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shock waves. Also, we determine the boundaries in the space of model parameters that separate

models with differing numbers of transitional regions.
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1 Introduction

In this paper, we study the Riemann initial-value problem for a class of systems

of two conservation laws

Ut + F(U )x = 0, (1.1)

the initial data being

U (x, 0) =






UL if x < 0,

UR if x > 0.
(1.2)

We assume that the flux functionF is a homogeneous quadratic function that is

strictly hyperbolic away from the origin,i.e., F ′(U∗) has distinct real eigenval-

uesλ1(U∗) < λ2(U∗) for all statesU∗ 6= 0. The origin is therefore an isolated

umbilic point (a point at which the Jacobian is a multiple of the identity matrix).

The present and previous studies [18, 19, 22, 10, 11, 12, 21, 7] have been mo-

tivated by the observation that a general system of two conservation laws can

be approximated by such a quadratic system in the neighborhood of an isolated

umbilic point.

We seek scale-invariant weak solutions of Riemann problems comprising

(continuous) centered rarefaction waves and (discontinuous) centered shock

waves (see,e.g., Ref. [23] for a general discussion of Riemann problems). In or-

der for solutions to be unique, shock waves are required to satisfy an admissibility

criterion. One criterion is the characteristic criterion of Lax [13], which imposes

certain inequalities relating shock and characteristic velocities. An alternative

is the viscous profile criterion of Gelfand [5], which requires each shock wave

to be the limit, asε → 0+, of traveling wave solutions of a particular family of

parabolic systems

Ut + F(U )x = ε[Q(U )Ux]x, (1.3)

for which the original system (1.1) is an approximation. A comparison of these

admissibility criteria appears in Section 2. The previous studies of the Riemann

problem for quadratic models with isolated umbilic points have used either the

Lax criterion or the viscous profile criterion withQ being the identity matrix.

Here and in related work [6, 25] we explore more general possibilities for the

viscosity matrixQ.
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There exist shock waves satisfying the Lax criterion but not the viscous profile

criterion, as well as shock waves satisfying the viscous profile criterion but not the

Lax criterion. Among the latter are transitional [9] (or undercompressive [22])

shock waves. Transitional shock waves are constrained by one more condition

than are Lax shock waves, and their end states must lie in special regions of state

space. Moreover, the set of transitional shock waves is sensitively dependent

on the viscosity matrixQ appearing in system (1.3). As a result,Q and its

associated transitional waves play a key role in solving Riemann problems. In

fact, the arrangement of transitional regions determines the qualitative structure

of solutions of Riemann problems for quadratic models [6, 25]. The main results

of the present paper are (1) a characterization of the set of transitional waves in

terms of model parameters and coefficients of viscosity and (2) a corresponding

classification of models.

In keeping with the view of quadratic models as approximations to general

models near umbilic points, we limit our investigation to viscosity matrices that

are constant. Furthermore, the discussion in Section 2 motivates our assumption

that Q be symmetric and strictly positive definite when the quadratic model is

put in the normal form of Schaeffer-Shearer [18]. To characterize the set of

transitional waves for such a model, we first construct its fundamental wave

manifold [8], which parameterizes all shock wave solutions, and we determine

various important subsets (see Section 3). Then, in Section 4, we derive a

condition, involving the parameters of the model and the coefficients of viscosity,

that determines whether, and where, transitional shock waves occur. Finally, in

Section 5, we use this condition to classify quadratic models according to the

occurrence of transitional shock waves.

2 Shock wave admissibility criteria

A centered shock wave is a discontinuous solution of the form

U (x, t) =






U− if x < st,

U+ if x > st,
(2.1)

where the propagation velocitys and the statesU− andU+ are constant. For this

wave to be a weak solution, the quantitiess, U−, andU+ must be related by the

Comp. Appl. Math., Vol. 26, N. 2, 2007



“main” — 2007/6/27 — 19:09 — page 254 — #4

254 QUADRATIC CONSERVATION LAWS WITH VISCOUS TERMS

Rankine-Hugoniot condition

−s[U+ − U−] + F(U+) − F(U−) = 0. (2.2)

As is well known, not all shock waves represent physically relevant solutions.

We therefore impose an admissibility criterion to select appropriate solutions.

2.1 The characteristic and entropy criteria

The Lax characteristic criterion [13] was developed for weak shock waves in

systems of conservation laws that are strictly hyperbolic and genuinely nonlinear.

This criterion guarantees that the initial-value problem for the linearization of

the conservation laws around the shock wave solution (2.1) is well-posed [23].

For the system of two conservation laws (1.1), the Lax criterion requires that,

of the four characteristics on the two sides of a shock wave, precisely three

impinge on the wave. This means that one of the following sets of inequalities

is satisfied:

s < λ1(U−), λ1(U+) < s < λ2(U+), (2.3)

or

λ1(U−) < s < λ2(U−), λ2(U+) < s. (2.4)

A shock wave satisfying inequalities (2.3) (respectively, inequalities (2.4)) is

called aLax 1-shock wave(resp.,Lax 2-shock wave).

Because genuine nonlinearity fails for system (1.1) at certain states, the admis-

sibility criterion must allow for composite waves, which consist of shock waves

adjoining rarefaction waves of the same family (see,e.g., Ref. [15]). Therefore

we regard the Lax criterion as allowingsonicLax 1-shock waves (respectively,

2-shock waves), for which one or both of the inequalitiesλ1(U+) < s < λ1(U−)

(resp.,λ2(U+) < s < λ2(U−)) is replaced by an equality.

Lax also introduced the entropy criterion [14]. Anentropyη for system (1.1) is

a smooth real-valued function such thatη′F ′ = q′ for someq, called theentropy

flux. Because a smooth solutionU of the parabolic system (1.3) satisfies

η(U )t +
[
q(U ) − εη′(U )Q(U )Ux

]
x

= −εη′′(U )(Ux, Q(U )Ux), (2.5)

the entropy is required to becompatiblewith the viscosity matrix [23, p. 399]

in the sense that the quadratic formη′′(U∗)(∙, Q(U∗)∙) is strictly positive definite
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for all statesU∗; when Q(U ) ≡ I , this means thatη is strictly convex. A so-

lution U for the conservation laws isadmissiblewith respect to the entropyη

provided that

η(U )t + q(U )x ≤ 0 (2.6)

in the sense of distributions. For the shock wave solution (2.1), this condition

reduces to

−s
[
η(U+) − η(U−)

]
+ q(U+) − q(U−) ≤ 0. (2.7)

2.2 The viscous profile criterion

The viscous profile criterion [5] for viscosity matrixQ requires a shock wave to be

the limit, asε → 0+, of a traveling wave solution of the parabolic equation (1.3).

This criterion is appropriate when parabolic terms model physical effects that

have been neglected in the hyperbolic system (1.1).

