Volume 26, N. 2, pp. 191-214, 2007

COVPUTATIONAL. 121
&APPLIED Opyrlght@i)2007 SBMAC
MATHEMATICS  ppusscielo bricam

Angular analysis of two classes of non-polyhedral convex
cones: the point of view of optimization theory

ALFREDO IUSEM' and ALBERTO SEEGER

Linstituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110
Jardim Botéanico, Rio de Janeiro, Brazil
2University of Avignon, Department of Mathematics, 33 rue Pasteur, 84000 Avignon, France

E-mails: iusp@impa.br / alberto.seeger@uniigaon.fr

Abstract. There are three related concepts that arise in connection with the angular analysis
of a convex cone: antipodality, criticality, and Nash equilibria. These concepts are geometric in
nature but they can also be approached from the perspective of optimization theory. A detailed
angular analysis of polyhedral convex cones has been carried out in a recent work of ours. This
note focus on two important classes of non-polyhedral convex cones: elliptic conesin an Euclidean

vector space and spectral cones in a space of symmetric matrices.
Mathematical subject classification:52A40, 90C26.

Key words: antipodal pairs, convex cones, maximal angle, critical angle, Nash angular equi-
libria, elliptic cones, spectralones.

1 Introduction

The Euclidean spadR? is equipped with the usual inner prodyat v) = uTv
and the associated norjin ||. The symbol=q refers to the unit sphere iRY.
We also use the notation

Z(RY) = nontrivial closed convex cones &f.
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192 ANGULAR ANALYSIS OF TWO CLASSES OF NON-POLYHEDRAL CONVEX CONES

That a convex con& in RY is nontrivial means tha is different from{0} and
different from the spac®? itself. The symboK * is used to indicate the positive
dual cone oK.

There are various tools that serve to describe the angular structure of a convex
cone. The following definition recalls the main conceptual ingredients used in
this note.

Definition 1. LetK e E(RY). Letld and be two unit vectors irK .
i) (0, v) is an antipodal pair ofK if G andv achieve the maximal angle

Omax(K) = sup arccosu, v). Q)
u,v eKNZy
i) The angled (0, v) = arccoga, v) formed by a critical paira, v) is called
a critical angle. That a paid, v) is critical means that

v—(0,0)0e KT and 0-(0,0)v € K*.

The adjective proper is added whemndv are not collinear, i.e.|(T, v)|
# 1. The set of all proper critical angles df, denoted byQ(K), is
called the angular spectrum ¢f.

iil) (0, v) is a Nash angular equilibrium of if

(U, v) >6(U,v) Yve KN Xy,
(U, v) >6(Uu,v) Yue KnNZy.

The numbe# (U, v) is then called a Nash angle &f.

The motivation behind each of the above concepts is explained with great care
and detail in our previous work [8]. For the reader’s convenience, we recall
some of the reasons why the study of critical angles is important. The largest
critical angle of a convex conk is 6hax(K), i.e., the maximal angle that can
be formed by picking up two unit vectors frol. The geometric meaning
of Omax(K) justifies by itself the study of the variational problem (1), but there
are also application-oriented motivations. For instance, Pefia and Renegar [13]
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ALFREDO IUSEM and ALBERTO SEEGER 193

show that the numbeék.x«(K) plays a role in estimating the efficiency of certain
interior point methods for solving feasibility systems with inequalities described
by K. On the other handmax(K) is related to

p(K) = min haugK, Q), (2

QeE(RY)
Q unpointed

a number which has been suggested in [4] as tool for measuring the degree of
pointedness oK. Here

haugK, Q) = max{ max dist(x, Q), max dist(x, K)}
xeKNXZy XeQNZqg

stands for the bounded Pompeiu-Hausdorff metric&qir?). In general, the
evaluation of (2) is a cumbersome task even for cones having a relatively simple
structure. Fortunately, the least distance problem (2) is related to the angle
maximization problem (1) which, in principle, is easier to solve because the
decision variablesl, v live in a standard Euclidean space. In fact, one has the
following striking formula [9]

o(K) = cos[emLz(K)} .

