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Abstract. In this work we study a transmission problem for the model of beams developed

by S.P. Timoshenko [10]. We consider the case of mixed material, that is, a part of the beam
has friction and the other is purely elastic. We show that for this type of material, the dissipation
produced by the frictional part is strong enough to produce exponential decay of the solution,
no matter how small is its size. We use the method of energy to prove exponential decay for

the solution.
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1 Introduction

The transverse vibration of a beam is mathematically described by a system of
two coupled differential equations given by

Iout'[ - (K(UX + l)b))X = 07 In (o’ L) X (Oa OO),

| (1.1)
oY — (ElY)x + KUk +¢%) =0, in (0,L) x (0, 00).

Here, L is the length of the beam in its equilibrium positianis the time
variable and is the space coordinate along the beam. The functisnu(x, t)
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216 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM

is the transverse displacement of the beamand i (x, t) is the rotation angle

of a filament of the beam. The coefficientsl,, E, | andK are the mass per
unit length, the polar moment of inertia of a cross section, Young's modulus
of elasticity, the moment of inertia of a cross section and the shear modulus
respectively. We denote; = p, po = I,, b = EI, k = K and we obtain
directly from (1.1) the following system

P — K(Ux + ¥)x =0, in (0, L) x (0, 00),

. (1.2)
Pt — Doy +K(ux +¢) =0, in (0, L) x (0, 00).

The mathematical model describing the vibrations of beam with fixed extrem-
ities is formed by the system (1.2), boundary conditions

u@,t) =u(L,t) =¥(0,t) =y(L,t) =0, t >0,
and initial data

u('v O) = ¢01 Ut(‘, O) = ¢1’ 1//(7 O) = 11//07 I/It(" O) = wlv In (Ov L)
If friction is taken into account, the systeth.2) becomes

p1U — K(Ux + ¥)x + auy = 0, in (0, L) x (0, 00),

) 1.3)
P2t — baxx + K(ux + ¥) + By = 0, in (0, L) x (0, 00),

wherea and g are positive constants (we assume= 8 = 1). The termsxu,
and gy represent the attrition acting in the vertical vibrations and in the angle
of rotation of the filaments of the beam, respectively.

Dissipative properties associated to the syste) have been studied by sev-
eral authors by considering dissipative mechanism of frictional or viscoelastic
type. The frictional dissipation, obtained by introduction of a frictional mech-
anism acting on the entire domain or on the boundary, was studied in [7, 8, 9].
The viscoelastic dissipation, given by a memory effect, was considered in [2]
and [6].

An interesting problem comes out when the dissipation acts only on a part of
the domain. In the present paper we consider a frictional mechanism acting only
on the part of the domain given by x < Lowith 0 < Lo < L. We prove
that for everyL o the energy of the system decays exponentially to zero as time
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goes to infinity. In other words, our result states that dissipative properties of the
system are transferred to the whole beam and stabilizes the system. The main
result of this paper is Theorem 2 and its corollary, both in section 5.

The mathematical model which deals with this situation is called a transmission
problem. From the mathematical point of view a transmission problem consist
of an initial and boundary value problem for a hyperbolic equation for which the
corresponding elliptic operator has discontinuous coefficients. Hence, we can
not expect to have regular solutions in the role domain. In the next section we
establish the transmission problem and define appropriately the notion of solu-
tion considered. We udd™ andL P to denote the usual Sobolev and Lebesgue
spaces [1].

2 The transmission problem

Inthis section we describe precisely the transmission problem treated in the paper
and establish existence and regularity of solution. We begin by introducing the
notation

L if xe@OL
pioo = { b XG0
IOJ’ |f XE(LO»L)

k(x) = ki, i x€(, Lo
| ke if xe(Lo L) |’
b(x) = b;, if xe (0, Lo
| b, if xe(Lo L) |’
_ 1, if xe (0 Lo
C 0, if xe(lo L) |
B = 1, if xe (0 Lol
“ o if xeob) [’
ux,t) = ux,t), if  xe (0, Lo x (0,00)
> - v(X, 1), if X e (Lo L) x (0, 00) )
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218 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM

¥v(x,t), if xe (0, Ly x (0, 00)

