ¢ + (1 — a) cosy sing — bsir? ¢, (3.10)
B(g) = cos ¢ — bcosp sing — sirf ¢, (3.11)
a(p) = acos ¢ + 2bcosy sing + sirf ¢, (3.12)
B(g) = (bcosp + 2sing) cosg. (3.13)
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The vectonx(p), B(¢)) never vanishes, by virtue of condition (3.3); indeed, the
resultant oty andg is —(a — b? — 1)2. Therefore Egs. (3.6) and (3.7) are solved
by

u=—B(pk, (3.19
V= a(p)k, (3.15)
s= D(pk, (3.16)
wherex € R and
D(p) = a(p)B(p) — B@)a(p). (3.17)
For the normal form (3.2),
D(gp) = (b? — a) cog ¢ + bcosy sing + sirf ¢. (3.18)

In summary, for a homogeneous quadratic model with an isolated umbilic
point, points in the wave manifold can be parameterized by the variables
(R,k,p) € R x R x (—m/2, /2], with each point(R, «, 7/2) glued to the
point(—R, x, —m/2). The shock wave corresponding(fg, «, ¢) is obtained in
the following way:

us = —B(p)k £ 1Rcosyp, (3.19)
ve = a(p)k £ Rsing, (3.20)
s= D(pk«. (3.21)

Equations (3.19) and (3.20) define two projections frato state space: the
U_-projection_: (R, k, ) — (u_, v_) and theU_ -projectionr, : (R, , ¢)
= (Uy, vy).

We now define some additional expressions that will be used later:

D(p) = a(@)p (p) — Bp)e (9), (3.22)
2

u(p) = (= sing, cosp) F"(0) - (Césw) , (3.23)
sing
2

fi(¢) = (cosp, sing) F"(0) - <C9S‘”> , (3.24)

sing
B(p) = ii(@)D(p) + 31(9)D'(¢). (3.25)
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For the normal form (3.2)D(¢) = a — b? — 1 is a nonzero constant,

(@) =bcos ¢ + (2 —a) co g sing — 2bcosg sinf ¢ —sintp,  (3.26)
fi(p) = (acog ¢ + 3bcosy sing + 3sirf ¢) cosy, (3.27)

andB(g) is simply (a — b2 — 1)/i(p).

Remark. Even for general quadratic modef3 and? are homogeneous cubic
polynomials, and is a homogeneous quadratic polynomial, in @@nd sing.

3.3 Subsets of the fundamental wave manifold
3.3.1 Characteristic manifold

The characteristic manifold denoted byC, is the R = 0 slice of the wave
manifold. For a pointirC,U_ = U, = U andsis an eigenvalue of'(U) (see
Eq. (3.5) with the factoR removed). If astateU is such that the eigenvalues of
F’(U) are real and distinct, then there are two different points that project
toU. In this case( is a two-fold covering of a sufficiently small neighborhood
of U.

3.3.2 Sonic loci

Theright sonic locusSg, is the closure inW of the set of nontrivial shock waves
such that;(U,) = s,i = 1 or 2; theleft sonic locusS, , is defined analogously
by the conditiom;(U_) = s,i = 1 or 2. For homogeneous quadratic models,
the right sonic locus (respectively, left sonic locus) consists of péRi%, ¢)
that satisfy

1~
q:ED(qJ)R + B(p)x = 0. (3.28)
(See Ref. [24, pp. 316-317] for the proof.) The left sonic locus is the reflection,

through the(x, ¢)-plane, of the right sonic locus, which is characterized as
follows.