Moreover, if K is not a half-line and admitdl, v) as antipodal pair, then the
closed convex cone

Q=KNI[R@—-)]" + R - 1)

is unpointed and lies at minimal distance frédn

Of coursefmax(K) is notthe only critical angle of interest. The smallest proper
critical angle plays also a relevant role in the description of the cone, namely, it
can be used as tool for measuring its degree of solidity. Bydex of solidity
we understand any continuous functién 2(RY%) — R satisfying the axioms:

i) G(K)=0ifand only ifK is not solid,

i) G(K)=1ifandonlyifK is a half-space,

i) G(U(K)) = G(K) for any orthonormal matrixJ,

iv) Ki C Ky implies G(K;p) < G(K3).
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194 ANGULAR ANALYSIS OF TWO CLASSES OF NON-POLYHEDRAL CONVEX CONES

The Frobenius coefficient

radius of the largest ball contained

Grrob(K) =
fron(K) [ in K and centered in a unit vector

is the first example of index of solidity that comes to mind. An alternative choice
° Omax(K™)
2. @
What is bothering about the expression (3) is that it involves the dual Kone
and not the original con& itself. However, this problem can be remediated
since it is possible to write (3) in the equivalent form

Gangular(K) = ,0(K+) = COS[

sin| )| i K is solid

Gangular(K) = . . .
0 if K is not solid

wherednin(K) indicates the smallest proper critical anglekof

We have explained in few words why the maximal angle and the smallest proper
critical angle are mathematical objects of interest. The intermediate critical
angles are perhaps less useful, butin any case they provide additional information
on the geometric structure of the cone. We now come back to the main stream
of the presentation. The main fact to be remembered about Definition 1 is that
every antipodal pair is a Nash angular equilibrium, and that every Nash angular
equilibrium is a critical pair.

It is useful to split the angular spectrum kifin two disjoint pieces:

Q(K) = Qnasr(K) U Qord(K)-

Thefirst piece collects the proper critical angles that are formed by a Nash angular
equilibrium. The remaining proper critical angles are said to be “ordinary” and
they are thrown in the s&2qq(K).

The angular structure of a polyhedral convex cone is by now well understood
as one can see by consulting the references [5, 7, 8]. In a non-polyhedral setting
the situation is more involved as one may expect. For instance, in the techni-
cal note [6] we succeeded in constructing a non-polyhedral convex cone whose
angular spectrum is uncountable, a phenomenon that cannot occur under polyhe-
drality. The example constructed in [6] is very involved and its interest is mainly
academic.
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In this note we study two important classes of non-polyhedral convex cones
arising in practice: elliptic cones in an Euclidean vector space and spectral cones
in a space of symmetric matrices.

2 Angular Analysis of Elliptic Cones

In this section we considel = n + 1 withn > 2. Recall that the elliptic cone
E(A) associated to a symmetric positive definite mafix R"" is the closed
convex cone iR given by

E(A) = {(x,r) e R VxTAx < r}.

Elliptic cones are used in a great diversity of areas. The three dimensional
case has applications in contact problems with orthotropic friction law [3, 17]
and in electromagnetic scattering [16], just to mention two concrete examples.
General background on higher dimensional elliptic cones can be found in [4, 7]
among other references.

The trace of the elliptic con€(A) over the unit spher&,,; is the set all
vectors(x, r) € R"? such that

VXTAX <, 4)
X2 41?2 =1. (5)

The Cartesian representation (4)-(5) is not always the best way of describing
E(A) N Znya. As explained in the next lemma, this set can also be described by
using a parametric representation. The notation

e(C) = {a eR": (o, Ca) < 1}

stands for the ellipsoid associated to a symmetric positive definite niateix
Rnxn.

Lemma 1. Decompose the symmetric positive definite ma#ix R™" in
the usual spectral fornrA = QDQT, whereD is a diagonal matrix contain-
ing the eigenvalues of arranged in nondecreasing order; < --- < un,
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196 ANGULAR ANALYSIS OF TWO CLASSES OF NON-POLYHEDRAL CONVEX CONES

and Q = [q: - - - gn] is an orthonormal matrix whose columns are formed with
corresponding eigenvectog, ..., gy. Then,

z€e E(ANZny1 & z=(Qa, v1—|la]|?) with «ee(l +D). (6)

Proof. Take anyz = (x,r) and write its first component in the form =
Qua with « € R". The fact thatz has unit length is expressed by the rela-
tionr = /1 — |l«|2. Membership ofz in &(A) corresponds to the inequality
(o, (I + D)) < 1. ]

We refer to (6) as the canonical parametrizationégdA) N Z,.1. Since
e(l + D) is contained inBy, the closed unit ball oRR", the square root op-
eration in (6) is well defined. For the sake of convenience, we introduce the
function¥ : B, — R™1 given by

V(@) = (Qa. V1 [la]]?).