¥ (X, t) o). if xe (Lo l)x (000 [

Using the notation above, model (1.3) can be written in the following form:

prU — Ka(Ux + ¥)x + Uy = 0, in (0, Lo) x (0,00), (2.1)
PaYte — Di¥xx + Ki(Ux +¥) + Y1 =0, in (0, Lo) x (0,00), (2.2)
p2uy — Ka(vx 4 ¢)x = 0, in (Lo, L) x (0,00), (2.3)
02 — Doy + ka(vy + ¢) = 0, in (Lo, L) x (0,00), (2.4)
Dissipative part Elastic part

u(x), ¥(x) v(X), @(X)

I: Lo

Y
A

L-Lo —
with boundary conditions,

uiO,t) =v(L,t) =y (0,t) =¢(L,t) =0, t>0,
transmission conditions,

kiU(Lo, t) = kav(Lo, 1), piue(Lo, t) = pivi(Lo, 1),
kiuy (Lo, t) = kovk(Lo, 1), ki (Lo, t) = koo (Lo, t), (2.5)
o3 (Lo, 1) = p2¢i(Lo, 1),  br(Lo, t) = bau(Lo, 1),

and initial data

U(', O) = Up, Ut(', 0) = Uy, w(v O) = w()? ¢t('7 O) = wls in (0’ LO)v

: (2.6)
v(,0) =vo, w(0 =v1, ¢, 0)=¢o0, ¢( 0 =¢1, in(Lo L).

We define the notion of weak solution to the system (2.1)-(2.6) as follows:
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Definition 1. LetV, H™ and £? be the spaces defined by
V= {(a), w) € HY(0, Lo) x H(Lo, L); @(0) = w(L) =0, (L) = w(Lo)}
H™= H™O, Lg) x H™(Lo, L) and £2= L%, Lg) x L%(Lg, L).

We say that(u, v, ¥, ¢) is a weak solution to the problerf2.1)-(2.6) if for
every(w, w) € H}(0, T; H? N V) we have:

Lo

Lo
pgf ut(x,T)w(x,T)dx—pif U (X, 0)w (X, 0)dx
0 0

L L
+0f [ wx Do Thdx— pf [ u(x, Owix, 0dx
L Lo

0

T Lo T L
— p}/ / ut(x,t)wt(x,t)dxdt—pf/ / v (X, Hwe (X, H)dxdt
0 0 0 Lo
T L T Lo
+/ / vt(x,t)wx(x,t)dxdt+/ ki(uyx + ¥) (X, Dwy (X, t)dxdt
0 JLo o Jo

T L

+ / Ka(vx + @) (X, Hwx (X, t)dxdt= 0
0 Lo

and

Lo Lo
P2 |y, THywx, TYdx — p2 | yr(x, 0)i(x, 0)dx
0 0

L L
+p§f ¢t<x,T>w<x,T)dx—p§/ 41 (x. Oyw(x. 0)dx
Lo Lo

T L

T rlo
- p; f Y (X, Dwe(x, Hdxdt— p3 f (X, Hw(x, tydxdt
0 0

0 Lo

T Lo T Lo
+/ blw(x,t)xﬂ)(x,t)dxdtJr/ / Y (X, Hwy (X, t)dxdt
o Jo o Jo

T Lo T L
+ / ki(ux + Y)w(x, t)ydxdt+ bzf Ox (X, Dwy (X, t)dxdt
0 0 0

Lo

T L
+ / Ko(vk + @) (X, Hw(X, t)dxdt= 0.
0 Lo

The transmission problem for a single hyperbolic equation was studied by
Dautray and Lions [3], who proved the existence and regularity of solutions for
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220 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM

the linear problem. The existence and regularity of solutions to the transmission
problem for the Timoshenko system is given in the following theorem:

Theorem 1. If (Ug, vo), (Wo, #o) € V and (uy, v1), (Y1, ¢1) € L2, then there
exists a unique weak soluti@n, v, ¥, ¢) to the systeni2.1)-(2.6) satisfying:

(u, v), (¥, ¢) € C(0, 0o; V) N CLO0, oo; £2).