Lemma 3.1. If 4a # 3b?, Sk is a ruled surface, in that its intersection with
each planep = const.is a line. If4a = 3b?, Sk is the union of such a ruled
surface with the plang = —tan*(b/2). The same is true o .
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Proof. The resultant ofd andi = B/(a—b? — 1) is (4a — 30%)2. Therefore,

if 4a # 3b?, the vector(%ﬁ(cp), B(¢)) never vanishes. Thus, for eaghthe
solution set of Eq. (3.28) (with the upper sign) is a line. If, on the other hand,
4a = 302, thenD(p) = [(b/2) cosy + sing]? andfi(p) = 3D(p) cosy, so that

the solution set is the union of the plaﬁw) = 0 with the ruled surface

1
-5 R+ [3(a — b? — 1) cosplx = 0. (3.290)

3.3.3 Inflection locus

A point in theinflection locudlies in the characteristic manifol@ and corre-
sponds to a point in state space at which genuine nonlinearity fails. In general [8],
the inflection locus is the common intersection of the sonic$pcand Sg with

C. From Eq. (3.28) we see that points in the inflection locus Have 0 and
eitherx = 0 or B(¢) = 0. Thus the inflection locus comprises thaxis (R =0

andx = 0) and the lines wittR = 0 andy = ¢;; herey; is aninflection angle

i.e., aroot ofB(p) = 0. The formula (3.27) fofi = B/(a — b? — 1) shows that

the number of inflection angles is three & 4 3b?, two if 4a = 3b?, and one if

4a > 3p?.

3.3.4 Double sonic locus

Thedouble sonic locuis the closure of the set of nontrivial shock waves that lie
on bothS, andSg. According to Egs. (3.28) and Lemma 3.1: i 4 3b?, the
double sonic locus comprises the lines with= 0 andp = ¢g4, Wheregy is a
double sonic anglé.e., a root ofD(¢); and if 4a = 3b?, the double sonic locus
is the planey = —tan1(b/2). The formula (3.18) fotD(p) shows that there
are no double sonic angles 4 3b? and there are two if@ > 3b?.

3.4 Proof of Proposition 2.1.

The following proof is an application of the formalism just developed.

Proof of Proposition 2.1. To prove the equivalence of statements (1) and (2),
we invoke results from Ref. [24]. Proposition 5.12 of this reference states that
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the viscosity matrixQ is strictly stable for system (1.1) at a stdde if and
only if the quantities f—s| + F'(U,)] and tr{Q*[—s| + F'(U,)]} have the
same (nonzero) sign for each eigenvaduaf F’'(U,). Moreover, Theorem 5.8
of this reference implies that,. ands are associated with a poi(, ¢) on the
characteristic manifold’ for a homogeneous quadratic model, then

1
tr{Q 7 [-sl+F' U]} =« [—EQ(w)zﬂ)’(@ + Q((/))zzD(fp)} ; (3.30)

hereQ (p)21 and 9 (¢)2, are the(2, 1)- and (2, 2)-components, respectively, of
the matrix

2(p) = O(p)'Q'O(y), (3.31)
where '
O(p) = (C(.)S(’) _S'n‘p). (3.32)
sing CoSsyp

Consequently the criterion for strict stability §f at U, is that, for each corre-
sponding point(k, ¢) on C, kD(¢) and« [—%Q(@)zﬂD’((ﬁ) + 9(9)22D(9)]

have the same nonzero sign. For a quadratic model written in the normal
form (3.2),D is a nonzero constant. Therefore the viscosity mafris strictly
stable alJ, if and only if « # 0 andQ (¢)22 > 0 for each corresponding point

(k, @) on C. Thus the viscosity matrix) is strictly stable at all statdg, = O if

and only if

(—sing, cosp) Q! <_§:SZ) >0 (3.33)

for all ¢, or equivalently that the symmetric part@fis strictly positive definite.
Because a quadratic model in the normal form (3.2) has a symmetric Jacobian

matrix F’, the equivalence of statements (2) and (3) is well known (egg,

Ref.[23, p. 398]). Indeed, afunctiaris an entropy if and only iF’ is symmetric

with respect to the quadratic forpf, andn is compatible withQ if and only

if the symmetric part ofQ is strictly positive definite with respect t@'; but if

n(U) = Z|U|?, thenp”(U) = I. a
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4 Transitional regions

In this section, we describe the subsebfcorresponding to transitional shock
waves. This subset depends sensitively on the viscosity m@tridVe con-
sider quadratic models in Schaeffer-Shearer normal form (3.2) equipped with
symmetric, strictly positive definite viscosity matrices. Admissibility of shock
waves is not affected whe@ is multiplied by a positive scale factor, so we are

free to write
1
Qt= (J. |J<) : 4.1)

wherek > 0 andk > 2.