Although W depends explicitly on the collectidiay, . .. qn} of eigenvectors of
A, the spherical product

(a, B) € By x By > @(o, ) = (V(), W(B))

is a more intrinsic concept. Indeed, by orthonormality@fone simply has

D, B) = (o, B) + V1~ [lalZ/1— |IBI2

There is a very interesting theory behind the definitionbofout we shall not
elaborate on this subject more than strictly necessary. The use of this special
type of vector product will be clear in a moment.

2.1 Antipodal and critical pairs ir€ (A)

In what follows we use the parametrization&fA) N .., described in Lem-
ma 1. Arbitrary points ir€(A) N X,.1, sayu andv, will be represented in the
parametric form

U= W), v=Ww(B), with a fcel + D).
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SinceV is a bijection betweeea(l +D) andé(A)N Ty, 1, the angle maximization
problem (1) becomes

minimize («, B) + /1 — lla|2y/1 — || 8|2 )
subject tow, 8 € e(l + D).

A careful analysis of the above variational problem leads to a full characterization
of the set of antipodal pairs @f(A).

Theorem 1. Decompose the symmetric positive definite matvrix R"™" as
in Lemmal. Suppose that the smallest eigenvaluedptienoted byumin(A),
has multiplicityr, that is to say, the eigenspace associategtgn(A) is r-
dimensional. Then,

(a) the maximal angle of (A) is given by

Omax(E(A)) = al’CCOS[M‘]

mmin(A) + 1 '

(b) (G, v) is an antipodal pair o€ (A) if and only

[ min(A) _ / Mmin(A)
(Zalql, Mmln(A)+l> ( Zalql’ Mmln(A)+1)

with coefficientsyy, ..., o, € R such that

2
Z Mmm(A) +1° ®

Proof. Given the specific structure of (7), one sees that this minimization
problem is solved by taking, .1 = - - - = @, = 0 and the first coefficients of

a asin (8). The parameter vectmust have opposite orientation with respect
to «, i.e. we must takgg = —«. Part (a) follows immediately from (b). O
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198 ANGULAR ANALYSIS OF TWO CLASSES OF NON-POLYHEDRAL CONVEX CONES

Remark 1. If the eigenvalugumin(A) is simple, that is to say, = 1, then the
elliptic cone€(A) has exactly two antipodal pairs, namely,

u = S — (i% \/Mmin(A)),

_ 1
v = —m <:FQL vV Hmin(A)) .

Since one antipodal pair is obtained from the other by permuting the order of
andv, one may say that the antipodal pair is "unique". In case of higher order
multiplicity, i.e. r > 2, the collection of antipodal pairs can be parametrized
with anr -dimensional parameter vector as in (8).

We recall a result on angular spectra of elliptic cones obtained recently
in [7]. As shown in the next theorem, computing the angular spectrudxiAf
is essentially the same job as computing all the eigenvalues of the ratrix
The critical pairs o€ (A) are obtained by using the eigenvectorstof

Theorem 2. Let A € R™" be symmetric and positive definite. The vectors
(X, r) and(y, s) form a proper critical pair ofE(A) if and only if the following
three conditions hold:

(@) y=—x,
(b) s=r =/1—||x]|2 = V/XT AXx,

(c) xis an eigenvector oA.

In this case, the corresponding critical angle takes the value

nw—1
¢ =arccod —— |, 9
{M+1) ®)

wherep is the eigenvalue oA associated t.

The proof technique used in [7] doesn't rely on the canonical parametriza-
tion of E(A) N Xn41. By relying on Lemma 1 it is possible to describe in a more
precise manner the nature of a given critical paiE o) in terms of the multi-
plicity of the corresponding eigenvalue 8f We will not indulge however on
this matter. Theorem 2 as stated is all what we need to go on with our exposition.
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2.2 Nash angular equilibria it (A)

Elliptic cones are, no doubt, very special objects. According to Theorem 2, the
angular spectrum of (A) has at mosh elements. Indeed,

QE(A) =1{01,....,0n},

where thd -th critical angle

-1
6 = arccos(“' )
wi +1

is obtained directly from the-th eigenvaluey; of A.