Moreover, if(Ug, vo), (Yo, ¢o) € H2 NV and (U, v1), (Y1, ¢1) € V, then the
weak solution is a strong solution and satisfies

(U, v), (Y, $) € C(0, 0o; H2N V)N CLO, oo; V) N C2(0, oo; L2).

Proof. For the proof we proceed in a quite similar manner asin [3]. O

The total energy associated to the system is defined by

1 Lo
E(t) = éf {p1Iucl® + p3 1Y |? + balykl? + kalux + ¥[?} dx
0

1 L
+ éf {p21uil? + 31nl + balgul? + Kelvf + ¢17} dx.
Lo

Next we prove that the total energy associated to the system is decreasing for

everyt > 0.

Lemma 1. Let (u, v, ¥, ¢) be the strong solution to the systgthl)-(2.6),

then
d Lo 2 Lo 2
SE® = —/ el dx—/ e Pdx.
0 0

Proof. Multiplying (2.1) byu; and integrating by parts over the inter¢@J L),
we get

Lo
——f lug|2dx = ki (Ux(Lo) + ¥ (Lo)) r(Lo)
0 (2.7)

Lo Lo
_klf (Ux +¥) Utde—/ U] 2d .
0 0
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Now, multiplying (2.2) byy; and integrating by parts ove®, Lo) we obtain

d [p; o 2 by [t 2
at —/ ¥t dX+—/ [¥x[“dxp = b1k (Lo)¥t(Lo)
t12Jo 2 Jo 28)
Lo Lo @
o [ @t vy wdx— [ fx
0 0
Multiplying (2.3) by v; and integrating by parts oo, L), we get
p% d L ) L
= lve|“dX = — ka(vx + @) (Lo)ve(Lo) —ka [ (vx + @) vixdX. (2.9)
2 dt Lo Lo
Multiplying (2.4) by ¢; and integrating by parts oo, L) leads to
d 2 L b L
- {& i lPdx+ — |¢x|2dx} = —bygx(Lo)x (Lo)

L
—k | (v +¢)Pdx

Lo
Now observe that

ki d Lo Lo
Elﬁ/ g+ v fdx = kl/ (6L +vY) (Ph + vid) dx,  (2.12)
0 0

and

ked [t )
ga/ \¢§+¢2\zdx=kz/ (6x +v7%) (e + ) dx. (212)
Lo Lo

Summing up (2.7), (2.8), (2.9) and (2.10), and using (2.11) and (2.12) together
with the hypothesis of transmission we obtain

d Lo 2 L 2
SEw® = —/ wePdx— [ yf2dx.
dt 0 Lo

3 Technical lemmas

Now we develop a series of technical results in order to facilitate the proof of the
main result of the paper. We begin by constructing a functi@rigl, equivalent

to the energy functional, which satisfiggt) < C £(0), C < 1. In order to do

so, we use some multiplier techniques (usually associated to control problems)
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222 A TRANSMISSION PROBLEM FOR THE TIMOSHENKO SYSTEM
and the following restrictions on the boundary conditions for the elastic part of

the beam:

1 L
lux(L)|? . |vn2dx. (3.1)

1
|¢AL)|__2L‘/ 47 dx. (3.2)

Lemma 2. Letus define

Lo L
ﬁﬂﬁ=MEm+/ thﬂkﬂéhwwx+/>dﬁww+émﬁwx
0

Lo
Then
d 1 [t 2 2 1t 2 2
—Et) <— - [Kelux|® + by |“1dx — — | [ka|vx|” + b2|¢x|“ TdX
dt 4 0 4 Lo

Proof. Multiply (2.1) by x ux and integrate by parts ovéd, L) to get

d Lo L 1 Lo
—/;ﬁwwwz Mm@n—“/|m%x
dt Jo 2 Jo

Lok kq Lo
+J¥M¢m—3/|w%x (3.3)
0

Lo Lo
+k1/ xwxuxdx—/ X Ut Uy d X.
0 0
Multiply (2.2) by x ¥« and integrate by parts ovéd, L) to obtain

0102

d [t Pz [
&/ X Yt Yy dX = (Lol — / ||~ d X
0 0

Lob by Lo
+J¥m¢m—5/|WMX
0

(3.4)