4.1 Transitional waves

In general, itis difficult to characterize the set of transitional shock waves. How-
ever, the following result greatly simplifies this characterization for homogeneous
quadratic models with isolated umbilic points. The proof of this result, which is
based on a theorem of Chicone [2], is due to Freistiihler and Zumbrun [4].

Theorem 4.1. Suppose that syste(d.l) is written in the normal form of
Schaeffer-Shearer and equipped with a constant, symmetric, positive definite
viscosity matrixQ. Then the orbit for any transitional wave is a straight line
segment.

Proof. Multiplying the dynamical system (2.9) b@~%2 and substituting
U = Q-%2V, we obtain the system

V'(€) = —sQWE+Q YV2F(Q Y2V () - QY —sU_+F(U.)]. (4.2)

According to Ref. [18], there exists a homogeneous cubic polynotiail U
such thatF = (C")T. Let

D(V) = C(QY2v) — %svT Qv -VTQY—sU_.+FU (473

Then
V'(€) = (D) (V(§)). (4.4)
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Thus the dynamical system (2.9) is linearly equivalent to a quadratic gradient
system. For such a system, a saddle-saddle connection lies along a straight
line [2]. O

4.2 Straight-line connections

From Ref. [9], we have the following result concerning straight-line connections
(for any type of shock wave).

Proposition 4.2. Let F be quadratic, and suppose thatU_, andU, # U_
satisfy the Rankine-Hugoniot condition. Then the straight line segment between
U_ andU, is a connecting orbit if and only if there is a constant 0 such

that AU = U, — U_ satisfies

o QAU = %F”(O) - (AU)Z, (4.5)

The orbit is traversed fro_ to U, if and only ifo < 0.

In terms of coordinates fow, AU = R(cose, sing)T, so that Eq. (4.5) holds
for someo if and only if

2
0 = (—sing, cosp) Q" 1F"(0) - (Z?nsz) . (4.6)

The right-hand side of Eq. (4.6) resemb}e&p), defined by Eq. (3.23), except

that F(0) is replaced withQ~1F”(0). We therefore denote the right-hand side

of Eq. (4.6) byug(e). Aroot e, of ng(e) is called aviscosity angle Thus if

two stated) _ andU, are connected by a straight-line connection, then that orbit

lies at a viscosity angle in state space. The expregsiip) is a homogeneous

cubic polynomial in cog and sing; in the generic case that the discriminant of

wq is nonzero, the number of viscosity angles is either one or three.
Proposition 4.2 also states that the straight-line connection is oriented from

U_ toU, wheno < 0. Again becaus&aU = R(cosg, sing)', wherep = ¢,

is a viscosity angle,

2
o= }R(COS§0, sing) Q"1F"(0) - (C(_)S(p) : (4.7)
2 sing
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which we write as

1
o= ERIIQ(QO)- (4.8)

Thus the orbit orientation conditian < 0 can be written

SgNR = —sgniig(ey). (4.9)

If fio(ey) = 0, the viscosity angle, is said to beexceptional[9]. At an
exceptional viscosity angle, no straight-line connections are possible, since
= 0. Exceptional viscosity angles occur when a viscosity angle coincides with
aroot of fig(¢). This situation is avoided in the generic case that the resultant
of ug andfiq is nonzero.

4.3 Geometry of transitional surfaces

We define theéransitional surfacéo comprise points in the wave manifold corre-
sponding to transitional shock wavés,, shock waves with viscous profiles that
connect saddle points. For the quadratic models and viscosity matrices we con-
sider, any transitional shock wave has a straight-line connection (Theorem 4.1).
To determine the transitional surface, we seek straight-line connections joining
saddle points.