A traveling wave solution takes the form

U (x, t) = Û

(
x − st

ε

)
, (2.8)

whereÛ (ξ) → U± asξ → ±∞. To be a solution of Eq. (1.3),̂U must satisfy

the ordinary differential equation

−s[Û (ξ) − U−] + F(Û (ξ)) − F(U−) = Q(Û (ξ))Û ′(ξ). (2.9)

The stateU− is automatically an equilibrium point for the dynamical system (2.9),

and, by the Rankine-Hugoniot condition (2.2), the stateU+ is too. A shock wave

is said to have aviscous profileif there exists an orbit for system (2.9) that leads

from U− to U+; a shock wave with a viscous profile is said to beadmissible. For

a system of two conservation laws, the question of shock wave admissibility is

resolved by studying the family (2.9) of planar dynamical systems.

The properties of the viscosity matrix remain to be specified. Majda and

Pego [16] introduced a criterion which, in the context of strictly hyperbolic

systems of two conservation laws, reduces to the following: a viscosity matrix

Q is strictly stablefor system (1.1) at a stateU∗ when

(a) the eigenvalues ofQ(U∗) have positive real parts and
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(b) ` j (U∗)Q(U∗)r j (U∗) > 0 for j = 1, 2.

Herer j (U∗) and` j (U∗), for j = 1, 2, are right and left eigenvectors, respec-

tively, of F ′(U∗) corresponding to the eigenvalueλ j (U∗), normalized so that

` j (U∗)r j (U∗) = 1. Strict stability implies that the initial-value problem for the

linearization

Vt + F ′(U∗)Vx = εQ(U∗)Vxx (2.10)

of Eq. (1.3) aroundU∗ is uniformly well-posed inL2 asε → 0+.

A homogeneous quadratic model with an isolated umbilic point is strictly

hyperbolic except at the origin, so we requireQ to be strictly stable at each

stateU∗ 6= 0. Bearing in mind that the models considered in this paper arise as

approximations to general models near umbilic points, we also approximateQ

by its value at the origin and thereby assume thatQ is constant. In Section 3.4

we prove the following result:

Proposition 2.1. Suppose that system(1.1) is written in the normal form of

Schaeffer-Shearer[18] and equipped with a constant viscosity matrixQ that

has eigenvalues with positive real parts. Then the following statements are

equivalent.

(1) The viscosity matrixQ is strictly stable for system(1.1) at each state

U∗ 6= 0.

(2) The symmetric part ofQ is strictly positive definite.

(3) The functionη(U ) = 1
2|U |2 is an entropy for system(1.1) that is compat-

ible with Q.

Therefore we assume that the symmetric part ofQ is strictly positive definite.

Motivated by Theorem 4.1 below, we also requireQ to be symmetric.

2.3 Types of shock waves

Shock waves can be classified in various ways. One natural way is accord-

ing to the signs of the velocities of the characteristic families for the statesU−

and U+ relative to the shock velocitys, i.e., according to the signs of
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λ1(U−) − s, λ2(U−) − s, λ1(U+) − s, andλ2(U+) − s. For example: a Lax

1-shock wave has signs(+, +, −, +); a Lax 1-shock wave that is sonic on the

right has signs(+, +, 0, +); and acrossing shock wave, through which both

families of characteristics cross, has signs(−, +, −, +).

Alternatively, shock waves can be classified in a manner related to the viscosity

matrix Q. To this end, letμ j (U∗, s), j = 1, 2, denote the eigenvalues of

Q(U∗)
−1[−s I + F ′(U∗)], (2.11)

labeled so that Reμ1(U∗, s) ≤ Reμ2(U∗, s). If U∗ is an equilibrium point for

system (2.9), thenμ1(U∗, s) andμ2(U∗, s) are the eigenvalues of the lineariza-

tion of system (2.9) around the solution̂U (ξ) ≡ U∗. Moreover, the signs of

Reμ1(U∗, s) and Reμ2(U∗, s) determine thetypeof the equilibrium pointU∗:

• repeller if 0 < Reμ1(U∗, s);

• saddle pointif Reμ1(U∗, s) < 0 < Reμ2(U∗, s);

• attractor if Reμ2(U∗, s) < 0;

• repeller-saddleif Reμ1(U∗, s) = 0 < Reμ2(U∗, s);

• saddle-attractorif Reμ1(U∗, s) < 0 = Reμ2(U∗, s).

(As a consequence of Proposition 2.2 below, these are the only possibilities.

Also, the names repeller-saddle and saddle-attractor might not reflect the topo-

logical type of an equilibrium that is degenerate.) A shock wave can be classified

by the signs of Reμ1(U−, s), Reμ2(U−, s), Reμ1(U+, s), and Reμ2(U+, s), or

equivalently by the equilibrium types ofU− andU+.

Of course, ifQ(U ) ≡ I and the statesU− andU+ are strictly hyperbolic, these

two classification schemes coincide. From the perspective of the latter scheme:

for a Lax 1-shock wave,U− is a repeller andU+ is a saddle point; for a Lax

1-shock wave that is sonic on the right,U− is a repeller andU+ is a repeller-

saddle; and for a crossing shock wave,U− andU+ are saddle points. This is the

classification used systematically in Ref. [20].

More generally, the two classification schemes coincide when the statesU−

andU+ are strictly hyperbolic and the viscosity matrixQ is strictly stable atU−

andU+, as seen from the following result.
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Proposition 2.2. Suppose that the stateU∗ is strictly hyperbolic and the vis-

cosity matrixQ is strictly stable atU∗. Then the signs ofReμ1(U∗, s) and

Reμ2(U∗, s) coincide with the signs ofλ1(U∗)− s andλ2(U∗)− s, respectively.

Proof. Let R(U∗) denote the matrix with columns being the right eigenvectors

r1(U∗) and r2(U∗), and letL(U∗) denote the matrix with rows being the left

eigenvectors̀ 1(U∗) and`2(U∗). ThenL(U∗) = R(U∗)
−1. Consider the matrix

obtained by multiplying the matrix (2.11) on the right byR(U∗) and on the left

by L(U∗). Taking its trace and determinant yields the following identities:

μ1(U∗, s) + μ2(U∗, s) = `1(U∗)Q(U∗)
−1r1(U∗) [λ1(U∗) − s]

+ `2(U∗)Q(U∗)
−1r2(U∗) [λ2(U∗) − s],

(2.12)

μ1(U∗, s) μ2(U∗, s) = detQ(U∗)
−1 [λ1(U∗) − s][λ2(U∗) − s]. (2.13)

Notice that

`1(U∗)Q(U∗)
−1r1(U∗) = detQ(U∗)

−1 `2(U∗)Q(U∗)r2(U∗), (2.14)

`2(U∗)Q(U∗)
−1r2(U∗) = detQ(U∗)

−1 `1(U∗)Q(U∗)r1(U∗). (2.15)

By assumption,λ1(U∗) and λ2(U∗) are real and distinct, and detQ(U∗),

`1(U∗)Q(U∗)r1(U∗) and`2(U∗)Q(U∗)r2(U∗) are positive. Also,μ1(U∗, s) and

μ2(U∗, s) are complex conjugates if they are not real. Now by considering the

several possibilities, one easily verifies, using identities (2.12) and (2.13), that

Reμ1(U∗, s) and Reμ2(U∗, s) have the same signs asλ1(U∗)−sandλ2(U∗)−s,

respectively. �

Remark. The coincidence of the shock classification schemes is proved for

non-sonic Lax shock waves inn-component conservation laws in Ref. [16, The-

orem 2.4] using a different argument; as pointed out to us by Prof. K. Zumbrun,

this argument can be augmented to cover sonic waves.

