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Abstract. There are three related concepts that arise in connection with the angular analysis

of a convex cone: antipodality, criticality, and Nash equilibria. These concepts are geometric in

nature but they can also be approached from the perspective of optimization theory. A detailed

angular analysis of polyhedral convex cones has been carried out in a recent work of ours. This

note focus on two important classes of non-polyhedral convex cones: elliptic cones in an Euclidean

vector space and spectral cones in a space of symmetric matrices.
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1 Introduction

The Euclidean spaceRd is equipped with the usual inner product〈u, v〉 = uTv

and the associated norm‖ ∙ ‖. The symbol6d refers to the unit sphere inRd.

We also use the notation

4(Rd) ≡ nontrivial closed convex cones inRd.
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That a convex coneK in Rd is nontrivial means thatK is different from{0} and

different from the spaceRd itself. The symbolK + is used to indicate the positive

dual cone ofK .

There are various tools that serve to describe the angular structure of a convex

cone. The following definition recalls the main conceptual ingredients used in

this note.

Definition 1. Let K ∈ 4(Rd). Let ū and v̄ be two unit vectors inK .

i) (ū, v̄) is an antipodal pair ofK if ū and v̄ achieve the maximal angle

θmax(K ) = sup
u,v ∈K∩6d

arccos〈u, v〉. (1)

ii) The angleθ(ū, v̄) = arccos〈ū, v̄〉 formed by a critical pair(ū, v̄) is called

a critical angle. That a pair(ū, v̄) is critical means that

v̄ − 〈ū, v̄〉ū ∈ K + and ū − 〈ū, v̄〉v̄ ∈ K +.

The adjective proper is added whenū andv̄ are not collinear, i.e.,|〈ū, v̄〉|

6= 1. The set of all proper critical angles ofK , denoted by�(K ), is

called the angular spectrum ofK .

iii) (ū, v̄) is a Nash angular equilibrium ofK if

θ(ū, v̄) ≥ θ(ū, v) ∀v ∈ K ∩6d,

θ(ū, v̄) ≥ θ(u, v̄) ∀u ∈ K ∩6d.

The numberθ(ū, v̄) is then called a Nash angle ofK .

The motivation behind each of the above concepts is explained with great care

and detail in our previous work [8]. For the reader’s convenience, we recall

some of the reasons why the study of critical angles is important. The largest

critical angle of a convex coneK is θmax(K ), i.e., the maximal angle that can

be formed by picking up two unit vectors fromK . The geometric meaning

of θmax(K ) justifies by itself the study of the variational problem (1), but there

are also application-oriented motivations. For instance, Peña and Renegar [13]
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show that the numberθmax(K ) plays a role in estimating the efficiency of certain

interior point methods for solving feasibility systems with inequalities described

by K . On the other hand,θmax(K ) is related to

ρ(K ) = min
Q∈4(Rd)

Q unpointed

haus(K , Q), (2)

a number which has been suggested in [4] as tool for measuring the degree of

pointedness ofK . Here

haus(K , Q) = max

{
max

x∈K∩6d

dist(x, Q), max
x∈Q∩6d

dist(x, K )

}

stands for the bounded Pompeiu-Hausdorff metric on4(Rd). In general, the

evaluation of (2) is a cumbersome task even for cones having a relatively simple

structure. Fortunately, the least distance problem (2) is related to the angle

maximization problem (1) which, in principle, is easier to solve because the

decision variablesu, v live in a standard Euclidean space. In fact, one has the

following striking formula [9]

ρ(K ) = cos

[
θmax(K )

2

]
.

Moreover, if K is not a half-line and admits(ū, v̄) as antipodal pair, then the

closed convex cone

Q = K ∩ [R(ū − v̄)]⊥ + R(ū − v̄)

is unpointed and lies at minimal distance fromK .

Of course,θmax(K ) is not the only critical angle of interest. The smallest proper

critical angle plays also a relevant role in the description of the cone, namely, it

can be used as tool for measuring its degree of solidity. By anindex of solidity

we understand any continuous functionG : 4(Rd) → R satisfying the axioms:

i) G(K ) = 0 if and only if K is not solid,

ii) G(K ) = 1 if and only if K is a half-space,

iii) G(U (K )) = G(K ) for any orthonormal matrixU ,

iv) K1 ⊂ K2 implies G(K1) ≤ G(K2).

Comp. Appl. Math., Vol. 26, N. 2, 2007
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The Frobenius coefficient

Gfrob(K ) =

{
radius of the largest ball contained

in K and centered in a unit vector

is the first example of index of solidity that comes to mind. An alternative choice

is

Gangular(K ) = ρ(K +) = cos

[
θmax(K +)

2

]
. (3)

What is bothering about the expression (3) is that it involves the dual coneK +

and not the original coneK itself. However, this problem can be remediated

since it is possible to write (3) in the equivalent form

Gangular(K ) =

{
sin

[
θmin(K )

2

]
if K is solid

0 if K is not solid,

whereθmin(K ) indicates the smallest proper critical angle ofK .