In the previous subsection, we saw that a poinWincorresponds to a shock
wave with a straight-line connection if and onlyif= ¢, is a viscosity angle. A
cross-sectiop = ¢, of the wave manifold is called dscosity plangthere are
from one to three viscosity planes. Thus the transitional surface is contained in
the union of the viscosity planes and may consist of several disjoint connected
components. However, not every viscosity plane contains a component of the
transitional surface. We say that a viscosity anglacisveif the corresponding
viscosity plane contains a component of the transitional surface.

Consider the shock types of points af. The signs ofa;(U_) — s and
r2(U_) — sare nonzero except at the characteristic manifbéhd the left sonic
locusS, , and the signs of,(U,) — sandA,(U,) — s are nonzero except at
and the right sonic locuSg. Therefore the shock type is constant throughout
connected regions oW\ (C U S| U Sg). As transitional waves have the shock
type(—, 4+, —, +), one consequence is the following.
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Lemma 4.3. Each connected component of the transitional surface is a con-
nected component of a viscosity plane with the sonic loci and the characteristic
manifold removed.

According to Lemma 3.1, eithe$_ and Sg contain the viscosity plane (if
4a = 3b? andg, = —tan(b/2)) or they intersect the viscosity plane in two
lines through the origin that are reflections of each other through th&lige0.
In the former case, no transitional waves lie in the viscosity plane. Otherwise,
after removingC, S_, and Sg from the viscosity plane, several open sectors
remain. In the following lemma, we determine which of these open sectors can
be a component of the transitional surface.

Lemma 4.4. Any component of the transitional surface contained in the vis-
cosity planep = ¢, intersects the line& (¢,) along whichk = 0andg = ¢,.

Proof. Depending of the configuration 6f , Sg, andC in the viscosity plane,
two, four, or six open sectors remain. These possibilities are illustrated in
Figure 2.

C AK AK
S Cl oA
Sr
Sr SL
-<+—— ) — - >
R
e B
Y Y Y
@ (b) (©)

Figure 2 — Possible configurations &f, Sr, andC in a viscosity plane.

Case (a):C, S_, andSg intersect the viscosity plane in a single line( ¢, is
an inflection angle). The two remaining open half planes both intersect the line

L(py)-

Case (b): C, S., and S intersect the viscosity plane in three distinct lines.
Consider a point witlR # 0 lying on L(¢,). Sincex = 0, the velocitys =
2~)(<pv)/< of the associated shock wave is zero. For the same reasdd, thad
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U, projections of this point are

—1Rcosp, 1Rcosy,
u_=<21 _gp and U, =2 _¢ . (4.10)
—3Rsing, 5Rsing,

ThusU, = —U_, whichimpliesthat'(U,) = —F'(U_),A1(Uy) = —x2(U_),
andi,(U,) = —A1(U_). With these restrictions on the shock and characteristic
velocities, this point can correspond to one of only three possible shock wave
types: transitional—, +, —, +), overcompressivé+, +, —, —), or totally ex-
pansive(—, —, +, +).

If neither of the open sectors intersecting the lit@,) contains transitional
shock waves, then one of the other open sectors must. Thus a sector containing
transitional waves is separated from a sector containing either overcompressive
or totally expansive waves by a single sonic surface. This, however, isimpossible
since, in crossing a single sonic surface, only one of the four quantjtigs ) —s,

A2(U2) —s, A (Uy) — s, orax(Uy) — s changes sign.

Case (c):C, S, andSr intersect the viscosity plane in two distinct lines. In this
case, the sonic loci both intersect the viscosity plane in thediac0, i.e., ¢, is

a double sonic anglef{(¢,) = 0). Also, B(¢,) # 0, since otherwise the entire
viscosity plane is sonic according to Eq. (3.28). Thus there is no open sector
containing the lineL(p,). We show that no transitional shock waves occur in
this viscosity plane.