2.4 Non-classical shock waves

Certain shock waves that are admissible under the Lax criterion are also ad-

missible under the viscous profile criterion. However, not all Lax shock waves
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possess viscous profiles. Moreover, there are shock waves that do not satisfy

the Lax criterion and yet have viscous profiles. Suchnon-classical shock waves,

especially transitional shock waves, play an important role in the construction

of solutions of Riemann problems.

A transitional[9], or undercompressive [22], shock wave is one with a viscous

profile that joins two saddle points. According to Proposition 2.2, a transitional

shock wave is an admissible crossing shock wave. In contast to a Lax shock

wave, a transitional shock wave is not associated with a particular characteristic

family. By the Wave Structure Theorem of Ref. [20], a transitional wave group

can only appear in a solution of a Riemann problem situated between the 1- and

2-family wave groups. (In addition to strict hyperbolicity, Ref. [20] assumes that

Q(U ) ≡ I , but by virtue of Prop. 2.2, the Wave Structure Theorem extends to

the situation where, for each stateU∗ in the Riemann solution,Q(U∗) is strictly

stable.) The appearance of transitional shock waves is one of the distinguishing

features of viscous profile solutions of Riemann problems. The occurrence of

these shock waves in homogeneous quadratic models is discussed in detail in

Section 4.

Another type of non-classical shock wave, an overcompressive shock wave

[22, 3], has a viscous profile that leads from a repeller to an attractor. Conse-

quently all characteristics impinge on it:λ2(U+) < s < λ1(U−). For generic

quadratic models, overcompressive waves appear in Riemann solutions only for

a subset of Riemann data(UL ,UR) of codimension one. In this context, over-

compressive waves do not play the important role in solving Riemann problems

that transitional waves do.

3 Homogeneous quadratic models

In this section, we focus attention on homogeneous quadratic models with

isolated umbilic points.

Comp. Appl. Math., Vol. 26, N. 2, 2007
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3.1 Schaeffer-Shearer normal form

Using the notationU = (u, v)T , we can write any system of two conservation

laws with a homogeneous quadratic flux as





ut + 1
2(a1u2 + 2b1uv + c1v

2)x = 0,

vt + 1
2(a2u2 + 2b2uv + c2v

2)x = 0.

(3.1)

This system has six free parameters,a1, b1, c1, a2, b2, andc2. Schaeffer and

Shearer [18] showed that if the origin is an isolated umbilic point, then such a

system can be transformed, by means of invertible linear transformations of state

space and the(x, t)-plane, into a system of the form





ut + 1
2(au2 + 2buv + v2)x = 0,

vt + 1
2(bu2 + 2uv)x = 0.

(3.2)

This normal form has only two free parameters,a andb, subject to the condition

that

a 6= b2 + 1. (3.3)

A defining feature of the normal form (3.2) is that the JacobianF ′ is sym-

metric, and thereforeFT equals the gradient,C′, of a homogeneous cubic

polynomialC.

Schaeffer and Shearer classified quadratic models with isolated umbilic points

by dividing the(a, b)-plane into four regions. This classification of models into

Cases I-IV is based on the structure of rarefaction curves through the origin. The

division of the parameter plane is illustrated in Figure 1. In detail, the curves

separating the regions are as follows:

• Case I/II boundary: 4a − 3b2 = 0.

• Case II/III boundary:a − b2 − 1 = 0.

• Case III/IV boundary:−32b4+
[
27+ 36(a − 2) − 4(a − 2)2

]
b2+4(a−

2)3 = 0.
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–2

–1

1

2

1 2 3 4
a

b

IVIIIIII

Figure 1 – The Schaeffer-Shearer(a, b)-plane and case boundaries.

3.2 Fundamental wave manifold for homogeneous quadratic models

Many of the computations presented in this paper are based on the construc-

tion of the fundamental wave manifoldW , which was introduced for quadratic

models by Marchesin and Palmeira [17] and extended to general systems of con-

servation laws in Ref. [8]. Points ofW represent shock wave solutions of the

conservation laws. To each point inW is associated a dynamical system,viz.,

Eq. (2.9); whether or not a connection exists determines whether or not the shock

is admissible.

The wave manifoldW is constructed by considering solutions(U−,U+, s) of

the Rankine-Hugoniot condition (2.2). Although the solution set has a singularity

at each point whereU− = U+, this singularity can be removed by introducing a

new set of variables(U , R, ϕ, s). HereU = (u, v)T is the midpoint12(U− +U+)

betweenU+ and U−, whereasR ∈ R and ϕ ∈ (−π/2, π/2] represent the

separation and orientation of the vectorU+ − U−. More precisely,(U , R, ϕ, s)
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is mapped to(U−,U+, s) through the relationships

U± = U ±
1

2
R

(
cosϕ

sinϕ

)

. (3.4)

This map remains smooth if each point(U , R, π/2, s) is glued to the point

(U , −R, −π/2, s), so we regard its domain asR2 × M2 × R, whereM2 is the

Möbius strip parameterized byR andϕ. Expressed in terms of(U , R, ϕ, s),

the Rankine-Hugoniot condition contains an explicit factorR, corresponding

to trivial solutionsU+ = U−, which we eliminate. The remaining equation

definesW .

For homogeneous quadratic models, the Rankine-Hugoniot condition is equiv-

alent to

R
[
−s I + F ′(U )

]
(

cosϕ

sinϕ

)

= 0, (3.5)

with F ′ being linear. Solutions satisfy eitherR = 0 or

α(ϕ)u + β(ϕ)v = 0, (3.6)

α̃(ϕ)u + β̃(ϕ)v = s, (3.7)

whereα, β, α̃, andβ̃ are homogeneous quadratic polynomials in cosϕ and sinϕ

defined by

α(ϕ)u + β(ϕ)v = (− sinϕ, cosϕ) F ′(U )

(
cosϕ

sinϕ

)

, (3.8)

α̃(ϕ)u + β̃(ϕ)v = ( cosϕ, sinϕ) F ′(U )

(
cosϕ

sinϕ

)

. (3.9)

The wave manifoldW comprises points(u, v, R, ϕ, s) satisfying Eqs. (3.6)

and (3.7).

