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Abstract. In this article, we determine certain conditions under which the partial sums of

the multiplier integral operators of analytic univalent functions of bounded turning are also of

bounded turning.
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1 Introduction

Let H be the class of functions analytic in the open unit disk U = {z : z ∈

C and |z| < 1} and H [a, n] be the subclass of H consisting of functions of

the form

f (z) = a + anzn + an+1zn+1 + ∙ ∙ ∙ .

Let A be the subclass of H consisting of functions of the form

f (z) = z +
∞∑

n=2

anzn, (z ∈ U ). (1)

For 0 ≤ μ < 1, let B(μ) denote the class of functions f of the form (1) so that

<{ f ′} > μ ∈ U. The functions in B(μ) are called functions of bounded turning
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(c.f. [1, Vol. II]). By the Nashiro-Warschowski Theorem (see e.g. [1, Vol. I])

the functions in B(μ) are univalent and also close-to-convex in U.

For f of the form (1), several interesting families of integral operators, which

have been investigated rather extensively in analytic function theory, including

each of the following integral operators (see [2-10]),

Pa
b f (z) =

(b + 1)a

zb0(a)

∫ z

0
tb−1

(
log

z

t

)a−1
f (t)dt

= z +
∞∑

n=2

(
b + 1

b + n

)a

anzn, (z ∈ U )

(2)

(
a > 0, b > −1, z ∈ U, f ∈ A

)

and

Jc f (z) =
c + 1

zc

∫ z

0
t c−1 f (t)dt

= z +
∞∑

n=2

( c + 1

c + n

)
anzn, (z ∈ U )

(3)

(
c > −1, z ∈ U, f ∈ A

)
.

Also, we define a general integral operator as the following:

Jk
λ,δ f (z) = z +

∞∑

n=2

an

[1 + (n − 1)λ]kC(δ, n)
zn, (4)

(
k ∈ N0, λ ≥ 0, δ ≥ 0 z ∈ U, f ∈ A

)
,

where

C(δ, n) =

(
n + δ − 1

δ

)

=
0(n + δ)

0(n)0(δ + 1)
.

Remark 1.1. When λ = 0, operator (4) gives Noor integral operator (see

[11, 12]).

The m-th partial sums of the operators (2-4) are respectively given by

Pm(z) = z +
m∑

n=2

(
b + 1

b + n

)a

anzn, (z ∈ U ), (5)
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Jm(z) = z +
m∑

n=2

(
c + 1

c + n

)
anzn, (z ∈ U ) (6)

and

Fm(z) = z +
m∑

n=2

an

[1 + (n − 1)λ]kC(δ, n)
zn, (z ∈ U ). (7)

It was shown that for a normalized univalent function f of the form (1) the

partial sums of the Libera integral operator of functions is starlike in |z| < 3
8 .

The number 3
8 is sharp ([13]). In [14], it was also shown that the partial sums of

the Libera integral operator of functions of bounded turning are also of bounded

turning. We determine conditions under which the partial sums (5-7) of the

multiplier integral operators (2-4) of analytic univalent functions of bounded

turning are also of bounded turning. In the sequel we need to the following

results.

Lemma 1.1 [14]. For z ∈ U we have

<

{
j∑

n=1

zn

n + 2

}

> −
1

3
, (z ∈ U ).

Lemma 1.2 [1, Vol. I]. Let P(z) be analytic in U, such that P(0) = 1, and

<(P(z)) > 1
2 in U. For functions Q analytic in U the convolution function

P ∗ Q takes values in the convex hull of the image on U under Q.

The operator (∗) stands for the Hadamard product or convolution of two

power series in A,

f (z) ∗ g(z) = z +
∞∑

n=2

anbnzn, (z ∈ U ).

2 Main Results

By making use of Lemma 1.1 and Lemma 1.2, we illustrate the conditions under

which the m-th partial sums (5-7) of the multiplier integral operators (2-4) of

analytic univalent functions of bounded turning are also of bounded turning.
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Theorem 2.1. Let f ∈ A. If 1
2 < μ < 1 and f (z) ∈ B(μ), then

Pm(z) ∈ B
(

3 − (b + 1)a(1 − μ)

3

)
, 0 < a ≤ 1 and − 1 < b ≤ 1.

Proof. Let f be of the form (1) and f (z) ∈ B(μ) that is

<
{

f ′(z)
}

> μ,

(
1

2
< μ < 1, z ∈ U

)
.

This implies

<

{

1 +
∞∑

n=2

nanzn−1

}

> μ >
1

2
.

Now for 1
2 < μ < 1 we have

<

{

1 +
∞∑

n=2

an
n

1 − μ
zn−1

}

> <

{

1 +
∞∑

n=2

nanzn−1

}

then

<

{

1 +
∞∑

n=2

n

1 − μ
anzn−1

}

>
1

2
. (8)

Applying the convolution properties of power series to P ′
m(z) we may write

P ′
m(z) = 1 +

m∑

n=2

(
b + 1

b + n

)a

nanzn−1

=

[

1 +
m∑

n=2

n

(1 − μ)
anzn−1

]

∗

[

1 +
m∑

n=2

(
b + 1

b + n

)a

(1 − μ)zn−1

]

:= P(z) ∗ Q(z).