The theorem stated below is a fundamental result on Nash angular equilibria
of elliptic cones. Several consequences of this theorem will be presented as soon
as the proof is completed.

Theorem 3. Let (0, v) be a proper critical pair ofE(A). Denote byd the
corresponding critical angle and by the corresponding eigenvalue, that is to
say,u is the unique solution of the equatid®. The following four conditions
are then equivalent:

(a) (G, v) is a Nash angular equilibrium df(A),

(b) G minimizes the linear form - , v) over&(A) N Znya,
(c) v minimizes the linear forn, - ) over&(A) N Zh1,
(d) i < 1+ 2umin(A)

Proof. Take, for instance = 6, that is to say, consider the critical angle
that derives fromu = ux. As in Lemma 1, we formQ = [q; - - - ¢n] with an
orthonormal basis of eigenvectors Af The diagonal matriXD is formed with
the corresponding eigenvalues that we arrange in nondecreasinggne) =

u1 < --- < un. Either by using the parametric representation @hdv as in
Lemma 1, or by applying Theorem 2, one gets

_ 1
a = T M(Qk, VL),

_ 1
v = m(_qk’ \/ﬁ)

(10)
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For the sake of clarity, we divide the proof of the theorem in five steps.

Step1: We study the behavior @fi, - ) over a special path. Foreack [0, 1],
consider the point
z= (L4120, 1),

with —
Xt:—\/qu'i_“/l_tql’ and ry = XtTAXI

Note thatx; has unitlength, and so dogs Note also that, in view of the equality
in the definition ofr, the vectorz belongs to bfE (A)], the boundary o (A).

In short,{z; : t € [0, 1]} is a continuous path on the sEt,; N bdE(A)].
We will study the behavior of the univariate functign: [0, 1] — R given by
¢(t) = (0, z). In view of (10) and the definition af;, after some simplification
one arrives at the expression

—Vt+ /pvin+ A=t
VIFu/T+tu+T—bur

Observe thatp(1) = (u — 1)/(n + 1) = (0, v). Let us examine the sign of
¢’(1). Since

o) = (11)

—Vi+ VEVIE— D F i) (=)
Vtp—pp)+p1+1

2t(n —p1) + 1+ U/ +1

—1, JE—m) — |
[ﬁ+¢m]x/t(u p1) +p1+1

P'(t) =

one gets

, 1 VR — 1) (-1+ /i) (n — p1)
D= (1 YRV T
o 2(u +1)3/2 [( - N ) o Jr+1 }

With this information at hand, we can proceed with the next step.

Step 2: We prove thatc) = (d). Suppose on the contrary that> 2, — 1.
So¢’(1) > 0, and therefore

(U, z) = ¢() < ¢(1) = (0, v)
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for somet € [0, 1] closed enough to 1. Sinaebelongs ta€(A) N X4 for all
t € [0, 1], the vectorv is not a minimizer of(t, - ) over&(A) N Zp 1. This
contradiction confirms that (c) implies (d).

Step 3: We derive a so-called “extrapolation property” associated to condition
(c). Consider the inequality

(@, 5) < (G,v) Yve&AN o

We represent a point € £(A) N X1 in terms of a parameter vectBre R" as
described in Lemma 1, i.e.

v=a(8) with Beel +D). (12)

It follows that, forv as in (12), one has

1
Jv) = + Jvi1— 2),
(U, v) Naxa (B + 1 18119)
For convenience we make the change of variables
/1— 2 .
ﬂ, (Si:ﬂ for i=1,...
A1 1Al

o]

Thus,
o Sk+rym N e/

VA+w@d+rz) - A+ wd+r?

e U
A+ wd+r2) A+wa+3)

The rightmost expression in (13) is clearly an increasing function @ the
positive half-line. Observe that, sineeébelongs to€(A) andu; > u1 (L1 <i <
n), it holds that

(13)

n
2> 87w =8+ Y 87w = Stu+ (Z 8?) 1 )

i=1 ik ik
= S+ (1-80) a
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using the facts tha} |, 6> = 1 in the rightmost equality of (14). Replacing
(14) in (13), and calling = 82 € [0, 1], one obtains

. —Vt+ /pvin+ A= _
T VIt udI+tu+ (1=

wherez is defined as in Step 1. Summarizing, we have shown the following
extrapolation property: given an arbitrary poine X,,1 N E(A), there exists
another pointz; belonging toX,,1 N bd[E(A)] and lying farther away frondi
thanv.