For the normal form (3.2), we have

α(ϕ) = bcos2 ϕ + (1 − a) cosϕ sinϕ − bsin2 ϕ, (3.10)

β(ϕ) = cos2 ϕ − bcosϕ sinϕ − sin2 ϕ, (3.11)

α̃(ϕ) = a cos2 ϕ + 2bcosϕ sinϕ + sin2 ϕ, (3.12)

β̃(ϕ) = (bcosϕ + 2 sinϕ) cosϕ. (3.13)
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The vector(α(ϕ), β(ϕ)) never vanishes, by virtue of condition (3.3); indeed, the

resultant ofα andβ is −(a− b2 − 1)2. Therefore Eqs. (3.6) and (3.7) are solved

by

u = −β(ϕ)κ, (3.14)

v = α(ϕ)κ, (3.15)

s = D̃(ϕ)κ, (3.16)

whereκ ∈ R and

D̃(ϕ) = α(ϕ)β̃(ϕ) − β(ϕ)α̃(ϕ). (3.17)

For the normal form (3.2),

D̃(ϕ) = (b2 − a) cos2 ϕ + bcosϕ sinϕ + sin2 ϕ. (3.18)

In summary, for a homogeneous quadratic model with an isolated umbilic

point, points in the wave manifold can be parameterized by the variables

(R, κ, ϕ) ∈ R × R × (−π/2, π/2], with each point(R, κ, π/2) glued to the

point(−R, κ, −π/2). The shock wave corresponding to(R, κ, ϕ) is obtained in

the following way:

u± = −β(ϕ)κ ± 1
2 Rcosϕ, (3.19)

v± = α(ϕ)κ ± 1
2 Rsinϕ, (3.20)

s = D̃(ϕ)κ. (3.21)

Equations (3.19) and (3.20) define two projections fromW to state space: the

U−-projectionπ− : (R, κ, ϕ) 7→ (u−, v−) and theU+-projectionπ+ : (R, κ, ϕ)

7→ (u+, v+).

We now define some additional expressions that will be used later:

D(ϕ) = α(ϕ)β ′(ϕ) − β(ϕ)α′(ϕ), (3.22)

μ(ϕ) = (− sinϕ, cosϕ) F ′′(0) ∙

(
cosϕ

sinϕ

)2

, (3.23)

μ̃(ϕ) = (cosϕ, sinϕ) F ′′(0) ∙

(
cosϕ

sinϕ

)2

, (3.24)

B(ϕ) = μ̃(ϕ)D(ϕ) + 1
2μ(ϕ)D′(ϕ). (3.25)
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For the normal form (3.2),D(ϕ) ≡ a − b2 − 1 is a nonzero constant,

μ(ϕ) = bcos3 ϕ + (2 − a) cos2 ϕ sinϕ − 2bcosϕ sin2 ϕ − sin3 ϕ, (3.26)

μ̃(ϕ) = (a cos2 ϕ + 3bcosϕ sinϕ + 3 sin2 ϕ) cosϕ, (3.27)

andB(ϕ) is simply(a − b2 − 1)μ̃(ϕ).

Remark. Even for general quadratic models,D andD̃ are homogeneous cubic

polynomials, andB is a homogeneous quadratic polynomial, in cosϕ and sinϕ.

3.3 Subsets of the fundamental wave manifold

3.3.1 Characteristic manifold

The characteristic manifold, denoted byC, is the R = 0 slice of the wave

manifold. For a point inC, U− = U+ = U ands is an eigenvalue ofF ′(U ) (see

Eq. (3.5) with the factorR removed). If astateU is such that the eigenvalues of

F ′(U ) are real and distinct, then there are two different points inC that project

to U . In this case,C is a two-fold covering of a sufficiently small neighborhood

of U .

3.3.2 Sonic loci

Theright sonic locus, SR, is the closure inW of the set of nontrivial shock waves

such thatλi (U+) = s, i = 1 or 2; theleft sonic locus, SL , is defined analogously

by the conditionλi (U−) = s, i = 1 or 2. For homogeneous quadratic models,

the right sonic locus (respectively, left sonic locus) consists of points(R, κ, ϕ)

that satisfy

∓
1

2
D̃(ϕ)R + B(ϕ)κ = 0. (3.28)

(See Ref. [24, pp. 316–317] for the proof.) The left sonic locus is the reflection,

through the(κ, ϕ)-plane, of the right sonic locus, which is characterized as

follows.

Lemma 3.1. If 4a 6= 3b2, SR is a ruled surface, in that its intersection with

each planeϕ = const.is a line. If 4a = 3b2, SR is the union of such a ruled

surface with the planeϕ = − tan−1(b/2). The same is true ofSL .
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Proof. The resultant of̃D andμ̃ = B/(a − b2 − 1) is (4a − 3b2)2. Therefore,

if 4a 6= 3b2, the vector(1
2D̃(ϕ), B(ϕ)) never vanishes. Thus, for eachϕ, the

solution set of Eq. (3.28) (with the upper sign) is a line. If, on the other hand,

4a = 3b2, thenD̃(ϕ) = [(b/2) cosϕ +sinϕ]2 andμ̃(ϕ) = 3D̃(ϕ) cosϕ, so that

the solution set is the union of the planẽD(ϕ) = 0 with the ruled surface

−
1

2
R + [3(a − b2 − 1) cosϕ]κ = 0. (3.29�)

3.3.3 Inflection locus

A point in the inflection locuslies in the characteristic manifoldC and corre-

sponds to a point in state space at which genuine nonlinearity fails. In general [8],

the inflection locus is the common intersection of the sonic lociSL andSR with

C. From Eq. (3.28) we see that points in the inflection locus haveR = 0 and

eitherκ = 0 or B(ϕ) = 0. Thus the inflection locus comprises theϕ-axis (R = 0

andκ = 0) and the lines withR = 0 andϕ = ϕi ; hereϕi is aninflection angle,

i.e., a root ofB(ϕ) = 0. The formula (3.27) for̃μ = B/(a − b2 − 1) shows that

the number of inflection angles is three if 4a < 3b2, two if 4a = 3b2, and one if

4a > 3b2.

3.3.4 Double sonic locus

Thedouble sonic locusis the closure of the set of nontrivial shock waves that lie

on bothSL andSR. According to Eqs. (3.28) and Lemma 3.1: if 4a 6= 3b2, the

double sonic locus comprises the lines withκ = 0 andϕ = ϕd, whereϕd is a

double sonic angle, i.e., a root ofD̃(ϕ); and if 4a = 3b2, the double sonic locus

is the planeϕ = − tan−1(b/2). The formula (3.18) for̃D(ϕ) shows that there

are no double sonic angles if 4a < 3b2 and there are two if 4a > 3b2.

3.4 Proof of Proposition 2.1.

The following proof is an application of the formalism just developed.

Proof of Proposition 2.1. To prove the equivalence of statements (1) and (2),

we invoke results from Ref. [24]. Proposition 5.12 of this reference states that
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the viscosity matrixQ is strictly stable for system (1.1) at a stateU∗ if and

only if the quantities tr[−s I + F ′(U∗)] and tr
{
Q−1[−s I + F ′(U∗)]

}
have the

same (nonzero) sign for each eigenvalues of F ′(U∗). Moreover, Theorem 5.8

of this reference implies that ifU∗ ands are associated with a point(κ, ϕ) on the

characteristic manifoldC for a homogeneous quadratic model, then

tr
{
Q−1

[
−s I + F ′(U∗)

]}
= κ

[
−

1

2
Q(ϕ)21D

′(ϕ) +Q(ϕ)22D(ϕ)

]
; (3.30)

hereQ(ϕ)21 andQ(ϕ)22 are the(2, 1)- and(2, 2)-components, respectively, of

the matrix

Q(ϕ) = O(ϕ)−1Q−1O(ϕ), (3.31)

where

O(ϕ) =

(
cosϕ − sinϕ

sinϕ cosϕ

)

. (3.32)

Consequently the criterion for strict stability ofQ at U∗ is that, for each corre-

sponding point(κ, ϕ) on C, κD(ϕ) and κ
[
−1

2Q(ϕ)21D
′(ϕ) +Q(ϕ)22D(ϕ)

]

have the same nonzero sign. For a quadratic model written in the normal

form (3.2),D is a nonzero constant. Therefore the viscosity matrixQ is strictly

stable atU∗ if and only if κ 6= 0 andQ(ϕ)22 > 0 for each corresponding point

(κ, ϕ) onC. Thus the viscosity matrixQ is strictly stable at all statesU∗ 6= 0 if

and only if

(− sinϕ, cosϕ)Q−1

(
− sinϕ

cosϕ

)

> 0 (3.33)

for all ϕ, or equivalently that the symmetric part ofQ is strictly positive definite.