Consider two point# andB in the open quadrants of the viscosity plane that
are reflections across = 0. According to Egs. (3.19) and (3.20), the and
U, projections ofA and B satisfy

UA=-USB, (4.11)
usr=-Ust (4.12)

BecauseD(¢,) = 0, the velocity of a shock wave corresponding to any point
in this viscosity plane is zero. From Egs. (4.11) and (4.12), we also deduce
that (U = —22(UP), 2(UD) = —22(UB), 22U = —21(UP), and
A2(U%) = —11(UB). With these restrictions on the characteristic velocities, we
see that if the poinA corresponds to a transitional shock wave, then the int
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must also correspond to a transitional shock wave. However, this is impossible
becauseA and B are separated only by the left and right sonic loci. Therefore
there are no transitional shock waves and the viscosity plane does not contain a
component of the transitional surface in case (c). O

Lemma 4.4 does not specify which of the two open sectors contait(ipg is
a component of the transitional surface. Recall from Eq. (4.8) that the sign of
which determines the orientation of the connecting orbit, depends on the sign of
R. The open sector that gives rise to correctly oriented orbits igraimsitional
sector determined by condition (4.9). In Section 5.2, we determineisg(ie, )
precisely.

In the following theorem, we present the conditions that a viscosity angle must
satisfy in order to be active.

Theorem 4.5. A viscosity angle, is active if and only if the following condi-
tions are satisfied:

(1) fto(ey) #0,i.e, ¢, is not exceptional; and

(2) D(g,) > 0.

Moreover, the corresponding transitional sector is the one containing the line
L(p,) along whichk = 0andg = ¢, and havingsgnR = — sgnjiq(¢,).

Proof. Suppose thap, is active; we examine the viscosity plane associated
with this angle. Condition (1) holds, as otherwise no straight-line connection
occurs atp, by virtue of Prop. 4.2 and Eq. (4.8). Condition (2) is established
as follows.

From Lemma 4.4, we know that only an open sector containing theCking)
can possibly be a component of the transitional surface. Consider the projections
U, andU_ = —U, of apointonthis line wittR # 0. Asits shock speed is zero,
this point corresponds to a transitional shock wave if and only if the eigenvalues
of F/(U_) have opposite signs and the eigenvalues-afJ_) have opposite
signs. AsF’'(U_) = —F’(U,), this condition amounts to dg¥’(U,)) < 0. We
show that this inequality is equivalent to

D(p,) > 0. (4.13)
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Because- is a homogeneous quadratic polynomial, we have fHét, ) =
F”(0)U,. As R # 0, the condition de&t'(U,)) < 0 is equivalent to

det|:F”(O) (‘::j)} <0 (4.14)

Inserting a rotation matrix does not affect the determinant; therefore the inequal-
ity (4.14) is satisfied if and only if the following inequality holds:

—Sing, COSy, Sing,

The entries of the matrix appearing in this inequality may be identified by dif-
ferentiating expressions (3.8)-(3.9) with resptxiJ. Thus we can rewrite

inequality (4.15) as
det[ ¥ PW)) ¢ (4.16)
a(py)  Blpy)

which reduces to
& () B(p) — () B(ey) < O. (4.17)

The left-hand side is D(¢,), so thatdetF’ (U, )) < 0ifand only if condition (2)
holds.

Conversely, if conditions (1) and (2) hold, then a point Wik 0 on the line
L(p,) provides an example of a transitional shock wave, so that the viscosity
angleg, is active.

Wheng, is active, Lemma4.4 and Eq. (4.9) determine the transitional séctor.

4.4 Projection to state space

Thetransitional regionis theU_-projection of the transitional surface into state
spacej.e., the image of the transitional surface under the linear magefined

by Egs. (3.19) and (3.20) with the lower sign. By the foregoing results, the
transitional region consists of from one to three wedges centered at the origin,
called thetransitional wedgeswhich are associated to the different viscosity
angles.
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As restricted to a viscosity plane = ¢,, the projectionsr, andn_ defined
by Egs. (3.19) and (3.20) can be written as

1
ur) _ (=Bl 2 099(%) K (4.18)
V4 OC((PU) 2 Sm(QOU) R

— _1
u-\ _ (B iCQS(%) “ (4.19)
v— a(py) -3 sin(yy) R
respectively. Suppose that the matriédsand P_ appearing, respectively, in

Egs. (4.18) and (4.19) are nonsingular; this is true if and ordygf,) coSp,) +
Blpy) sin(e,) #0,i.e,

and

u(py) # 0. (4.20)

Then the map)_ — U, = P.(P_)~!U_, defined for stateb_ in the transi-
tional wedge corresponding to viscosity angleis called theransitional map

for ¢,. (See Fig. 3.) A stat&_ in the transitional wedge and its imagh

under the transitional map are the end states of a transitional shock wave with a
straight-line orbit.