(@, v) (0, z),

Step4: We prove thatd) = (c). Inview of the extrapolation property derived
in Step 3, it suffices to prove that

(0,z) = (0,v) VtelO0,1],

or equivalently, that : [0, 1] — R attains its minimum at = 1. Under the
assumptione < 1+ 2u4, one has of coursg; > max{0, (u — 1)/2}. We
consider two cases, according to the value of this maximum, i.e. to the sign of
w — 1. First we look at the right hand side of (11) as a functiop gfwhich we

will now denote ag(t, w1). By rewriting (11) as

_J N VI
T+uvIttut @t ——
JItaJyIttn+d-0m mm

one sees thap(t, -) is nondecreasing in the non-negative half-line fortad
[0, 1]. Now we study the two cases of interest.

¢t ny) =

i) u—1<0. Observe that
T+ it
i+ 114 ut
__ Nw-D
NS NAEaT (15)
uw—1

Ju+1 %—HL

(l._,l, Zt) = ¢(t’ /’Ll) > ¢(t’ 0) =
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Since the rightmost expression in (15) is decreasing as a functiomof
the interval[0, 1], one gets

0,2) 2¢(L,00=(u—-1)/(xu+1) =(0,v)
forallt € [0, 1], as we needed to prove.

i) u— 1> 0. Inthis case we write

1
(0.2) = ¢t pu1) > ¢ (t, MT)

(16)

V2 aST D+ —1
(p+Dvt+1 '

Fort € [0, 1], denote byyr(t) as the rightmost expression of (16). The
functionyr : [0, 1] — R is derivable and

—/2 R+ 1)
Dt +Dyv') = t4+1
e+ D+ DY) (2«/f+2\/t(u+1)+u—1)\/+

_ <—¢2_t+¢ﬁ¢t(u+1)+u—1)
2Vt +1 '

After a tedious simplification one arrives at

Wt)—z<u+1)(t+1>3/2< \[t+«/t(u+1)+ﬂ—l>' 0

It follows from (17) thaty’(t) < O if and only if (u — 1)(1 —t) > 0.
We conclude thats is nonincreasing in the whole intend, 1]. Hence,

1 (V24 /v
n+1 V2

(U,z)=y®) =¥ =

uw—1 o
=0,
w+1 (. v)

forallt € [0, 1]. We reach again the desired inequality.
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204 ANGULAR ANALYSIS OF TWO CLASSES OF NON-POLYHEDRAL CONVEX CONES

Step 5: Completion of the proof. We have shown insofar tf@t < (d).
By using a mutatis mutandis argument one proves similarly at— (d).
For completing the proof of the theorem it is now enough to observe that (a) is
the conjunction of (b) and (c). O

Corollary 1. For a proper critical pair (i, v) of an elliptic coneK in R to
be a Nash angular equilibrium, it is necessary and sufficient that

N2,
o —oll = —- diam(K N Xpy1). (18)

Proof. Let K = £(A) and suppose that the proper critical pdit v) is as-
sociated with the eigenvalye. Since(l,v) = (u — 1)/(n + 1), one has
|G — || =2/, + 1. On the other hand, the diametertoin X, 1 is attained
with an antipodal pair oK, so one has

diam(K N Xn11) = 2/v/ min(A) + 1.

It is clear that the conditiop < 2umin(A) + 1 is equivalent to

2 V2 2
\/m -2 MUmin(A) +1 ’
so the announced result follows from Theorem 3. O

Corollary 2. For a proper critical angled of an elliptic coneK to be a Nash
angle, it is necessary and sufficient that

1+ coSOmax(K
arccos[%ma"()} <0. (19)
Proof. Itis a matter of reformulating Corollary 1. O

2.3 Nash threshold coefficient & A)

It is reasonable to expect a Nash angular equilibrium to form an angle which is
large, or at least not too small while compared with the maximal angle of the
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cone. This idea is corroborated by the relation (19) in Corollary 2 or, equiva-
lently, by the relation (18) in Corollary 1.