Because a quadratic model in the normal form (3.2) has a symmetric Jacobian

matrix F ′, the equivalence of statements (2) and (3) is well known (see,e.g.,

Ref. [23, p. 398]). Indeed, a functionη is an entropy if and only ifF ′ is symmetric

with respect to the quadratic formη′′, andη is compatible withQ if and only

if the symmetric part ofQ is strictly positive definite with respect toη′′; but if

η(U ) = 1
2|U |2, thenη′′(U ) ≡ I . �
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4 Transitional regions

In this section, we describe the subset ofW corresponding to transitional shock

waves. This subset depends sensitively on the viscosity matrixQ. We con-

sider quadratic models in Schaeffer-Shearer normal form (3.2) equipped with

symmetric, strictly positive definite viscosity matrices. Admissibility of shock

waves is not affected whenQ is multiplied by a positive scale factor, so we are

free to write

Q−1 =

(
1 j

j k

)

, (4.1)

wherek > 0 andk > j 2.

4.1 Transitional waves

In general, it is difficult to characterize the set of transitional shock waves. How-

ever, the following result greatly simplifies this characterization for homogeneous

quadratic models with isolated umbilic points. The proof of this result, which is

based on a theorem of Chicone [2], is due to Freistühler and Zumbrun [4].

Theorem 4.1. Suppose that system(1.1) is written in the normal form of

Schaeffer-Shearer and equipped with a constant, symmetric, positive definite

viscosity matrixQ. Then the orbit for any transitional wave is a straight line

segment.

Proof. Multiplying the dynamical system (2.9) byQ−1/2 and substituting

Û = Q−1/2V̂ , we obtain the system

V̂ ′(ξ) = −sQ−1V̂(ξ)+Q−1/2F(Q−1/2V̂(ξ))−Q−1/2[−sU−+F(U−)]. (4.2)

According to Ref. [18], there exists a homogeneous cubic polynomialC of U

such thatF = (C′)T . Let

D(V) = C(Q−1/2V) −
1

2
sVT Q−1V − VT Q−1/2[−sU− + F(U−)]. (4.3)

Then

V̂ ′(ξ) = (D′)T (V̂(ξ)). (4.4)
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Thus the dynamical system (2.9) is linearly equivalent to a quadratic gradient

system. For such a system, a saddle-saddle connection lies along a straight

line [2]. �

4.2 Straight-line connections

From Ref. [9], we have the following result concerning straight-line connections

(for any type of shock wave).

Proposition 4.2. Let F be quadratic, and suppose thats, U−, andU+ 6= U−

satisfy the Rankine-Hugoniot condition. Then the straight line segment between

U− andU+ is a connecting orbit if and only if there is a constantσ 6= 0 such

that1U = U+ − U− satisfies

σ Q1U =
1

2
F ′′(0) ∙ (1U )2. (4.5)

The orbit is traversed fromU− to U+ if and only ifσ < 0.

In terms of coordinates forW , 1U = R(cosϕ, sinϕ)T , so that Eq. (4.5) holds

for someσ if and only if

0 = (− sinϕ, cosϕ) Q−1F ′′(0) ∙

(
cosϕ

sinϕ

)2

. (4.6)

The right-hand side of Eq. (4.6) resemblesμ(ϕ), defined by Eq. (3.23), except

that F ′′(0) is replaced withQ−1F ′′(0). We therefore denote the right-hand side

of Eq. (4.6) byμQ(ϕ). A root ϕv of μQ(ϕ) is called aviscosity angle. Thus if

two statesU− andU+ are connected by a straight-line connection, then that orbit

lies at a viscosity angle in state space. The expressionμQ(ϕ) is a homogeneous

cubic polynomial in cosϕ and sinϕ; in the generic case that the discriminant of

μQ is nonzero, the number of viscosity angles is either one or three.

Proposition 4.2 also states that the straight-line connection is oriented from

U− to U+ whenσ < 0. Again because1U = R(cosϕ, sinϕ)T , whereϕ = ϕv

is a viscosity angle,

σ =
1

2
R(cosϕ, sinϕ) Q−1F ′′(0) ∙

(
cosϕ

sinϕ

)2

, (4.7)
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which we write as

σ =
1

2
R μ̃Q(ϕ). (4.8)

Thus the orbit orientation conditionσ < 0 can be written

sgnR = − sgnμ̃Q(ϕv). (4.9)

If μ̃Q(ϕv) = 0, the viscosity angleϕv is said to beexceptional[9]. At an

exceptional viscosity angle, no straight-line connections are possible, sinceσ

= 0. Exceptional viscosity angles occur when a viscosity angle coincides with

a root ofμ̃Q(ϕ). This situation is avoided in the generic case that the resultant

of μQ andμ̃Q is nonzero.

4.3 Geometry of transitional surfaces

We define thetransitional surfaceto comprise points in the wave manifold corre-

sponding to transitional shock waves,i.e., shock waves with viscous profiles that

connect saddle points. For the quadratic models and viscosity matrices we con-

sider, any transitional shock wave has a straight-line connection (Theorem 4.1).

To determine the transitional surface, we seek straight-line connections joining

saddle points.

In the previous subsection, we saw that a point inW corresponds to a shock

wave with a straight-line connection if and only ifϕ = ϕv is a viscosity angle. A

cross-sectionϕ = ϕv of the wave manifold is called aviscosity plane; there are

from one to three viscosity planes. Thus the transitional surface is contained in

the union of the viscosity planes and may consist of several disjoint connected

components. However, not every viscosity plane contains a component of the

transitional surface. We say that a viscosity angle isactiveif the corresponding

viscosity plane contains a component of the transitional surface.

Consider the shock types of points ofW . The signs ofλ1(U−) − s and

λ2(U−)−s are nonzero except at the characteristic manifoldC and the left sonic

locusSL , and the signs ofλ1(U+) − s andλ2(U+) − s are nonzero except atC

and the right sonic locusSR. Therefore the shock type is constant throughout

connected regions ofW\(C ∪ SL ∪ SR). As transitional waves have the shock

type(−, +, −, +), one consequence is the following.
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Lemma 4.3. Each connected component of the transitional surface is a con-

nected component of a viscosity plane with the sonic loci and the characteristic

manifold removed.