——

k¢ //// L N
— AN
— W \
Qi E/ Y0
K ,‘- .
\ Y
\
\ 7
T .
\ R // u
\
\\
~ U _
\\_"'____’,/ U+

Figure 3 — The transitional map for a viscosity anglewith 1 (¢,) # 0.

There are situations, however, in whiglip,) = 0. For instance, iQ = I,
thenu = g vanishes at any viscosity angle. Whety,) = 0, no transitional
map is defined. Instead, the transitional wedgedprdegenerates to a ray,
and the preimage undét_ of a pointU_ on this ray is a line segment in the
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transitional plane» = ¢,,, which is mapped vid, to a line segment of states
U, as in Figure 4. (By Eq. (3.11), the kernelsBf and P_ never coincide
whenu(g,) = 0.) There is a transitional shock wave frdin to each staté)
lying on this line segment.

A (I) ~ s ~~

v \
> L ‘u_
\ K

—_——

Figure 4 — The transitional map for a viscosity anglewith . (¢,) = 0.

Remark. An angleg satisfyingu(¢) = 0 is called abifurcation angle such
angles determine the secondary bifurcation loci in the wave manifold.

5 Classification of models

In this section, we determine the boundaries in the parameter plane that separate
models with differing numbers of transitional regions. Many of the calculations
presented in this section were carried out with the aid of\lagle software
package [1].

5.1 Classification according to the active region criterion

Motivated by Theorem 4.5, we now determine the parameter values such that
the conditiorrf)(w,,) > 0 is satisfied. Recall that a viscosity angleis a root of
no(p). Usually, eacly, can be regarded as a function of the parameters of the
model and the viscosity matrix. For eagh there are curves in the parameter
plane which separate those models for whigty,) > 0 from those for which
l~)(<p,,) < 0. These curves represent those models for Wtficlpv) =0,i.e,
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where D(¢) and wo(p) have coincident roots. In order to determine these
curves, we consider the resultantﬁf(w) and png(¢e), which vanishes if and
only if the two polynomials have at least one coincident root. Direct calculation
usingMaple shows that

resultantig, D) = (b? 4 bj + k — a)?(4a — 3b?). (5.1)

Each of the two factors of resultapto, D) can vanish, and in Figure 5 we
have drawn the zero-sets of these two factors in#)é)-plane for a particular
viscosity matrix. In this figure, we have also drawn the curve representing the
zero-set of the discriminant gfg, which we compute below; upon crossing
this curve from left to right, the number of roots pt, changes from three to
one. The relative placement of the three curves remains the same as we vary the
viscosity matrix because the three curves do not intersect, as we verify in the
following two lemmas.

b

5]
o
1 3 3 2
\\ |
~14
2

Figure 5 — The case boundaries for a representative m@tkk= 1.6 andj = —0.2).
The left-most curve is defined byad— 30° = 0; the middle curve is defined by
a — (b?2 4+ bj + k) = 0; and the right-most curve is defined by discriminarns) = 0.

Lemma 5.1. The curvesta — 3b?> = 0 anda — (b® + bj + k) = 0 do not
intersect.
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Proof. Substitutinga = 3b?/4 into the expressiob? + bj 4+ k — a yields
1, .. 1, \? "

which is positive ifk — j2 > 0. Hence, the two curves do not intersect. [

Lemma5.2. The curves — (b? + bj + k) = 0 anddiscriminantu.q) = 0do
not intersect.