We have explained in few words why the maximal angle and the smallest proper

critical angle are mathematical objects of interest. The intermediate critical

angles are perhaps less useful, but in any case they provide additional information

on the geometric structure of the cone. We now come back to the main stream

of the presentation. The main fact to be remembered about Definition 1 is that

every antipodal pair is a Nash angular equilibrium, and that every Nash angular

equilibrium is a critical pair.

It is useful to split the angular spectrum ofK in two disjoint pieces:

�(K ) = �nash(K ) ∪�ord(K ).

The first piece collects the proper critical angles that are formed by a Nash angular

equilibrium. The remaining proper critical angles are said to be “ordinary” and

they are thrown in the set�ord(K ).

The angular structure of a polyhedral convex cone is by now well understood

as one can see by consulting the references [5, 7, 8]. In a non-polyhedral setting

the situation is more involved as one may expect. For instance, in the techni-

cal note [6] we succeeded in constructing a non-polyhedral convex cone whose

angular spectrum is uncountable, a phenomenon that cannot occur under polyhe-

drality. The example constructed in [6] is very involved and its interest is mainly

academic.
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In this note we study two important classes of non-polyhedral convex cones

arising in practice: elliptic cones in an Euclidean vector space and spectral cones

in a space of symmetric matrices.

2 Angular Analysis of Elliptic Cones

In this section we considerd = n + 1 with n ≥ 2. Recall that the elliptic cone

E(A) associated to a symmetric positive definite matrixA ∈ Rn×n is the closed

convex cone inRn+1 given by

E(A) =
{
(x, r ) ∈ Rn+1 :

√
xT Ax ≤ r

}
.

Elliptic cones are used in a great diversity of areas. The three dimensional

case has applications in contact problems with orthotropic friction law [3, 17]

and in electromagnetic scattering [16], just to mention two concrete examples.

General background on higher dimensional elliptic cones can be found in [4, 7]

among other references.

The trace of the elliptic coneE(A) over the unit sphere6n+1 is the set all

vectors(x, r ) ∈ Rn+1 such that

√
xT Ax ≤ r, (4)

‖x‖2 + r 2 = 1. (5)

The Cartesian representation (4)-(5) is not always the best way of describing

E(A) ∩6n+1. As explained in the next lemma, this set can also be described by

using a parametric representation. The notation

e(C) =
{
α ∈ Rn : 〈α,Cα〉 ≤ 1

}

stands for the ellipsoid associated to a symmetric positive definite matrixC ∈

Rn×n.

Lemma 1. Decompose the symmetric positive definite matrixA ∈ Rn×n in

the usual spectral formA = QDQT, whereD is a diagonal matrix contain-

ing the eigenvalues ofA arranged in nondecreasing orderμ1 ≤ ∙ ∙ ∙ ≤ μn,

Comp. Appl. Math., Vol. 26, N. 2, 2007
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and Q = [q1 ∙ ∙ ∙ qn] is an orthonormal matrix whose columns are formed with

corresponding eigenvectorsq1, . . . , qn. Then,

z ∈ E(A) ∩6n+1 ⇐⇒ z =
(
Qα,

√
1 − ‖α‖2

)
wi th α ∈ e(I + D). (6)

Proof. Take anyz = (x, r ) and write its first component in the formx =

Qα with α ∈ Rn. The fact thatz has unit length is expressed by the rela-

tion r =
√

1 − ‖α‖2. Membership ofz in E(A) corresponds to the inequality

〈α, (I + D)α〉 ≤ 1. �

We refer to (6) as the canonical parametrization ofE(A) ∩ 6n+1. Since

e(I + D) is contained inBn, the closed unit ball ofRn, the square root op-

eration in (6) is well defined. For the sake of convenience, we introduce the

function9 : Bn → Rn+1 given by

9(α) =
(
Qα,

√
1 − ‖α‖2

)
.

Although9 depends explicitly on the collection{q1, . . . qn} of eigenvectors of

A, the spherical product

(α, β) ∈ Bn × Bn 7→ 8(α, β) = 〈9(α),9(β)〉

is a more intrinsic concept. Indeed, by orthonormality ofQ, one simply has

8(α, β) = 〈α, β〉 +
√

1 − ‖α‖2
√

1 − ‖β‖2.

There is a very interesting theory behind the definition of8, but we shall not

elaborate on this subject more than strictly necessary. The use of this special

type of vector product will be clear in a moment.

2.1 Antipodal and critical pairs inE(A)

In what follows we use the parametrization ofE(A) ∩ 6n+1 described in Lem-

ma 1. Arbitrary points inE(A) ∩ 6n+1, sayu andv, will be represented in the

parametric form

u = 9(α), v = 9(β), with α, β ∈ e(I + D).

Comp. Appl. Math., Vol. 26, N. 2, 2007
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Since9 is a bijection betweene(I +D)andE(A)∩6n+1, the angle maximization

problem (1) becomes

minimize 〈α, β〉 +
√

1 − ‖α‖2
√

1 − ‖β‖2 (7)

subject toα, β ∈ e(I + D).

A careful analysis of the above variational problem leads to a full characterization

of the set of antipodal pairs ofE(A).