According to Lemma 3.1, eitherSL andSR contain the viscosity plane (if

4a = 3b2 andϕv = − tan−1(b/2)) or they intersect the viscosity plane in two

lines through the origin that are reflections of each other through the lineR = 0.

In the former case, no transitional waves lie in the viscosity plane. Otherwise,

after removingC, SL , andSR from the viscosity plane, several open sectors

remain. In the following lemma, we determine which of these open sectors can

be a component of the transitional surface.

Lemma 4.4. Any component of the transitional surface contained in the vis-

cosity planeϕ = ϕv intersects the lineL(ϕv) along whichκ = 0 andϕ = ϕv.

Proof. Depending of the configuration ofSL , SR, andC in the viscosity plane,

two, four, or six open sectors remain. These possibilities are illustrated in

Figure 2.

κ

R

κ

R

κ

R

SR

LS

(a) (b) (c)

LSSR

SR LS

CC

C

A

B

Figure 2 – Possible configurations ofSL , SR, andC in a viscosity plane.

Case (a):C, SL , andSR intersect the viscosity plane in a single line (i.e., ϕv is

an inflection angle). The two remaining open half planes both intersect the line

L(ϕv).

Case (b): C, SL , andSR intersect the viscosity plane in three distinct lines.

Consider a point withR 6= 0 lying onL(ϕv). Sinceκ = 0, the velocitys =

D̃(ϕv)κ of the associated shock wave is zero. For the same reason, theU− and
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U+ projections of this point are

U− =

(
−1

2 Rcosϕv

−1
2 Rsinϕv

)

and U+ =

(
1
2 Rcosϕv

1
2 Rsinϕv

)

. (4.10)

ThusU+ = −U−, which implies thatF ′(U+) = −F ′(U−), λ1(U+) = −λ2(U−),

andλ2(U+) = −λ1(U−). With these restrictions on the shock and characteristic

velocities, this point can correspond to one of only three possible shock wave

types: transitional(−, +, −, +), overcompressive(+, +, −, −), or totally ex-

pansive(−, −, +, +).

If neither of the open sectors intersecting the lineL(ϕv) contains transitional

shock waves, then one of the other open sectors must. Thus a sector containing

transitional waves is separated from a sector containing either overcompressive

or totally expansive waves by a single sonic surface. This, however, is impossible

since, in crossing a single sonic surface, only one of the four quantitiesλ1(U−)−s,

λ2(U−) − s, λ1(U+) − s, or λ2(U+) − s changes sign.

Case (c):C, SL , andSR intersect the viscosity plane in two distinct lines. In this

case, the sonic loci both intersect the viscosity plane in the lineκ = 0, i.e., ϕv is

a double sonic angle (̃D(ϕv) = 0). Also, B(ϕv) 6= 0, since otherwise the entire

viscosity plane is sonic according to Eq. (3.28). Thus there is no open sector

containing the lineL(ϕv). We show that no transitional shock waves occur in

this viscosity plane.

Consider two pointsA andB in the open quadrants of the viscosity plane that

are reflections acrossκ = 0. According to Eqs. (3.19) and (3.20), theU− and

U+ projections ofA andB satisfy

U A
− = −U B

+ , (4.11)

U A
+ = −U B

− . (4.12)

BecausẽD(ϕv) = 0, the velocity of a shock wave corresponding to any point

in this viscosity plane is zero. From Eqs. (4.11) and (4.12), we also deduce

that λ1(U A
− ) = −λ2(U B

+ ), λ1(U A
+ ) = −λ2(U B

− ), λ2(U A
− ) = −λ1(U B

+ ), and

λ2(U A
+ ) = −λ1(U B

− ). With these restrictions on the characteristic velocities, we

see that if the pointA corresponds to a transitional shock wave, then the pointB
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must also correspond to a transitional shock wave. However, this is impossible

becauseA andB are separated only by the left and right sonic loci. Therefore

there are no transitional shock waves and the viscosity plane does not contain a

component of the transitional surface in case (c). �

Lemma 4.4 does not specify which of the two open sectors containingL(ϕv) is

a component of the transitional surface. Recall from Eq. (4.8) that the sign ofσ ,

which determines the orientation of the connecting orbit, depends on the sign of

R. The open sector that gives rise to correctly oriented orbits is thetransitional

sector, determined by condition (4.9). In Section 5.2, we determine sgnμ̃Q(ϕv)

precisely.

In the following theorem, we present the conditions that a viscosity angle must

satisfy in order to be active.

Theorem 4.5. A viscosity angleϕv is active if and only if the following condi-

tions are satisfied:

(1) μ̃Q(ϕv) 6= 0, i.e., ϕv is not exceptional; and

(2) D̃(ϕv) > 0.

Moreover, the corresponding transitional sector is the one containing the line

L(ϕv) along whichκ = 0 andϕ = ϕv and havingsgnR = − sgnμ̃Q(ϕv).

Proof. Suppose thatϕv is active; we examine the viscosity plane associated

with this angle. Condition (1) holds, as otherwise no straight-line connection

occurs atϕv by virtue of Prop. 4.2 and Eq. (4.8). Condition (2) is established

as follows.

From Lemma 4.4, we know that only an open sector containing the lineL(ϕv)

can possibly be a component of the transitional surface. Consider the projections

U+ andU− = −U+ of a point on this line withR 6= 0. As its shock speed is zero,

this point corresponds to a transitional shock wave if and only if the eigenvalues

of F ′(U−) have opposite signs and the eigenvalues ofF ′(U−) have opposite

signs. AsF ′(U−) = −F ′(U+), this condition amounts to det(F ′(U+)) < 0. We

show that this inequality is equivalent to

D̃(ϕv) > 0. (4.13)
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BecauseF is a homogeneous quadratic polynomial, we have thatF ′(U+) =

F ′′(0)U+. As R 6= 0, the condition det(F ′(U+)) < 0 is equivalent to

det

[

F ′′(0)

(
cosϕv

sinϕv

)]

< 0. (4.14)

Inserting a rotation matrix does not affect the determinant; therefore the inequal-

ity (4.14) is satisfied if and only if the following inequality holds:

det

[(
cosϕv sinϕv

− sinϕv cosϕv

)

F ′′(0)

(
cosϕv

sinϕv

)]

< 0. (4.15)

The entries of the matrix appearing in this inequality may be identified by dif-

ferentiating expressions (3.8)-(3.9) with respectto U . Thus we can rewrite

inequality (4.15) as

det

(
α̃(ϕv) β̃(ϕv)

α(ϕv) β(ϕv)

)

< 0, (4.16)

which reduces to

α̃(ϕv)β(ϕv) − α(ϕv)β̃(ϕv) < 0. (4.17)

The left-hand side is−D̃(ϕv), so that det(F ′(U+)) < 0 if and only if condition (2)

holds.

Conversely, if conditions (1) and (2) hold, then a point withR 6= 0 on the line

L(ϕv) provides an example of a transitional shock wave, so that the viscosity

angleϕv is active.