Lok k; [lo
+%ﬁwmﬁ—§f|w%x
0

Lo Lo
—k1/ xwxuxdx—/ X Y Yy dX.
0 0
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Multiplying (2.3) by x v and integrating by parts ovéL, L) leads to

d L ) LO/OZ /02 L
el dx = — 1 L 2__1/ 24
o ol = 5 [ ax
Lk Lok
+ 72|vx<L)|2— ‘;2|vx<Lo>|2 (3.5)

k2 L L
Lo Lo

Now multiply (2.4) byx ¢y and integrate ovei0, L) to obtain

d [, Lop3 ps [*
g dx = — 2\ e (L 2——2/ 2d
dt/LOpzxmﬁx x S0l =5 [ i ax

Lb, 5 Lob, 5
+ T|¢x(|—)| —T|¢x(|—0)|

(3.6)
b, X Loko 2

_ 2 dx — =224 (L
2 |, |px|”dX 5 lp(Lo)l
k2 L L

_ 2 |¢x|2dx—k2/ X b vy A,

2 Lo Lo
Summing up (3.3), (3.4), (3.5), (3.6), and making use of the hypothesis on the
transmission, the punctual terms are canceled and we get

d [Lo d [t
— f X (p1uxUg + p3¥x i) dX + — / X (p3vxvt + padxpr) dx
dt 0 dt LO

Lk Lb ky Lo Lo
= —2|UX(L)|2+—2|¢X(L)|2——1/ |Ux|2dX—/ XUrUxd X
2 2 2 Jo 0

by Lo Lo

_ 4 2
2 J; [Vl dX+/O

Now using (3.1), (3.2) and the Young's inequality [4] we obtain

k L b L
xwxdx——zf |Ux|2dX——2/ x| dx.
2 Lo 2 Lo

d Lo d [t
— f X (pTUxUt + p3¥xi) dX + — / X (p3vxvt + padxpr) dx
dt Jo dt /i,

ko L 2 ko L 2 07 L 2 bz L 2
<2 dx — =2 dx + —2 dx — -2 d
=4, lux |~ dX 2 |, lx|=dX + 2 /Lo x|~ dX > /Lo x| dx
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k Lo k Lo b Lo b Lo
_u |ux|2dx+—1f |ux|2dx——lf |wx|2dx+—1/ 2 dx
2 Jo 4 Jo 2 Jo 4 Jo

B Lo Lo
+C[/ |1pt|2dx+/ |ut|2dx].
0 0

Now, if we define

Lo L
F1(t) = Ny E(t) + f X (p1uxUc + p3¥x i) dX+ / X (pZvxvr + p2gxr) dx
0 L

0

and choosé\; > C we conclude
L

d 1 [lo 1
— (1) < — —f [ kalux|? + bayy)? ] dx——f [ Kalvy|? + ol |? ] dx.
dt 4 0 4 Lo

It is worth noticing that the estimate above is important in two aspects. First,
it recovers a part of energy with minus sign. Second, it will play a fundamental
role in the next two lemmas controlling punctual terms which will come up in
the search for other negative terms of the energy.

Lemma 3. Define

Lo
Lot) = N2 E(®) + / PEX U (Ux + ) dx.
0

Then

d pilo
—FH(t) <
a2 = 75

kil
|ut<Lo)|2+17°|ux<Lo>+w<Lo>|2
Lo
— C/ [1ucl® + [¥el* + lux + ¥]?] dx.
0
Proof. Multiply (2.1) by x (ux+ 1) and integrate by parts ové, L o) to obtain
d Lo ,Oll_o ,OlLO Lo
&/o X p1(Ux + YU = 1T|ut(Lo>|2—lT/0 ug|2dx
kiL kiLg [Lo
+ %|ux<Lo)+w<Lo>|2—%fo lux + w12 dx

Lo Lo
+ pi‘/ XUtI//th—/ X Ut (Ux + ) dX.
0 0
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Using Young'’s inequality, we get

d (Lo 1L kiL
a/ X pi(Uy 4+ ¥)u; < "1—2°|ut(Lo>|2+%|ux<Lo>+w<Lo>|2
0

kiLn [Lo _ rlo _ rlo
- lTO |UX+I/f|2dX+C/ |ut|2dx+Cf [y |2 dx.
0 0 0
Now, defining