Theorem 1. Decompose the symmetric positive definite matrixA ∈ Rn×n as

in Lemma1. Suppose that the smallest eigenvalue ofA, denoted byμmin(A),

has multiplicityr , that is to say, the eigenspace associated toμmin(A) is r -

dimensional. Then,

(a) the maximal angle ofE(A) is given by

θmax(E(A)) = arccos

[
μmin(A)− 1

μmin(A)+ 1

]
.

(b) (ū, v̄) is an antipodal pair ofE(A) if and only

ū =

(
r∑

i =1

αi qi ,

√
μmin(A)

μmin(A)+ 1

)

, v̄ =

(

−
r∑

i =1

αi qi ,

√
μmin(A)

μmin(A)+ 1

)

,

with coefficientsα1, . . . , αr ∈ R such that

r∑

i =1

α2
i =

1

μmin(A)+ 1
. (8)

Proof. Given the specific structure of (7), one sees that this minimization

problem is solved by takingαr +1 = ∙ ∙ ∙ = αn = 0 and the firstr coefficients of

α as in (8). The parameter vectorβ must have opposite orientation with respect

to α, i.e. we must takeβ = −α. Part (a) follows immediately from (b). �
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Remark 1. If the eigenvalueμmin(A) is simple, that is to say,r = 1, then the

elliptic coneE(A) has exactly two antipodal pairs, namely,

ū =
1

√
μmin(A)+ 1

(
±q1,

√
μmin(A)

)
,

v̄ =
1

√
μmin(A)+ 1

(
∓q1,

√
μmin(A)

)
.

Since one antipodal pair is obtained from the other by permuting the order ofu

andv, one may say that the antipodal pair is "unique". In case of higher order

multiplicity, i.e. r ≥ 2, the collection of antipodal pairs can be parametrized

with anr -dimensional parameter vector as in (8).

We recall a result on angular spectra of elliptic cones obtained recently

in [7]. As shown in the next theorem, computing the angular spectrum ofE(A)

is essentially the same job as computing all the eigenvalues of the matrixA.

The critical pairs ofE(A) are obtained by using the eigenvectors ofA.

Theorem 2. Let A ∈ Rn×n be symmetric and positive definite. The vectors

(x, r ) and(y, s) form a proper critical pair ofE(A) if and only if the following

three conditions hold:

(a) y = −x,

(b) s = r =
√

1 − ‖x‖2 =
√

xT Ax,

(c) x is an eigenvector ofA.

In this case, the corresponding critical angle takes the value

θ = arccos

(
μ− 1

μ+ 1

)
, (9)

whereμ is the eigenvalue ofA associated tox.

The proof technique used in [7] doesn’t rely on the canonical parametriza-

tion ofE(A)∩6n+1. By relying on Lemma 1 it is possible to describe in a more

precise manner the nature of a given critical pair ofE(A) in terms of the multi-

plicity of the corresponding eigenvalue ofA. We will not indulge however on

this matter. Theorem 2 as stated is all what we need to go on with our exposition.

Comp. Appl. Math., Vol. 26, N. 2, 2007
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2.2 Nash angular equilibria inE(A)

Elliptic cones are, no doubt, very special objects. According to Theorem 2, the

angular spectrum ofE(A) has at mostn elements. Indeed,

�(E(A)) = {θ1, . . . , θn},

where thei -th critical angle

θi = arccos

(
μi − 1

μi + 1

)

is obtained directly from thei -th eigenvalueμi of A.

The theorem stated below is a fundamental result on Nash angular equilibria

of elliptic cones. Several consequences of this theorem will be presented as soon

as the proof is completed.

Theorem 3. Let (ū, v̄) be a proper critical pair ofE(A). Denote byθ the

corresponding critical angle and byμ the corresponding eigenvalue, that is to

say,μ is the unique solution of the equation(9). The following four conditions

are then equivalent:

(a) (ū, v̄) is a Nash angular equilibrium ofE(A),

(b) ū minimizes the linear form〈 ∙ , v̄〉 overE(A) ∩6n+1,

(c) v̄ minimizes the linear form〈ū, ∙ 〉 overE(A) ∩6n+1,

(d) μ ≤ 1 + 2μmin(A)

Proof. Take, for instance,θ = θk, that is to say, consider the critical angle

that derives fromμ = μk. As in Lemma 1, we formQ = [q1 ∙ ∙ ∙ qn] with an

orthonormal basis of eigenvectors ofA. The diagonal matrixD is formed with

the corresponding eigenvalues that we arrange in nondecreasing orderμmin(A) =

μ1 ≤ ∙ ∙ ∙ ≤ μn. Either by using the parametric representation ofū andv̄ as in

Lemma 1, or by applying Theorem 2, one gets

ū =
1

√
1 + μ

(qk,
√
μ),

v̄ =
1

√
1 + μ

(−qk,
√
μ).

(10)

Comp. Appl. Math., Vol. 26, N. 2, 2007
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For the sake of clarity, we divide the proof of the theorem in five steps.