In connection with the above observation, recall thatMash threshold coeffi-
cientof a nontrivial closed convex con€in RY is the largest constapt e [0, 1]
such that

10— || > B diam(K N Zq)  ¥({, 5) € Nash(K), (20)

where NashK) stands for the set of all Nash angular equilibriakof If Bk
denotes the Nash threshold coefficienKafthen the infimal-value
g*= inf Bg
K eZ(Rd)
corresponds to the largest constgntor which the inequality (20) holds uni-

formly with respect to all elements iB(RY). After a considerable amount of
effort we were able to prove in [8, Corollary 2] that

in dimensiond greater or equal than three
the infimal-values* is equal tov/3/3.

UnlessK has a special structure, it is hopeless to derive a simple formula for
evaluatingB itself. Asfaras elliptic cones are concerned, we are now in position
to establish the following result.

Proposition 1. The Nash threshold coefficient of an elliptic cofi€A) is

given by
Umin(A) + 1
= Aty T o 21
Bea A1 (21)

where u*(A) denotes the largest eigenvalue Afthat is less or equal than
2umin(A) + 1. In particular,

inf Bk = v2/2,
KeERY)
K elliptic

and this infimum is attained by any elliptic coB€A) such thalimin(A) + 1is
an eigenvalue oA.
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Proof. Letu; <--- < unbe the eigenvalues &. In view of Corollary 1, the
numberBe a) corresponds to the largest constgnt [0, 1] such that

2 2
vk +1 v min(A) + 1
holds for anyk € {1, ..., n} satisfyingux < 2umin(A) + 1. A matter of simpli-
fication leads directly to the formula (21). d

3 Angular analysis of spectral cones

We now work in a linear space of dimensidn= (1/2) n(n 4+ 1) with n > 2.
More precisely, we are concerned with a special class of convex cones in

Sn = real symmetric matrices of sizex n.

As usual Sy is equipped with the Frobenius inner prodét B) = tracg AB)
and the associated norm. For the sake of convenience we W(ilg) =
{A e Sh:||A] =1} and reserve the symbdal, for the unit sphere in the Eu-
clidean spac®&".

For an arbitrary closed convex coiein S, the computation of the maximal
anglefnax(M) is in general a cumbersome task. The same remark applies to the
computation of the other possible critical angles. The purpose of this section is
to derive useful calculus rules for computing critical angles at least for a special
class of convex cones Ky,.

Recall that a convex cor in S, is said to bespectral(or weakly unitarily
invariant) if

AeM = UTAUeM forall U €0, (22)

with O, denoting the group of orthonormal matrices of sizex n. Notice,
incidentally, that the concept of spectrality applies to an arbitrary s&{ and
not just for a convex cone.

The next two lemmas are part of the folklore on weakly unitarily invariant sets
and functions, see for instance the references [1, 2, 10, 11, 15]. In the sequel
the notatiom.(A) = (A1(A), ..., An(A)) stands for the vector of eigenvalues of
A arranged in nondecreasing order, and thagtands for the diagonal matrix
whose entries on the diagonal are the components of the vector

Comp. Appl. Math., Vol. 26, N. 2, 2007



ALFREDO IUSEM and ALBERTO SEEGER 207

Lemma 2. A convex condl in S, is spectral if and only if there is a permu-
tation invariant convex conk in R" such that

M={AeSy: MA) € K}.
Furthermore, suck is unique and given by
Ky = {x e R": diag(x) € M} .

One refers toKy¢ as the permutation invariant convex cone inducedvby
Recall that a seK in R" is calledpermutation invarianif I1(K) = K for all
IT € IT,, with TT,, denoting the set afi x n permutation matrices.

Lemma 3. One has:

(a) the dual of a permutation invariant convex conelih is a permutation
invariant convex cone iR".

(b) If M is a spectral convex cone #, then its dualM ™ is a spectral convex
cone inS,. Furthermore M* can be computed by using the formula

MF={AeS,: MA) € Ky}

The most popular example of spectral convex cor&,iis the Loewner cone
of positive semidefinite symmetric matrices. A list of more elaborate spectral
convex cones includes

M={AeSn: 21(A) + ...+ im(A) = 0} l<m<n-1, (23)
M={AeSn: ¥y X LA < X0 4i(A) (I<mr<n, y=>0),
M ={AeSn: max0, sn(A)} + y|lAll < StracgA)} (y 20,6 e R),

M={AecSn: \/[)»n(A) — A1 (A2 + | A2 < stracgA)} (8 > 0),
M={A€Sn: ylA|l <tracgA)} (y >0,

just to mention a few examples. In all cases it is easy to recognize which is
the corresponding permutation invariant convex céng. If x' denotes the
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vector which is obtained by rearranging in nondecreasing order the components
of x € R", then one gets

Ky = {[xeR": x] 4+...+x} >0} (24)

Ky = (xeR": y YL, 5 <30, x'),
and so on. The example (23) is perhaps the most interesting one since it appears
in concrete problems of optimization [12] and principal components analysis
[14].