Whenϕv is active, Lemma 4.4 and Eq. (4.9) determine the transitional sector.�

4.4 Projection to state space

Thetransitional regionis theU−-projection of the transitional surface into state

space,i.e., the image of the transitional surface under the linear mapπ− defined

by Eqs. (3.19) and (3.20) with the lower sign. By the foregoing results, the

transitional region consists of from one to three wedges centered at the origin,

called thetransitional wedges, which are associated to the different viscosity

angles.
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As restricted to a viscosity planeϕ = ϕv, the projectionsπ+ andπ− defined

by Eqs. (3.19) and (3.20) can be written as
(

u+

v+

)

=

(
−β(ϕv)

1
2 cos(ϕv)

α(ϕv)
1
2 sin(ϕv)

)(
κ

R

)

(4.18)

and
(

u−

v−

)

=

(
−β(ϕv) −1

2 cos(ϕv)

α(ϕv) −1
2 sin(ϕv)

)(
κ

R

)

, (4.19)

respectively. Suppose that the matricesP+ and P− appearing, respectively, in

Eqs. (4.18) and (4.19) are nonsingular; this is true if and only ifα(ϕv) cos(ϕv)+

β(ϕv) sin(ϕv) 6= 0, i.e.,

μ(ϕv) 6= 0. (4.20)

Then the mapU− 7→ U+ = P+(P−)−1U−, defined for statesU− in the transi-

tional wedge corresponding to viscosity angleϕv, is called thetransitional map

for ϕv. (See Fig. 3.) A stateU− in the transitional wedge and its imageU+

under the transitional map are the end states of a transitional shock wave with a

straight-line orbit.

U−

U+

R

κ

v

u

ϕ π−

+π

Figure 3 – The transitional map for a viscosity angleϕv with μ(ϕv) 6= 0.

There are situations, however, in whichμ(ϕv) = 0. For instance, ifQ = I ,

thenμ = μQ vanishes at any viscosity angle. Whenμ(ϕv) = 0, no transitional

map is defined. Instead, the transitional wedge forϕv degenerates to a ray,

and the preimage underP− of a pointU− on this ray is a line segment in the

Comp. Appl. Math., Vol. 26, N. 2, 2007



“main” — 2007/6/27 — 19:09 — page 275 — #25

JANE HURLEY WENSTROM and BRADLEY J. PLOHR 275

transitional planeϕ = ϕv, which is mapped viaP+ to a line segment of states

U+, as in Figure 4. (By Eq. (3.11), the kernels ofP+ and P− never coincide

whenμ(ϕv) = 0.) There is a transitional shock wave fromU− to each stateU+

lying on this line segment.

R

κ

v

u

ϕ

U−

U+
π+

π−

Figure 4 – The transitional map for a viscosity angleϕv with μ(ϕv) = 0.

Remark. An angleϕ satisfyingμ(ϕ) = 0 is called abifurcation angle; such

angles determine the secondary bifurcation loci in the wave manifold.

5 Classification of models

In this section, we determine the boundaries in the parameter plane that separate

models with differing numbers of transitional regions. Many of the calculations

presented in this section were carried out with the aid of theMaple software

package [1].

5.1 Classification according to the active region criterion

Motivated by Theorem 4.5, we now determine the parameter values such that

the conditionD̃(ϕv) > 0 is satisfied. Recall that a viscosity angleϕv is a root of

μQ(ϕ). Usually, eachϕv can be regarded as a function of the parameters of the

model and the viscosity matrix. For eachϕv, there are curves in the parameter

plane which separate those models for whichD̃(ϕv) > 0 from those for which

D̃(ϕv) < 0. These curves represent those models for whichD̃(ϕv) = 0, i.e.,
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whereD̃(ϕ) and μQ(ϕ) have coincident roots. In order to determine these

curves, we consider the resultant of̃D(ϕ) andμQ(ϕ), which vanishes if and

only if the two polynomials have at least one coincident root. Direct calculation

usingMapleshows that

resultant(μQ, D̃) = (b2 + bj + k − a)2(4a − 3b2). (5.1)

Each of the two factors of resultant(μQ, D̃) can vanish, and in Figure 5 we

have drawn the zero-sets of these two factors in the(a, b)-plane for a particular

viscosity matrix. In this figure, we have also drawn the curve representing the

zero-set of the discriminant ofμQ, which we compute below; upon crossing

this curve from left to right, the number of roots ofμQ changes from three to

one. The relative placement of the three curves remains the same as we vary the

viscosity matrix because the three curves do not intersect, as we verify in the

following two lemmas.

–2

–1

1

2

1 2 3 4
a

b

IVIIIIII QQQQ

Figure 5 – The case boundaries for a representative matrixQ (k = 1.6 and j = −0.2).

The left-most curve is defined by 4a − 3b2 = 0; the middle curve is defined by

a − (b2 + bj + k) = 0; and the right-most curve is defined by discriminant(μQ) = 0.

Lemma 5.1. The curves4a − 3b2 = 0 and a − (b2 + bj + k) = 0 do not

intersect.
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Proof. Substitutinga = 3b2/4 into the expressionb2 + bj + k − a yields

1

4
b2 + bj + k =

(
1

2
b + j

)2

+ k − j 2, (5.2)

which is positive ifk − j 2 > 0. Hence, the two curves do not intersect. �

Lemma 5.2. The curvesa − (b2 + bj + k) = 0 anddiscriminant(μQ) = 0 do

not intersect.

Proof. UsingMaple, we find that the discriminant ofμQ to be

61b2k2 + 4a2b2 − 52ab2k + 32k3 − 4a3 + 32b4k − 48ak2 + 24a2k

− 44a2 j 2 + b2 j 4 + 8b3 j 3 + 4k2 j 2 + 4b4 j 2 + 4aj4 + 40abj3

+ 32ak j2 − 20a2bj + 64ab2 j 2 + 82b2k j2 + 100bk2 j

+ 100b3k j + 8bk j3 + 24ab3 j − 64abjk.

(5.3)

After substitutinga = b2 + bj + k, expression (5.3) simplifies to

4(k − j 2)2

(
1

4
b2 + bj + k

)
, (5.4)

which is positive ifk − j 2 > 0. Hence, the two curves do not intersect. �

In fact, the proofs above establish that the curves 4a − 3b2 = 0, a − (b2 +

bj + k) = 0, and discriminant(μQ) = 0 are ordered from left to right, in the

sense that, for eachb, thea coordinates of points on the curves are so ordered.

Therefore we can make the following definition.

Definition 5.3. We denote the region wherea < 3b2/4 by IQ; the region where

3b2/4 < a < b2 + bj + k by IIQ; the region whereb2 + bj + k < a and

discriminant(μQ) > 0 by IIIQ; and the region wherediscriminant(μQ) < 0

by IVQ.

Remark. The IQ/II Q boundary is exactly the Schaeffer-Shearer Case I/II

boundary; and whenQ = I , the IIQ/III Q and IIIQ/IV Q boundaries reduce

to the Case II/III and Case III/IV boundaries, respectively.

We now proceed to the main result of this section.
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Theorem 5.4. In region IQ, there are three active viscosity angles; in region

II Q, there are two active viscosity angles; and in regions IIIQ and IVQ, there are

no active viscosity angles.