Step 1: We study the behavior of〈ū, ∙ 〉 over a special path. For eacht ∈ [0, 1],

consider the point

zt = (1 + r 2
t )

−1/2(xt , rt),

with

xt = −
√

t qk +
√

1 − t q1, and rt =
√

xT
t Axt .

Note thatxt has unit length, and so doeszt . Note also that, in view of the equality

in the definition ofrt , the vectorzt belongs to bd[E(A)], the boundary ofE(A).

In short, {zt : t ∈ [0, 1]} is a continuous path on the set6n+1 ∩ bd[E(A)].

We will study the behavior of the univariate functionφ : [0, 1] → R given by

φ(t) = 〈ū, zt〉. In view of (10) and the definition ofzt , after some simplification

one arrives at the expression

φ(t) =
−

√
t +

√
μ

√
tμ+ (1 − t)μ1

√
1 + μ

√
1 + tμ+ (1 − t)μ1

. (11)

Observe thatφ(1) = (μ − 1)/(μ + 1) = 〈ū, v̄〉. Let us examine the sign of

φ′(1). Since

φ′(t) =

[
−1√

t
+

√
μ(μ1−μ1)√

t (μ−μ1)+μ1

]
√

t (μ− μ1)+ μ1 + 1 −

(
−

√
t+

√
μ

√
t (μ−μ1)+μ1

)
(μ−μ1)

√
t (μ−μ1)+μ1+1

2[t (μ− μ1)+ μ1 + 1]
√
μ+ 1

,

one gets

φ′(1) =
1

2(μ+ 1)3/2

[(
−1 +

√
μ(μ− μ1)

√
μ

) √
μ+ 1 −

(
−1 +

√
μ

√
μ

)
(μ− μ1)

√
μ+ 1

]

=
1

2(μ+ 1)2
(μ− 2μ1 − 1).

With this information at hand, we can proceed with the next step.

Step 2: We prove that(c) ⇒ (d). Suppose on the contrary thatμ > 2μ1 − 1.

Soφ′(1) > 0, and therefore

〈ū, zt〉 = φ(t) < φ(1) = 〈ū, v̄〉
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for somet ∈ [0, 1] closed enough to 1. Sincezt belongs toE(A) ∩6n+1 for all

t ∈ [0, 1], the vectorv̄ is not a minimizer of〈ū, ∙ 〉 overE(A) ∩ 6n+1. This

contradiction confirms that (c) implies (d).

Step 3: We derive a so-called “extrapolation property” associated to condition

(c). Consider the inequality

〈ū, v̄〉 ≤ 〈ū, v〉 ∀ v ∈ E(A) ∩6n+1.

We represent a pointv ∈ E(A)∩6n+1 in terms of a parameter vectorβ ∈ Rn as

described in Lemma 1, i.e.

v = 8(β) with β ∈ e(I + D). (12)

It follows that, forv as in (12), one has

〈ū, v〉 =
1

√
1 + μ

(βk +
√
μ

√
1 − ‖β‖2).

For convenience we make the change of variables

r =

√
1 − ‖β‖2

‖β‖
, δi =

βi

‖β‖
for i = 1, . . . , n.

Thus,

〈ū, v〉 =
δk + r

√
μ

√
(1 + μ)(1 + r 2)

≥
−|δk| + r

√
μ

√
(1 + μ)(1 + r 2)

=
−|δk|√

(1 + μ)(1 + r 2)
+

√
μ

√
(1 + μ)(1 + 1

r 2 )

.

(13)

The rightmost expression in (13) is clearly an increasing function ofr on the

positive half-line. Observe that, sincev belongs toE(A) andμi ≥ μ1 (1 ≤ i ≤

n), it holds that

r 2 ≥
n∑

i =1

δ2
i μi = δ2

kμ+
∑

i 6=k

δ2
i μi ≥ δ2

kμ+




∑

i 6=k

δ2
i



μ1

= δ2
kμ+

(
1 − δ2

k

)
μ1,

(14)
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using the facts that
∑n

i =1 δ
2
i = 1 in the rightmost equality of (14). Replacing

(14) in (13), and callingt = δ2
k ∈ [0, 1], one obtains

〈ū, v〉 ≥
−

√
t +

√
μ

√
tμ+ (1 − t)μ1

√
1 + μ

√
1 + tμ+ (1 − t)μ1

= 〈ū, zt〉,

wherezt is defined as in Step 1. Summarizing, we have shown the following

extrapolation property: given an arbitrary pointv ∈ 6n+1 ∩ E(A), there exists

another pointzt belonging to6n+1 ∩ bd[E(A)] and lying farther away from̄u

thanv.