Be aware thaK); may posses some properties that are lackirg jithink for

instance of polyhedrality. It is not difficult to see that the convex cone (24) is
polyhedral, but the spectral convex cone (23) is not. The lack of polyhedrality

in (23) is due to a “curvature” effect introduced by the eigenvalue functions
Ait Sy, — R

3.1 Antipodal pairs in a spectral cone

Is there any link between the angular structurdvdind that ofK»(? Answering
this question is not a trivial matter. Our first task will be comparing the maximal
angle
Omax(M) = Sup  arccosA, B)
A,BeM
IAI=1]B]=1
of the spectral con®( in S, and the maximal angle
Omax(Kat) =  sup  arccosu, v).
u,veKyng
lull=1,flv]]=1
of the permutation invariant con€,;. The lastterm is easier to evaluate because
Ky has in principle a simpler structure and, in any case, it lives in a vector space
of lower dimension.
As explained in the next theorem, the antipodal pairdfond those oKy
are related through the eigenvalue magS, — R". We start by establishing a
commutation principle for optimization problems with spectral data. Recall that
a spectral set i, is defined by means of the relation (22). Similarly, a function
® onS, is said to be spectral (or weakly unitarily invariant) if

®WUTAU) = d(A) forall U e 0O,.
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Lemma 4 (Commutation principle). LetN c S, be a spectral set and :
Sn — R be a spectral function. LeA, B € Sy. If B is a local minimum (or a
local maximum) oveN of the fonction(A, - ) + ®(-), thenA and B commute.

Proof. Suppose thaB is a local minimum of(A, - ) + &(-) overN. This
means thaB € N and

(A,B)+®(B) < (A,B)+®(B) VBeNNO.(B) (25)

with O, (B) denoting an open ball of radius> 0 and centeB. TakeX € O,
so that
XTBX = E = diag(»(B)).

By definition of spectral setX E X" belong toN for all X € O,. By a continuity
argument, there is a small > 0 such thatXEX™ e O,(B) wheneverX ¢
05(X). In view of (25), one gets

(A, XEXTY + ®(XEXT) < (A, XEX") + ®(XEX") VX e 0,N0s(X).

But, by spectrality ofb, the termsd (X EXT) and® (X E X") cancel out. The
conclusion is thaX is a local solution to the optimization problem
minimize f(X) = (A, XEXT)

. (26)
with respect toX € O,

and hence it satisfies the first order necessary optimality conditions for this prob-
lem. Before writing down these optimality conditions, observe thas not
defined orfS,, but on the spachf, of arbitrary real matrices of size x n. The
Frobenius inner product a¥ll, is given by(X, Y) = tracgX"Y). By rewriting

the contraint (26) aX X" = | and introducing the Lagrangean function

(X, M) € M, x My — L(X, M) = (A, XEX") — (M, XXT — 1),
we see thaX satisfies

VuL(X, M) = XXT —1 =0, (27)
VxL(X, M) = 2AXE— (M +M"HX =0, (28)
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for someM € M. SinceX~! = XT by (27), we get from (28) that
AB = AXEXT) = (1/2)(M + MT)

is a symmetric matrix. It follows tha#dB = (AB)T = BA. The case of a local
maximum is treated in a similar way. O

It is possible to derive more sophisticated versions of the above commutation
principle but Lemma 4 is general enough to cover all our needs. Everything is
now ready to state:

Theorem 4. A spectral closed convex cofé in S, and the associated per-
mutation invariant closed convex coke,; have the same maximal angle, i.e.,
Omax(M) = Omax(Knp). Furthermore, the following statements are equivalent:

(@) (A, B) € Sp x Sy, is an antipodal pair oM.
(b) there exist an antipodal paiit, v) of Ky and a matrixQ € O, such that

A = Qdiag()Q" andB = Qdiag(®)Q".