Lo
To(t) = Np E(t) + / PIX U (U + 1) dX
0

we obtain

d 1 kiL

— (1) < P00 (Lo) 2 + =2 ue(Lo) + ¥ (Lo) 2

dt 2 2

klo [Lo B Lo 3 Lo

- |ux+w|2dx+<C—Nz>f |ut|2dx+<C—Nz>/ P dx.
0 0 0

If we chooseN, > € we conclude that there exists> 0 such that

d pilo
—Fo(t
T 2(h) < 5

kiLo [Lo
4

kiL
U (Lo)[% + %M(Lo) + (Lo

. Lo . Lo
|ux+w|2dx—C/ P dx — C/ P dx,
0 0

and then

d pilo
—Fr(t) <
a2 = 75

Lo
- C/ 102+ [l + Juy + 912] dx.
0

kiL
u(Lo)[% + %M(Lo) + 9 (Lo)?

Lemma4. LetZ;be defined as

sz L2 [+ 1 1 - 2
Ea(t) = ,02 f X (p3Vx vy + 0o Pxpr) X+ (x—L) [Plvt(vx +¢)] dx.
2 Lo Lo

Then
ko(L — Lg)

d p2(L — Lo) > ko
—E;(t _ L
T 3(t) < > [ve(Lo)|” + >

Lo
—Cf [oel? + 1612 + [ox + 9] dx.
0

lux(Lo) + ¢ (Lo)[?
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Proof.

Multiply (2.3) by (x — L) (v« + ¢) and integrate by parts ovék o, L)
to get

L

2 2 L
_ 2 _ rilt—Lo 2_PL [0 2
5 (x L)[D1Ut(vx+¢)]dx = 7 Lol = 5 [ ul?dx

ko(L — L
+ %muo) + (Lo

k L
- —Zf |vx + p]2 dx
2 Lo

L
+,0]2_ (X — L)vg ¢y dX.

Lo
Using Young's inequality we obtain
L p3(L — Lo)
=L [p2u(ox + ) ]dx = L= (Lo 2
dt 2
ko(L — L
+ ¥|vx<L0>+¢<Lo>|2
2 Lo 2 Lo
_ P 2 L 2
2/ lug|“dx + 2/0 lug|© dx
k2

L2p
- = dx 1/ dx.
> LOvaJrcbI + 2 ), |t )2
Now we set

,02 2 L L
Ea(t) = 1p2 / X (p3xvt + p3xr) dX+
L

(x—L) [ pfve(ve +¢) ] dx
2 0 Lo
and verify that
d 2(L—L ko(L — L
S50 = AR+ L (g + oLy
k L L2 2.2 L
“ 2 o+ o2dx — p;plf o2 dx
2 Lo P2 Lo

L2 2 L
+ (% - szf)f EARCRS
Lo
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It follows then

ka(L — Lo)

d 2(L — Lo)
G < AL gp+ .

<
dt - 2
Lo
- C/ [oe]? + |e|? + Jvx + B2 1dx.
0

lux(Lo) + ¢ (Lo)[?

Observe that in the attempt to recover the total energy of the system with
negative sign we introduced the lemmas 3 and 4. Now we need to control them.
It will be achieved with the aid of the next section.

4 Compactness

This section is dedicated to discuss the argument of compactness employed in the
proof of the main result of the paper. First we introduce a notation; the symbol
— is used to denote convergence in the norm of the Sobolev $gaees in [5].

For sake of completeness, we state the following result due to J.U. Kim.

Lemmab’. Let(u*) be a sequence of functions satisfying

u“ —~u in L®(O, T, HA(O, L)),
uk —u in L%(0, T, H*(O, L)),

ask — oo, witha < B. Then
uk—u in C(0, T], H"(O, L)),

for some < B.
Proof. See [5].

Lemma 6 (Lemma of compactness). If we define

1L kiL
B(Lo,t) = "12 2l (Lol + = 1ux(Lo) + ¥ (Lo)P
2L — L ko(L — L
+ Mmao)ﬂ%mo)wuonz

Comp. Appl. Math., Vol. 26, N. 2, 2007
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then, for everyy > 0O there exists a consta@, > 0 independent of the initial
data, such that

T T T Lo
/ B(Lo, t)dt < ”f E(t)dt+C,,{/ / [ 1ux|® + [¥x|*] dxdt
0 0 0 0

T L
+ / / [|vx|2+|¢>x|2]dxdt}
0 JLg

for every strong solutioru, v, ¥, ¢) to the systeni2.1)-(2.6) and sufficiently
largeT.