Step 4: We prove that(d) ⇒ (c). In view of the extrapolation property derived

in Step 3, it suffices to prove that

〈ū, zt〉 ≥ 〈ū, v̄〉 ∀t ∈ [0, 1],

or equivalently, thatφ : [0, 1] → R attains its minimum att = 1. Under the

assumptionμ ≤ 1 + 2μ1, one has of courseμ1 ≥ max{0, (μ− 1)/2}. We

consider two cases, according to the value of this maximum, i.e. to the sign of

μ− 1. First we look at the right hand side of (11) as a function ofμ1, which we

will now denote asφ(t, μ1). By rewriting (11) as

φ(t, μ1) =
−

√
t

√
1 + μ

√
1 + tμ+ (1 − t)μ1

+
√
μ

√
1 + μ

√
1 + 1

tμ+(1−t)μ1

,

one sees thatφ(t, ∙) is nondecreasing in the non-negative half-line for allt ∈

[0, 1]. Now we study the two cases of interest.

i) μ− 1< 0. Observe that

〈ū, zt〉 = φ(t, μ1) ≥ φ(t, 0) =
−

√
t +

√
μ

√
μt

√
μ+ 1

√
1 + μt

=

√
t(μ− 1)

√
μ+ 1

√
1 + μt

=
μ− 1

√
μ+ 1

√
1
t + μ

.

(15)
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Since the rightmost expression in (15) is decreasing as a function oft in

the interval[0, 1], one gets

〈ū, z̄t〉 ≥ φ(1, 0) = (μ− 1)/(μ+ 1) = 〈ū, v̄〉

for all t ∈ [0, 1], as we needed to prove.

ii) μ− 1 ≥ 0. In this case we write

〈ū, zt〉 = φ(t, μ1) ≥ φ

(
t,
μ− 1

2

)

=
−

√
2t +

√
μ

√
t (μ+ 1)+ μ− 1

(μ+ 1)
√

t + 1
.

(16)

For t ∈ [0, 1], denote byψ(t) as the rightmost expression of (16). The

functionψ : [0, 1] → R is derivable and

(μ+ 1)(t + 1)ψ ′(t) =
(

−
√

2

2
√

t
+

√
μ(μ+ 1)

2
√

t (μ+ 1)+ μ− 1

)√
t + 1

−
(

−
√

2t +
√
μ

√
t (μ+ 1)+ μ− 1

2
√

t + 1

)
.

After a tedious simplification one arrives at

ψ ′(t) =
1

2(μ+ 1)(t + 1)3/2

(

−

√
2

t
+

2
√
μ

√
t (μ+ 1)+ μ− 1

)

. (17)

It follows from (17) thatψ ′(t) ≤ 0 if and only if (μ − 1)(1 − t) ≥ 0.

We conclude thatψ is nonincreasing in the whole interval[0, 1]. Hence,

〈ū, z̄t〉 ≥ ψ(t) ≥ ψ(1) =
1

μ+ 1

(
−

√
2 +

√
μ

√
2μ

√
2

)

=
μ− 1

μ+ 1
= 〈ū, v̄〉

for all t ∈ [0, 1]. We reach again the desired inequality.
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Step 5: Completion of the proof. We have shown insofar that(c) ⇐⇒ (d).

By using a mutatis mutandis argument one proves similarly that(b) ⇐⇒ (d).

For completing the proof of the theorem it is now enough to observe that (a) is

the conjunction of (b) and (c). �

Corollary 1. For a proper critical pair (ū, v̄) of an elliptic coneK in Rn+1 to

be a Nash angular equilibrium, it is necessary and sufficient that

‖ū − v̄‖ ≥

√
2

2
diam(K ∩6n+1). (18)

Proof. Let K = E(A) and suppose that the proper critical pair(ū, v̄) is as-

sociated with the eigenvalueμ. Since〈ū, v̄〉 = (μ − 1)/(μ + 1), one has

‖ū − v̄‖ = 2/
√
μ+ 1. On the other hand, the diameter ofK ∩6n+1 is attained

with an antipodal pair ofK , so one has

diam(K ∩6n+1) = 2/
√
μmin(A)+ 1.

It is clear that the conditionμ ≤ 2μmin(A)+ 1 is equivalent to

2
√
μ+ 1

≥

√
2

2

2
√
μmin(A)+ 1

,

so the announced result follows from Theorem 3. �

Corollary 2. For a proper critical angleθ of an elliptic coneK to be a Nash

angle, it is necessary and sufficient that

arccos

[
1 + cosθmax(K )

2

]
≤ θ. (19)

Proof. It is a matter of reformulating Corollary 1. �

2.3 Nash threshold coefficient ofE(A)

It is reasonable to expect a Nash angular equilibrium to form an angle which is

large, or at least not too small while compared with the maximal angle of the
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cone. This idea is corroborated by the relation (19) in Corollary 2 or, equiva-

lently, by the relation (18) in Corollary 1.

In connection with the above observation, recall that theNash threshold coeffi-

cientof a nontrivial closed convex coneK inRd is the largest constantβ ∈ [0, 1]

such that

‖ū − v̄‖ ≥ β diam(K ∩6d) ∀(ū, v̄) ∈ Nash(K ), (20)

where Nash(K ) stands for the set of all Nash angular equilibria ofK . If βK

denotes the Nash threshold coefficient ofK , then the infimal-value

β∗ = inf
K∈4(Rd)

βK

corresponds to the largest constantβ for which the inequality (20) holds uni-

formly with respect to all elements in4(Rd). After a considerable amount of

effort we were able to prove in [8, Corollary 2] that
{

in dimensiond greater or equal than three,

the infimal-valueβ∗ is equal to
√

3/3.