Proof. UsingMaple, we find that the discriminant gfq to be
61b%k? + 4a%b? — 52ab?k + 32k® — 4a° + 32b*k — 48ak® + 24a%k
— 44a%j% + b?j* 4 8b%j° + 4K?j% + 4b%|? + 4aj* + 40abj®

. . . . _ (5.3)
+ 32akj? — 20a°bj + 64ab?j? + 82b%kj? + 100bk?
+ 10003k 4 80bkj3 4 24ab’®j — 64abjk.
After substitutinga = b? + bj + k, expression (5.3) simplifies to
1
4k — j?)? (sz + bj + k) , (5.4)

which is positive itk — j2 > 0. Hence, the two curves do not intersect. [J

In fact, the proofs above establish that the curves-43b> = 0, a — (b +
bj + k) = 0, and discriminarij.q) = 0 are ordered from left to right, in the
sense that, for eadh thea coordinates of points on the curves are so ordered.
Therefore we can make the following definition.

Definition 5.3. We denote the region whesie< 3b?/4 by lo; the region where
30%2/4 < a < b?+ bj + k by llg; the region whereb? + bj + k < a and
discriminantig) > 0 by lllg; and the region whereliscriminantug) < 0

Remark. The Ig/llg boundary is exactly the Schaeffer-Shearer Case /1l
boundary; and whe® = I, the llg/lll o and Illg/IV o boundaries reduce
to the Case II/lll and Case IlI/IV boundaries, respectively.

We now proceed to the main result of this section.
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Theorem 5.4. In region lg, there are three active viscosity angles; in region
Il o, there are two active viscosity angles; and in regiong dind 1\Vq, there are
no active viscosity angles.

Proof. Within each region, the number of roots pt(¢) and the ordering
of the roots of2~)(<p) and ug(e) along (—n/2, /2] are the same. To prove
the theorem, we choose a simple representative model within each region and
examine the roots of the two polynomials for this model.
We letb =0andQ = 1, i.e, k= 1 andj = 0. For these parameter values,
we havea < 0 inregion b, 0 < a < linregionllp, 1 < a < 2inregion lllg,
anda > 2 in region V. The roots ofug(p) are

ol = arctan—v2 —a), ¢?>=0, and ¢3=arctanv2—-a), (5.5)

and the values aD(¢) at these angles are

~ 4. 21-a)
D) =—5— (5.6)
~ 3 2(1—a)
Dp)) =—F— (5.8)

In region by, we haveD(gp) > 0 for ¢ = ¢l, 92, andg?; hence, all three
viscosity angles are active. In regiory)lwe haveD(¢) > 0 for ¢ = ¢! and
@ = g3 only; hence, only two of the viscosity angles are active. Inregiqy) ille
haveD(p) < 0 forg = ¢?, 92, andp = ¢3; hence, there are no active viscosity
angles. Finally, in region Iy, we haveD(¢) < O for the only viscosity angle
@ = ¢2; hence, there are no active viscosity angles. O

Inthe region inthe parameter plane corresponding to three real viscosity angles,
we can order the angles a$ < ¢? < ¢3 within (=7 /2, 7/2]. Upon crossing
the 4a — 3b? boundary, it isp? that no longer satisfies condition (4.13).

5.2 Classification according to the orientation criterion

We now determine precisely which open sector in a viscosity plane is a tran-
sitional surface. Recall from Theorem 4.5 that the open sector satisfying the
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condition sgrR = — sgnjig(¢,) corresponds to properly oriented transitional
shock waves. To use this condition, we must determine the sigg efvaluated
at a viscosity angle,. UsingMaple, we have the following expression:

resultanticg, jiq) = (4a — 3b?)(k — j?)?
x (a%j2+2aj?+b?j? + j?> + 6bj + 2abj + 2abjk + 6bjk  (5.9)
— 4dak+ 4k? + 4k + 1 + a — 2a + 4b%k + 4b? + b%k?)