Proof. We use a contradiction argument. Define

pilo
2
pi(L — Lo) ko(L — Lo)
2 2
Suppose that there exists a sequence of initial data

B"(Lo,t) =

ki L
ul(Lo)|? + %wQ(Lo) + ¥ (Lo) 2

+ lul(Lo)|? + lv(Lo) + ¢"(Lo) %

U, ¥ e H*NV, )¢5 e H*NV, @l yHheV, hLéeHeV,

and a positive constam > 0 such that the corresponding solutiar?, "),
(v", ™) of the problem

piufy — ke(Ul + ¥ +u =0 in (0, Lo) x (0, 00),
p3Ult — b1y + ke (Uy + ¥ + ¥ =0 in (0, Lo) x (0, 00),
pivg — ko (v} +¢Mx =0 in (Lo, L) x (0, 00),
p30h — ool + ko (U + ") = 0 in (Lo, L) x (0, 00),

with boundary conditions,
u"(0,t) =v"(L,t) =¢¥"(0,t) = ¢"(L, 1) =0, t>0,

transmission conditions,

kau"(Lo, t) = kov"(Lo, 1), piul (Lo, t) = pfvl (Lo, 1),
kiug (Lo, t) = kovZ(Lo, t), kiv"(Lo, t) = koo (Lo, 1),
o3 (Lo, t) = p3¢7 (Lo, 1), b1y (Lo, t) = bagl (Lo, 1),
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and initial data
u"C,0)=ug, w0 =ul, ¥".00=vyg, ¥'C.0=vy] in (0 Lo,
VG0 =0, v, 0 =0, "0 =¢p,  #(.0)=¢] in (Lo L),
satisfies .
fo B"(Lo,t)dt=1, neN, (4.1)

and the following inequality

T T Lo
1 > no/ E”(t)dt+n{/ / [lugl® + 1¥¢1? ] dx dt
0 0 0
T L
+[ f [|v2|2+|¢2|2]dxdt}.
0 Lo

Then the integral

T
/ E"(t)dt is bounded for every n € N,
0

and also,

T /Lo
/ / [Iu}®+ [yg?] dxdt— 0 as n— oo, (4.2)
0 0
and
T L
/ / [ 1212+ 1¢]12] dxdt— 0 as n— co. (4.3)
0 Lo

T
Now we observe thaE"(t) > 0 and that/ E"(t)dt is bounded. Henc&"(t)

0
is bounded and we can take a subsequenga™fy"), (v", ") (for which we
use the same notations) such that

u" — u in L®0O,T,H?NnYV),

y" —~ ¢ in L*®0O,T,H32nV),
V' —~ v in L%, T,V),
" — ¢ in L*0O,T,V).
Applying the lemma 5 we conclude that for< 1
u" — u in C([0, T]; H'(O, Ly)),
y" — ¢ in C([0, T]; H'(O, Lo)),
v — v in C(0, T]; H (Lo, L)),
" — ¢ in C([0,T]; H (Lo, L)).
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It follows from (4.1) that
T
/ B(Lo, t) = 1. (4.4)
0
We observe that the convergences (4.2) and (4.3) result in

uy = 0 almosteverywhere in (0, Lg) x (0, T),
Yy = 0 almost everywhere in (0, Lo) x (0, T),
vy = 0 almosteverywhere in(Lg, L) x (0, T),
¢x = 0 almost every where in(Lg, L) x (0, T).