UnlessK has a special structure, it is hopeless to derive a simple formula for

evaluatingβK itself. As far as elliptic cones are concerned, we are now in position

to establish the following result.

Proposition 1. The Nash threshold coefficient of an elliptic coneE(A) is

given by

βE(A) =

√
μmin(A)+ 1

μ?(A)+ 1
, (21)

whereμ?(A) denotes the largest eigenvalue ofA that is less or equal than

2μmin(A)+ 1. In particular,

inf
K∈4(Rd)
K elliptic

βK =
√

2/2,

and this infimum is attained by any elliptic coneE(A) such that2μmin(A)+ 1 is

an eigenvalue ofA.
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Proof. Letμ1 ≤ ∙ ∙ ∙ ≤ μn be the eigenvalues ofA. In view of Corollary 1, the

numberβE(A) corresponds to the largest constantβ ∈ [0, 1] such that

2
√
μk + 1

≥ β
2

√
μmin(A)+ 1

holds for anyk ∈ {1, . . . , n} satisfyingμk ≤ 2μmin(A)+ 1. A matter of simpli-

fication leads directly to the formula (21). �

3 Angular analysis of spectral cones

We now work in a linear space of dimensiond = (1/2) n(n + 1) with n ≥ 2.

More precisely, we are concerned with a special class of convex cones in

Sn ≡ real symmetric matrices of sizen × n.

As usual,Sn is equipped with the Frobenius inner product〈A, B〉 = trace(AB)

and the associated norm. For the sake of convenience we write6(Sn) =

{A ∈ Sn : ‖A‖ = 1} and reserve the symbol6n for the unit sphere in the Eu-

clidean spaceRn.

For an arbitrary closed convex coneM in Sn, the computation of the maximal

angleθmax(M) is in general a cumbersome task. The same remark applies to the

computation of the other possible critical angles. The purpose of this section is

to derive useful calculus rules for computing critical angles at least for a special

class of convex cones inSn.

Recall that a convex coneM in Sn is said to bespectral(or weakly unitarily

invariant) if

A ∈M =⇒ U T AU ∈M for all U ∈ On (22)

with On denoting the group of orthonormal matrices of sizen × n. Notice,

incidentally, that the concept of spectrality applies to an arbitrary set inSn and

not just for a convex cone.

The next two lemmas are part of the folklore on weakly unitarily invariant sets

and functions, see for instance the references [1, 2, 10, 11, 15]. In the sequel

the notationλ(A) = (λ1(A), . . . , λn(A)) stands for the vector of eigenvalues of

A arranged in nondecreasing order, and diag(x) stands for the diagonal matrix

whose entries on the diagonal are the components of the vectorx.
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Lemma 2. A convex coneM in Sn is spectral if and only if there is a permu-

tation invariant convex coneK in Rn such that

M =
{

A ∈ Sn : λ(A) ∈ K
}
.

Furthermore, suchK is unique and given by

KM =
{
x ∈ Rn : diag(x) ∈M

}
.

One refers toKM as the permutation invariant convex cone induced byM.

Recall that a setK in Rn is calledpermutation invariantif 5(K ) = K for all

5 ∈ 5n, with5n denoting the set ofn × n permutation matrices.

Lemma 3. One has:

(a) the dual of a permutation invariant convex cone inRn is a permutation

invariant convex cone inRn.

(b) If M is a spectral convex cone inSn, then its dualM+ is a spectral convex

cone inSn. Furthermore,M+ can be computed by using the formula

M+ =
{

A ∈ Sn : λ(A) ∈ K +
M

}
.

The most popular example of spectral convex cone inSn is the Loewner cone

of positive semidefinite symmetric matrices. A list of more elaborate spectral

convex cones includes

M = {A ∈ Sn : λ1(A)+ . . .+ λm(A) ≥ 0} (1 ≤ m ≤ n − 1), (23)

M = {A ∈ Sn : γ
∑n

i =r λi (A) ≤
∑m

i =1 λi (A)} (1 ≤ m, r ≤ n, γ ≥ 0),

M = {A ∈ Sn : max{0, λn(A)} + γ ‖A‖ ≤ δ trace(A)} (γ ≥ 0, δ ∈ R),

M = {A ∈ Sn :
√

[λn(A)− λ1(A)]2 + ‖A‖2 ≤ δ trace(A)} (δ ≥ 0),

M = {A ∈ Sn : γ ‖A‖ ≤ trace(A)} (γ > 0),

just to mention a few examples. In all cases it is easy to recognize which is

the corresponding permutation invariant convex coneKM. If x↑ denotes the
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vector which is obtained by rearranging in nondecreasing order the components

of x ∈ Rn, then one gets

KM = {x ∈ Rn : x↑
1 + . . .+ x↑

m ≥ 0}, (24)

KM = {x ∈ Rn : γ
∑n

i =` x↑
i ≤

∑m
i =1 x↑

i },

and so on. The example (23) is perhaps the most interesting one since it appears

in concrete problems of optimization [12] and principal components analysis

[14].