Proof. Let (0, v) be an antipodal pair oky;. Write A = diag(0) andB =
diag(v). One hag|A|| = ||| = 1, ||B|| = ||v]| = 1, and alsor(A) = a,
A(B) = 91, SinceK is permutation invariant, the vectai$ ands' remain in
Kx¢, and thereforéd, B € M. The conclusion is that

Omax(M) > arccosA, B) = arccosi, 1) = Omax(Kn).

The reverse inequality is obtained by exploiting the commutation principle stated
in Lemma 4. The proof runs as follows. Take matridesB € M of unit length
realizing the maximal angle i, i.e.,

(A,BY= min (A, B).
A,BeEMNZ(Sn)

In particular, B is a minimizer of the linear fornfA, - ) over the spectral set
MN Z(Sh). Lemma 4 implies thaA and B commute. HenceA andB can be
simultaneously diagonalized by means of a ma®ix O,. This means that

QTAQ=diagi) and Q'BQ = diag(v) (29)
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for suitable vectorsi, v € R". Hence,
(A, B) = (Qdiag(di)Q", Qdiag(t) Q") = (diag(), diag(v)) = (0, ).

Observe also that, v are unit vectors and, by spectrality B, they are inKy.
Hence, one gets
(A,B)> inf _(u,v)

u,veKynNZEn
and the desired inequalifyax (M) < Omax(Knt). The second part of the theorem
is implicit in the above proof. 0

3.2 Critical pairs in a spectral cone

We now compare the angular spectradtindK». The commutation principle
stated in Lemma 4 plays again a crucial role.

Theorem 5. A spectral closed convex cof in S, and the associated per-
mutation invariant closed convex coig, have the same collection of proper
critical angles, i.e.,.2(M) = Q(Xy). Furthermore, the following statements
are equivalent:

(@) (A, B) € Sp x Sy, is a critical pair of M.
(b) there exist a critical pair(d, v) of Ky and a matrixQ € O, such that
A = Qdiag(i) Q" and B = Qdiag(v)Q".
Proof. Suppose thaf, B € M N X(S,) satisfy the criticality conditions
B— (A BYAe MT, (30)
A— (A B)B e M*. (31)
We shall prove thalA and B commute. To do this, we come back to the very

definition of a critical pair. It is not difficult to see that the system (30)-(31) can
be written in the form

—[B —nA] € ¥y (A),

_ - (32)
— [A—nB] e 9¥x(B),
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with a8 standing for the subdifferential operator in the sense of convex analysis,
Wy denoting the indicator function 6f(, andy = (A, B). Letus examine more
closely for instance the relation (32). Standard rules of convex analysis show
that (32) amounts to saying thBtminimizes the linear functionA — B, - )

over the seM. In view of Lemma 4, one obtains the commutation property

(A—1B)B=B(A-1B),
confirming in this way thaAB = BA. By proceeding to a simultaneous diago-
nalization as in (29) one obtains

Qdiag®) Q" — 1 Qdiagm) Q" € M™,

Qdiag@) Q" — n Qdiagv)Q" € M™.
By spectrality ofM* we can drop the common orthonormal transformatipn
and write simply

diag(v — n0) € M+,
diag(d — n v) € M.

By recalling Lemmas 2 and 3, one sees tfiatv) is necessarily a critical pair
of Ky¢. The proof of the reverse implicatiab) = (a) is omitted since it offers
no difficulty. O

Remark 2. As one sees from Theorem 5, a critical pak; B) of M is formed
necessarily with a couple of commuting matrices. The components of the vectors
a, v produced by the simultaneous diagonalization (29) may not be arranged in a
similar order, i.e., there may be no common permutation matrixI1, such that

IMu = u® andITv = v'. This explains why we cannot infer that(A), A(B))

is a critical pair ofK .

Remark 3. Recall that the critical angles of a closed convex cone can be sepa-
rated into two disjoint groups: Nash angles and ordinary critical angles. Suppose
that(A, B) is a Nash angular equilibrium 0f(, i.e., one has the combination of
the following two conditions:

B minimizes(A, - ) overM N =(Sy), (33)

A minimizes( - , B) overM N =(Sy). (34)
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In view of Lemma 4, either one of these conditions imply th& = BA.
By plugging A = Qdiag(0)Q" andB = Qdiag(v) Q" into (33)-(34) and work-
ing out the details, one concludes tliiat v) is necessarily a Nash angular equi-
librium of Kjy.
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