Now, applying Poincare’s inequality we obtain

T T Lo
/ u(Lo)Pdt cﬁf / U 2dxdt =0,
0 0 0

=
T T /Lo
[ wordr < & [ [T uardxdi=o
0 0 0
T T Lo
/ W (Lo)dt < cﬁ/ / [y [Pdxdt =0,
0 0 0
T T L
/ lu(Lo)|?dt < Cf)/ / lvg|?dxdt= 0,
0 0 Jio
T T L
/ lux(Lo)?dt < Czp/ / lugx|2dxdt = 0,
0 0 Lo
=

]
/0 16(Lo)[2dt

This estimates implies

T L
cﬁ/ / |px|2dxdt = 0.
0 Lo

)
/ B(Lo,t) = O,
0

which is a contradiction to (4.4). This completes the proof of the lemma.

We are now ready to prove the main result of this paper, that is, the exponential
decay of the energy associated to the transmission problem for the Timoshenko
System with frictional dissipation. This is the content of the next section.

5 Exponential decay

Theorem 2. Let(u, ¥, v, ¢) be a strong solution to the transmission problem
for the Timoshenko System defined(Byl)-(2.6). Then there exist positive
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constant<C andw such that
E(t) < C E(Q)e .

Proof. We start defining
E(t) = NaZ1(t) + Ea(t) + ().

It follows from lemmas 2, 3, and 4
d Lo 2 2
SEO =~ CoE® -~ CiNg /O [+ [Yx[?] dx

L
+ / [1vxl? + 1912 ] dx}. + B(Lo, t).
Lo
Now, integrating this inequality oveD, T) and using the Lemma of Compact-

ness we obtain

T

]
E(T) - E©0) < —cof E(t)dt—i—n/ E(t) dt
0 0
T /Lo
—clNg{// [ Uel2 + Y] dx it
0 0

T L
+f / [oxl2 + Ixl?] dxdt}
0 JLg
T Lo
+Cn{/ f [1ux]® + [¥x]* ] dxdt
0 0

T L
+/ / [lvxl? + |¢X|2]dxdt}.
0 Lo

If we choose and fixy < Cp andN3 such thatN3;C; > C,,, we get
T
E(T)—FE@0O < — sz E(t)dt. (5.1)
0
SinceE(t) decreases, we have

.
TE) 5/ E(t)dt. (5.2)
0
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Using (5.2) in (5.1) we obtain
E(M)—E0O) < —TCE(T).
Now observe that for sufficiently largd we have
N
EE(U < E@Mt) < 2NE(), (5.3)
from what follows that
C
E(T)—E@© — —TE),
(T) O = 2N (T)
or else
. C, 7™
E(T) < aZ2(0) with o = 1+m .

Note thatx does not depend on the initial data, and hence, by using the semigroup
property we have

Ft+T) < aE() forevery t> 0. (5.4)

Fort > 0, there exists a naturaland areaf, 0 <r < T such that =nT +r.

This is equivalent to .
r
n=—-— —.
T T

Now, using the inequalities (5.3) and (5@}imes we obtain

E(t)

A

a"E(r)
2Na" E(r).

A

Observing once more th&(t) decreases we have
F(t) < 2Na(t-7) E(0)
2Na L E(0) e !,

A

wherew = —In (oﬁ) .
Finally, using (5.3) we obtain
Et) < 4 "EQ)e ™",

and conclude the proof.

We can extend the previous theorem to the weak solutions by using simple
density argument and the laws of semi-continuity for the energy functional. In
this direction we have the following corollary.

Comp. Appl. Math., Vol. 26, N. 2, 2007



C.A. RAPOSO, W.D. BASTOS and M.L. SANTOS 233

Corollary 1.  Under the hypothesis of the previous theorem, there exist positive
constantC andw, such that

E(t) < C E(0e ™,

for every weak solutiofu, v, v, ¢) of the systeni2.1)-(2.6).

6 Concluding remarks

During the past several decades, many authors have studied the same physical
phenomenon for the Timoshenko system formulated into different mathematical
models. Our approach to this problem is important not only from mathematical
but mainly from the physical point of view with applications in Mechanics,
amongst other branches of science. The system studied here is a model for
vibrating beams subjected to two frictional mechanisms. More precisely, we
proved that the presence of two frictional damping acting in a natural way on
a small part of the beam, is enough to stabilize the whole beam. Moreover,
it stabilizes quickly (at exponential rate). To the best of our knowledge, our
result is the first in this direction. In this sense, this work generalizes the results
previously obtained for Timoshenko’s system where attrition acting in the whole
beam was considered.
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