Be aware thatKM may posses some properties that are lacking inM, think for

instance of polyhedrality. It is not difficult to see that the convex cone (24) is

polyhedral, but the spectral convex cone (23) is not. The lack of polyhedrality

in (23) is due to a “curvature” effect introduced by the eigenvalue functions

λi : Sn → R.

3.1 Antipodal pairs in a spectral cone

Is there any link between the angular structure ofM and that ofKM? Answering

this question is not a trivial matter. Our first task will be comparing the maximal

angle

θmax(M) = sup
A,B∈M

‖A‖=1,‖B‖=1

arccos〈A, B〉

of the spectral coneM in Sn and the maximal angle

θmax(KM) = sup
u,v∈KM

‖u‖=1,‖v‖=1

arccos〈u, v〉.

of the permutation invariant coneKM. The last term is easier to evaluate because

KM has in principle a simpler structure and, in any case, it lives in a vector space

of lower dimension.

As explained in the next theorem, the antipodal pairs ofM and those ofKM
are related through the eigenvalue mapλ : Sn → Rn. We start by establishing a

commutation principle for optimization problems with spectral data. Recall that

a spectral set inSn is defined by means of the relation (22). Similarly, a function

8 onSn is said to be spectral (or weakly unitarily invariant) if

8(U T AU) = 8(A) for all U ∈ On.
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Lemma 4 (Commutation principle). LetN ⊂ Sn be a spectral set and8 :

Sn → R be a spectral function. Let̄A, B̄ ∈ Sn. If B̄ is a local minimum (or a

local maximum) overN of the fonction〈Ā, ∙ 〉 +8(∙), thenĀ and B̄ commute.

Proof. Suppose that̄B is a local minimum of〈Ā, ∙ 〉 + 8(∙) overN. This

means that̄B ∈ N and

〈Ā, B̄〉 +8(B̄) ≤ 〈 Ā, B〉 +8(B) ∀B ∈ N ∩Oε(B̄) (25)

with Oε(B̄) denoting an open ball of radiusε > 0 and center̄B. TakeX̄ ∈ On

so that

X̄T B̄X̄ = E = diag(λ(B̄)).

By definition of spectral set,X E XT belong toN for all X ∈ On. By a continuity

argument, there is a smallδ > 0 such thatX E XT ∈ Oε(B̄) wheneverX ∈

Oδ(X̄). In view of (25), one gets

〈Ā, X̄ EX̄T 〉+8(X̄ EX̄T ) ≤ 〈 Ā, X E XT 〉+8(X E XT ) ∀X ∈ On ∩Oδ(X̄).

But, by spectrality of8, the terms8(X̄ EX̄T ) and8(X E XT ) cancel out. The

conclusion is that̄X is a local solution to the optimization problem

minimize f (X) = 〈 Ā, X E XT 〉

with respect toX ∈ On,
(26)

and hence it satisfies the first order necessary optimality conditions for this prob-

lem. Before writing down these optimality conditions, observe thatf is not

defined onSn but on the spaceMn of arbitrary real matrices of sizen × n. The

Frobenius inner product onMn is given by〈X,Y〉 = trace(XTY). By rewriting

the contraint (26) asX XT = I and introducing the Lagrangean function

(X,M) ∈ Mn ×Mn 7→ L(X,M) = 〈 Ā, X E XT 〉 − 〈M, X XT − I 〉,

we see that̄X satisfies

∇M L(X̄, M̄) = X̄ X̄T − I = 0, (27)

∇X L(X̄, M̄) = 2ĀX̄ E − (M̄ + M̄T )X̄ = 0, (28)
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for someM̄ ∈ Mn. SinceX̄−1 = X̄T by (27), we get from (28) that

ĀB̄ = Ā(X̄ EX̄T ) = (1/2)(M̄ + M̄T )

is a symmetric matrix. It follows that̄AB̄ = (ĀB̄)T = B̄ Ā. The case of a local

maximum is treated in a similar way. �

It is possible to derive more sophisticated versions of the above commutation

principle but Lemma 4 is general enough to cover all our needs. Everything is

now ready to state:

Theorem 4. A spectral closed convex coneM in Sn and the associated per-

mutation invariant closed convex coneKM have the same maximal angle, i.e.,

θmax(M) = θmax(KM). Furthermore, the following statements are equivalent:

(a) (Ā, B̄) ∈ Sn × Sn is an antipodal pair ofM.

(b) there exist an antipodal pair(ū, v̄) of KM and a matrixQ ∈ On such that

Ā = Qdiag(ū)QT and B̄ = Qdiag(v̄)QT.

Proof. Let (ū, v̄) be an antipodal pair ofKM. Write Ā = diag(ū) and B̄ =

diag(v̄). One has‖Ā‖ = ‖ū‖ = 1, ‖B̄‖ = ‖v̄‖ = 1, and alsoλ( Ā) = ū↑,

λ(B̄) = v̄↑. SinceKM is permutation invariant, the vectorsū↑ andv̄↑ remain in

KM, and thereforeĀ, B̄ ∈M. The conclusion is that

θmax(M) ≥ arccos〈Ā, B̄〉 = arccos〈ū, v̄〉 = θmax(KM).