Because the viscosity angles are exactly the roosg@fthe zero-set of the
resultant ofuq andiig comprises curves on whighg (¢,) = 0 for some viscos-
ity angleg,, i.e., some viscosity angle is exceptional. The first factor vanishes
at the Schaeffer-Shearer Case I/l boundary, which is#li# 4 boundary. The
second factor never vanishes simQeis positive definite, and the third factor
plays no role, according to the following lemma.

Lemma 5.5. The expression

a?j?+ 2aj® + b?j% + j? + 6bj + 2abj + 2abjk + 6bjk

5.10
—dak + 4k? + 4k + 1 + a? — 2a + 4b%k + 4b? + b?k? (5.10)

vanishes only in the region in the parameter plane where there are no active
viscosity angles.

Proof. Expression (5.10) is a quadratic polynomialanthe discriminant of
which is
—4(2j 4 2b+ bj2 4 2kj + bk)?. (5.11)

Therefore expression (5.10) has imaginary roots (and hence never vanishes)
except when the discriminant (5.11) is zero. The discriminant vanishes when

_2j(1+K)

For this value ob, expression (5.10) vanishes when

2K 45Bk+2— 2
- 2+k+j?

(5.13)
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We are concerned only with active viscosity angles; therefore we shall determine
whether this value od satisfiesa < b? + bj + k when Eq. (5.12) holds.
After some algebraic manipulations, we see that b? + bj + k if and
only if
k3 4 5k? + 8k — 2kj% — 2k?j2 + kj* + j*+ 4 < 0. (5.14)

However, the left-hand side can be rewritten as
(k= 9L+ K + 41+ k)2, (5.15)

which is manifestly positive. Therefore any valueathat would make the
factor (5.10) vanish lies in the region where there are no viscosity anglés.

From this lemma, we see that (¢,) changes sign only across the Case I/ll
boundary. At this boundary, we hayg coinciding with a root ofiq(¢). (See
the discussion after Theorem 5.4.) For- 3b?/4, ¢? does not correspond to
a transitional region, so we do not consider it; however, when 3b%/4, we
do need to consides?. As in the proof of Theorem 5.4, we choose the simple
representative modehh = 0 andQ = |, and examine the sign gfg(¢) at
each of the viscosity angles. Whan< 3b?/4, we havejig(p?) < 0, since
a < 0. The other two viscosity angleg andy? give jiqg > 0 for models with
transitional shock waves.

Therefore for all models with transitional shock waves, we hayéy) > 0
for 1 and 2, and for models where? is an active viscosity angle, we have
fta(p?) < 0. This concludes the proof of the following theorem.

Theorem 5.6. For all models, in the viscosity planes corresponding}and

@3, the transitional sector is the sector containing the ray on whick 0 and

R < 0. For models having? as an active viscosity angle, in the viscosity plane
corresponding tap?, the transitional sector is the sector containing the ray on
whichk =0andR > 0.

6 Conclusion

We have studied a class of quadratic models to understand how perturbations of
the viscosity term affect solutions of the Riemann problem. We considered mod-
els in the Schaeffer-Shearer normal form, and used the viscous profile criterion

Comp. Appl. Math., Vol. 26, N. 2, 2007



JANE HURLEY WENSTROM and BRADLEY J. PLOHR 281

as the admissibility criterion. The viscosity matrices we used were symmetric
and positive definite.

Our primary focus has been the behavior of transitional shock waves. For
these models, we have precisely described the transitional surface — the subset
of the wave manifold that corresponds to transitional shock waves. The transi-
tional surface consists of components that lie in planes that correspond to active
viscosity angles. We have derived a condition for determining exactly when a
viscosity angle is active. With this condition, we have determined the boundaries
(in terms of the model and viscosity matrix parameters) where the number of
active viscosity angles changes.

The results we have concerning the effects of viscous terms on the solutions
of Riemann problems are primarily analytical. However, they have immediate
implications for numerical analysis. In finite-difference solvers for conservation
laws, the use of artificial viscosity is common. From our work, we can see that
different viscosity matrices will result in different solutions; hence, care must be
chosen to ensure that the form of the viscosity accurately reflects the physics of
the problem being modeled.
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