(9)

In virtue of Lemma 1.1 and for j = m − 1, we receive

<

{
m∑

n=2

zn−1

n + 1

}

> −
1

3
. (10)

Thus for 0 < a ≤ 1 and −1 < b ≤ 1 yields

<

{
m∑

n=2

zn−1

(b + n)a

}

≥ <

{
m∑

n=2

zn−1

n + 1

}

. (11)
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Hence

<

{
m∑

n=2

zn−1

(b + n)a

}

> −
1

3
. (12)

A computation gives

< {Q(z)} = <

{

1 +
m∑

n=2

(
b + 1

b + n

)a

(1 − μ)zn−1

}

>
3 − (b + 1)a(1 − μ)

3
.

On the other hand, the power series

P(z) =

[

1 +
m∑

n=2

n

(1 − μ)
anzn−1

]

, (z ∈ U )

satisfies: P(0) = 1 and

< {P(z)} = <

{

1 +
m∑

n=2

n

(1 − μ)
anzn−1

}

>
1

2
, (z ∈ U ).

Therefore, by Lemma 1.2, we have

<
{

P ′
m(z)

}
>

3 − (b + 1)a(1 − μ)

3
, (z ∈ U ).

This completes the proof of Theorem 2.1. �

In the next corollary, we establish the conditions of the partial sums of the

operator (3) to be of bounded turning when f is of bounded turning.

Corollary 2.1. Let f ∈ A. If 1
2 < μ < 1 and f (z) ∈ B(μ), then Jm(z) ∈

B
(

3−(c+1)(1−μ)

3

)
.

Proof. Setting a = 1 and b = c in Theorem 2.1 leads to Corollary 2.1.

Corollary 2.2. Let f ∈ A. If 1
2 < μ < 1 and f (z) ∈ B(μ), then Lm(z) ∈

B
(

1+2μ

3

)
, where L(z) denotes the Libera integral operator:

L(z) =
2

z

∫ z

0
f (ζ )dζ = z +

∞∑

n=2

[
2

n + 1

]
anzn, (z ∈ U )
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and its m-th partial sums are given by

Lm(z) = z +
m∑

n=2

[
2

n + 1

]
anzn, (z ∈ U ).

Proof. Setting a = b = 1 in Theorem 2.1 leads to Corollary 2.2.

Corollary 2.3. Let f ∈ A. If 1
2 < μ < 1 and f (z) ∈ B(μ), then Sm(z) ∈

B
(

2+μ

3

)
, where Sk(z) denotes the integral operator which analogous to one

defined by Sǎlǎgean (see [15]):

Sk(z) = z +
∞∑

n=2

an

nk
zn, k ∈ N0, (z ∈ U ) (13)

and its m-th partial sums are given by

Sm(z) = z +
m∑

n=2

an

nk
zn, k ∈ N0, (z ∈ U ).

Proof. Setting a = k, b = 0 in Theorem 2.1 leads to Corollary 2.3.

Theorem 2.2. Let f ∈ A. If 1
2 < μ < 1 and f (z) ∈ B(μ), then

Fm(z) ∈ B
(

2 + μ

3

)
, δ = 0, k = 1, and 0 ≤ λ ≤ 1.

Proof. By the hypotheses of the theorem we have

<

{

1 +
∞∑

n=2

nanzn−1

}

> μ >
1

2
.

This implies, for 1
2 < μ < 1,

<

{

1 +
∞∑

n=2

an
n

1 − μ
zn−1

}

> <

{

1 +
∞∑

n=2

nanzn−1

}

then

<

{

1 +
∞∑

n=2

n

1 − μ
anzn−1

}

>
1

2
. (14)
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Applying the convolution properties of power series to F ′
m(z) we have

F ′
m(z) = 1 +

m∑

n=2

nan

[1 + (n − 1)λ]kC(δ, n)
zn−1

=

[

1 +
m∑

n=2

nan

(1 − μ)
zn−1

]

×

[

1 +
m∑

n=2

(1 − μ)

[1 + (n − 1)λ]kC(δ, n)
zn−1

]

:= P(z) ∗ Q(z).

(15)

In view of Lemma 1.1 with

j = m − 1, δ = 0, k = 1, and 0 ≤ λ ≤ 1, (16)

yields

<

{
m∑

n=2

zn−1

[1 + (n − 1)λ]

}

> <

{
m∑

n=2

zn−1

n + 1

}

. (17)

Hence

<

{
m∑

n=2

zn−1

[1 + (n − 1)λ]

}

> −
1

3
. (18)

Under the conditions given in (16) we obtain

< {Q(z)} = <

{

1 +
m∑

n=2

(1 − μ)

[1 + (n − 1)λ]
zn−1

}

>
2 + μ

3
.

On the other hand, the power series

P(z) =

[

1 +
m∑

n=2

n

(1 − μ)
anzn−1

]

, (z ∈ U )

satisfies: P(0) = 1 and

< {P(z)} = <

{

1 +
m∑

n=2

n

(1 − μ)
anzn−1

}

>
1

2
, (z ∈ U ).

Therefore, by Lemma 1.2, we have

<
{

P ′
m(z)

}
>

2 + μ

3
,

(
1

2
< μ < 1

)
.

The proof of Theorem 2.2 is complete. �
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Corollary 2.4. Let f ∈ A. If 1
2 < μ < 1 and f (z) ∈ B(μ), then Sm(z) ∈

B
(

2+μ

3

)
, where S(z) defined in (13) of order one.

Proof. Setting λ = 1 in Theorem 2.2 leads to Corollary 2.4.
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