The reverse inequality is obtained by exploiting the commutation principle stated

in Lemma 4. The proof runs as follows. Take matricesĀ, B̄ ∈M of unit length

realizing the maximal angle inM, i.e.,

〈Ā, B̄〉 = min
A,B∈M∩6(Sn)

〈A, B〉.

In particular,B̄ is a minimizer of the linear form〈Ā, ∙ 〉 over the spectral set

M ∩6(Sn). Lemma 4 implies that̄A and B̄ commute. Hence,̄A and B̄ can be

simultaneously diagonalized by means of a matrixQ ∈ On. This means that

QT ĀQ = diag(ū) and QT B̄Q = diag(v̄) (29)
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for suitable vectors̄u, v̄ ∈ Rn. Hence,

〈Ā, B̄〉 = 〈Qdiag(ū)QT , Qdiag(v̄)QT 〉 = 〈diag(ū), diag(v̄)〉 = 〈ū, v̄〉.

Observe also that̄u, v̄ are unit vectors and, by spectrality ofM, they are inKM.

Hence, one gets

〈Ā, B̄〉 ≥ inf
u,v∈KM∩6n

〈u, v〉

and the desired inequalityθmax(M) ≤ θmax(KM). The second part of the theorem

is implicit in the above proof. �

3.2 Critical pairs in a spectral cone

We now compare the angular spectra ofM andKM. The commutation principle

stated in Lemma 4 plays again a crucial role.

Theorem 5. A spectral closed convex coneM in Sn and the associated per-

mutation invariant closed convex coneKM have the same collection of proper

critical angles, i.e.,�(M) = �(KM). Furthermore, the following statements

are equivalent:

(a) (Ā, B̄) ∈ Sn × Sn is a critical pair ofM.

(b) there exist a critical pair(ū, v̄) of KM and a matrixQ ∈ On such that

Ā = Qdiag(ū)QT and B̄ = Qdiag(v̄)QT.

Proof. Suppose that̄A, B̄ ∈M ∩6(Sn) satisfy the criticality conditions

B̄ − 〈 Ā, B̄〉Ā ∈M+, (30)

Ā − 〈 Ā, B̄〉B̄ ∈M+. (31)

We shall prove that̄A and B̄ commute. To do this, we come back to the very

definition of a critical pair. It is not difficult to see that the system (30)-(31) can

be written in the form

− [B̄ − η Ā] ∈ ∂9M(Ā),

− [ Ā − ηB̄] ∈ ∂9M(B̄),
(32)
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with ∂ standing for the subdifferential operator in the sense of convex analysis,

9M denoting the indicator function ofM, andη = 〈 Ā, B̄〉. Let us examine more

closely for instance the relation (32). Standard rules of convex analysis show

that (32) amounts to saying thatB̄ minimizes the linear function〈Ā − ηB̄, ∙ 〉

over the setM. In view of Lemma 4, one obtains the commutation property

(Ā − ηB̄)B̄ = B̄(Ā − ηB̄),

confirming in this way that̄AB̄ = B̄ Ā. By proceeding to a simultaneous diago-

nalization as in (29) one obtains

Qdiag(v̄)QT − η Qdiag(ū)QT ∈M+,

Qdiag(ū)QT − η Qdiag(v̄)QT ∈M+.

By spectrality ofM+ we can drop the common orthonormal transformationQ

and write simply

diag(v̄ − η ū) ∈M+,

diag(ū − η v̄) ∈M+.

By recalling Lemmas 2 and 3, one sees that(ū, v̄) is necessarily a critical pair

of KM. The proof of the reverse implication(b) ⇒ (a) is omitted since it offers

no difficulty. �

Remark 2. As one sees from Theorem 5, a critical pair(Ā, B̄) ofM is formed

necessarily with a couple of commuting matrices. The components of the vectors

ū, v̄ produced by the simultaneous diagonalization (29) may not be arranged in a

similar order, i.e., there may be no common permutation matrix5 ∈ 5n such that

5u = u↑ and5v = v↑. This explains why we cannot infer that(λ( Ā), λ(B̄))

is a critical pair ofKM.

Remark 3. Recall that the critical angles of a closed convex cone can be sepa-

rated into two disjoint groups: Nash angles and ordinary critical angles. Suppose

that(Ā, B̄) is a Nash angular equilibrium ofM, i.e., one has the combination of

the following two conditions:

B̄ minimizes〈Ā, ∙ 〉 overM ∩6(Sn), (33)

Ā minimizes〈 ∙ , B̄〉 overM ∩6(Sn). (34)
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In view of Lemma 4, either one of these conditions imply thatĀB̄ = B̄ Ā.

By plugging Ā = Qdiag(ū)QT andB̄ = Qdiag(v̄)QT into (33)-(34) and work-

ing out the details, one concludes that(ū, v̄) is necessarily a Nash angular equi-

librium of KM.
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