Proof. Within each region, the number of roots ofμQ(ϕ) and the ordering

of the roots ofD̃(ϕ) andμQ(ϕ) along (−π/2, π/2] are the same. To prove

the theorem, we choose a simple representative model within each region and

examine the roots of the two polynomials for this model.

We letb = 0 andQ = I , i.e., k = 1 and j = 0. For these parameter values,

we havea < 0 in region IQ, 0 < a < 1 in region IIQ, 1 < a < 2 in region IIIQ,

anda > 2 in region IVQ. The roots ofμQ(ϕ) are

ϕ1
v = arctan(−

√
2 − a), ϕ2

v = 0, and ϕ3
v = arctan(

√
2 − a), (5.5)

and the values of̃D(ϕ) at these angles are

D̃(ϕ1
v) =

2(1 − a)

3 − a
, (5.6)

D̃(ϕ2
v ) = −a, (5.7)

D̃(ϕ3
v) =

2(1 − a)

3 − a
. (5.8)

In region IQ, we haveD̃(ϕ) > 0 for ϕ = ϕ1
v , ϕ2

v , andϕ3
v ; hence, all three

viscosity angles are active. In region IIQ, we haveD̃(ϕ) > 0 for ϕ = ϕ1
v and

ϕ = ϕ3
v only; hence, only two of the viscosity angles are active. In region IIIQ, we

haveD̃(ϕ) < 0 for ϕ = ϕ1
v , ϕ2

v , andϕ = ϕ3
v ; hence, there are no active viscosity

angles. Finally, in region IVQ, we haveD̃(ϕ) < 0 for the only viscosity angle

ϕ = ϕ2
v ; hence, there are no active viscosity angles. �

In the region in the parameter plane corresponding to three real viscosity angles,

we can order the angles asϕ1
v < ϕ2

v < ϕ3
v within (−π/2, π/2]. Upon crossing

the 4a − 3b2 boundary, it isϕ2
v that no longer satisfies condition (4.13).

5.2 Classification according to the orientation criterion

We now determine precisely which open sector in a viscosity plane is a tran-

sitional surface. Recall from Theorem 4.5 that the open sector satisfying the
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condition sgnR = − sgnμ̃Q(ϕv) corresponds to properly oriented transitional

shock waves. To use this condition, we must determine the sign ofμ̃Q evaluated

at a viscosity angleϕv. UsingMaple, we have the following expression:

resultant(μQ, μ̃Q) = (4a − 3b2)(k − j 2)2

× (a2 j 2 + 2aj2 + b2 j 2 + j 2 + 6bj + 2abj + 2abjk + 6bjk

− 4ak + 4k2 + 4k + 1 + a2 − 2a + 4b2k + 4b2 + b2k2)

(5.9)

Because the viscosity angles are exactly the roots ofμQ, the zero-set of the

resultant ofμQ andμ̃Q comprises curves on which̃μQ(ϕv) = 0 for some viscos-

ity angleϕv, i.e., some viscosity angle is exceptional. The first factor vanishes

at the Schaeffer-Shearer Case I/II boundary, which is the IQ/II Q boundary. The

second factor never vanishes sinceQ is positive definite, and the third factor

plays no role, according to the following lemma.

Lemma 5.5. The expression

a2 j 2 + 2aj2 + b2 j 2 + j 2 + 6bj + 2abj + 2abjk + 6bjk

−4ak + 4k2 + 4k + 1 + a2 − 2a + 4b2k + 4b2 + b2k2
(5.10)

vanishes only in the region in the parameter plane where there are no active

viscosity angles.

Proof. Expression (5.10) is a quadratic polynomial ina, the discriminant of

which is

−4(2 j + 2b + bj2 + 2k j + bk)2. (5.11)

Therefore expression (5.10) has imaginary roots (and hence never vanishes)

except when the discriminant (5.11) is zero. The discriminant vanishes when

b = −
2 j (1 + k)

2 + k + j 2
. (5.12)

For this value ofb, expression (5.10) vanishes when

a =
2k2 + 5k + 2 − j 2

2 + k + j 2
. (5.13)
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We are concerned only with active viscosity angles; therefore we shall determine

whether this value ofa satisfiesa < b2 + bj + k when Eq. (5.12) holds.

After some algebraic manipulations, we see thata < b2 + bj + k if and

only if

k3 + 5k2 + 8k − 2k j2 − 2k2 j 2 + k j4 + j 4 + 4 < 0. (5.14)

However, the left-hand side can be rewritten as

(k − j 2)2(1 + k) + 4(1 + k)2, (5.15)

which is manifestly positive. Therefore any value ofa that would make the

factor (5.10) vanish lies in the region where there are no viscosity angles.�

From this lemma, we see thatμ̃Q(ϕv) changes sign only across the Case I/II

boundary. At this boundary, we haveϕ2
v coinciding with a root ofμ̃Q(ϕ). (See

the discussion after Theorem 5.4.) Fora > 3b2/4, ϕ2
v does not correspond to

a transitional region, so we do not consider it; however, whena < 3b2/4, we

do need to considerϕ2
v . As in the proof of Theorem 5.4, we choose the simple

representative model,b = 0 and Q = I , and examine the sign of̃μQ(ϕ) at

each of the viscosity angles. Whena < 3b2/4, we haveμ̃Q(ϕ2
v ) < 0, since

a < 0. The other two viscosity anglesϕ1
v andϕ3

v give μ̃Q > 0 for models with

transitional shock waves.

Therefore for all models with transitional shock waves, we haveμ̃Q(ϕ) > 0

for ϕ1
v andϕ3

v , and for models whereϕ2
v is an active viscosity angle, we have

μ̃Q(ϕ2
v ) < 0. This concludes the proof of the following theorem.

Theorem 5.6. For all models, in the viscosity planes corresponding toϕ1
v and

ϕ3
v , the transitional sector is the sector containing the ray on whichκ = 0 and

R < 0. For models havingϕ2
v as an active viscosity angle, in the viscosity plane

corresponding toϕ2
v , the transitional sector is the sector containing the ray on

whichκ = 0 and R > 0.

6 Conclusion

We have studied a class of quadratic models to understand how perturbations of

the viscosity term affect solutions of the Riemann problem. We considered mod-

els in the Schaeffer-Shearer normal form, and used the viscous profile criterion
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as the admissibility criterion. The viscosity matrices we used were symmetric

and positive definite.

Our primary focus has been the behavior of transitional shock waves. For

these models, we have precisely described the transitional surface — the subset

of the wave manifold that corresponds to transitional shock waves. The transi-

tional surface consists of components that lie in planes that correspond to active

viscosity angles. We have derived a condition for determining exactly when a

viscosity angle is active. With this condition, we have determined the boundaries

(in terms of the model and viscosity matrix parameters) where the number of

active viscosity angles changes.

The results we have concerning the effects of viscous terms on the solutions

of Riemann problems are primarily analytical. However, they have immediate

implications for numerical analysis. In finite-difference solvers for conservation

laws, the use of artificial viscosity is common. From our work, we can see that

different viscosity matrices will result in different solutions; hence, care must be

chosen to ensure that the form of the viscosity accurately reflects the physics of

the problem being modeled.
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