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Abstract. This paper considers a pair of transmission problems for the system of piezoelec-
tricity having piecewise constant coefficients. Under suitable monotonicity conditions on the
coefficients and certain geometric conditions on the domain and the interfaces where the coeffi-
cients have a jump discontinuity, results on simultaneous boundary observation and simultaneous

exact control are established.
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1 Introduction

Throughout this paper € will be a bounded domain in R* with sufficiently smooth
boundary S. Fork = 1,2, - - - , n, let B, be open, bounded and connected subsets
of Q with smooth boundary S, and such that B, C Byy;. We set

Qo=Bi, Q=B \Bx for k=1,2,--- ,.n—1, Q,=Q\B,.

Assume that 2 is occupied by a linear multilayered piezoelectric body whose

motion is governed by the following system ([4], [6])

piu=V-T, ;LH:—curlE, D =curl H,
V.-D =0, V-H=0, (1.1)
T=c-§u—E-e, D:e-§u+b-E,
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250 PIEZOELECTRIC SYSTEMS IN MULTILAYERED MEDIA

where p is the mass density, u is the displacement vector, Vu is the symmetric
part of Vu, T is the stress tensor, H is the magnetic field, E is the electric field,
D is the electric displacement vector, w is the magnetic permeability, c, e, b
are the elastic, piezoelectric and electric permittivity tensors respectively whose

Cartesian components satisfy the following properties:

Cijkl = Cjikl = Ckiij bij = bji, eijk = €ikj,
i ei 2
bij&/&" > byl&|”, by >0

for any real vector § = (Sl, 52, 53) e R3,
Cijki€ki€ij = C0€ijEijs co>0

for any real symmetric matrices {g;;} of order 3.

We introduce the following matrices of order 3
Ai=lew),  B=1{bw) Ay =lag),
where
a,"f,‘, = (1 = 8indi)Cikjn + 8ikdjnCinji-
It follows from the symmetry of ¢;jy; that
Af = Aji.
Using these notations, we write the system (1.1) in the matrix form

0%u a { ou

A W T )
P o |7V ox; }

0 ou
—{BE+ A, — ¢t —curl H =0,
ot ox;

H il E=0
— +cur =0,
B ot

9
div {BE—i—Aia—u}:O, div H=0.
Xi
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We note that

RS UL () ) )
i = C1jkn€rn (W), C2ikn€xn(U), C3jkncrn (M) | ,
8x,~ J axj axj 1jkh¢€kh 2jkhckh 3jkh<kh

where
w0 1 auk+8uh
) == —+—1.
“h 2 \9x, | axy

It is assumed that

3 3
Z(Aijﬂj,m) EC()Zlmlz, Co>0
ij=1 i=1
for any real vector n; € R3. Here (-, -) denotes the inner product in R?. We
remark that this assumption holds for an isotropic medium (c;jx;, = 3:8,- 0k +

L8ix8 jn + I8;nd i) with a constant Cy = [i:

3 3 2 3 3
> Aynjn) =G+ ) (Z né) +EY ) =Y Il
ij=1 i=1 i,j=1 i=1

Itis assumed that ¢;jx;, (x), b;j (x), ;u(x) are piecewise constant functions which
lose the continuity on Sy, Sz, - -+, S, p and eyy,; are constants, p > 0.

We consider the following transmission problems

?u 9 u
— —— A — —A’E} =0,
or? 0x; 8Xj
0 ou
—1BE+ A;— ¢t —curl H =0,
ot ox;
d (x,1) € 2, x (0, T) m=0,1,---,n (1.2)

" il E=0
— 4 cur =0,
B o

8x,~

9
div {BE—i—Ai—u}:O, div H = 0.

0
ul—o = f1(x), a—bttlz:o = fa(x),  Elizo = f3(x), Hli=o = falx), (1.3)
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(m—
U= = 1y <A<m 1>3”a A;‘EW”) v,
X
(m)
= (Alf’.'” ™ A;"EW)) v,
7 9x; (1.4)

(x,t)GSmX(O,T), m=1,--',n

[v, ED] = [v, E™], [v, H" D] = [v, H™)],

Ju
{(Alja — A7 E) V; +l3u} lsx,m= 0(x, 1),
Xj

(1.5)
[E, v]Isxo.r) = G(x,1).
and
9%v 0 ov Aol =0,
a2 ox; |7 ox;
d ov
—{BOP+A,—} —curl ¥ =0,
ot Xi
) x,0)eQ,x0,T) m=0,1,---,n (1.6)

W |l @=0
— +cur =0,
ey

3
div {Bd)—i-A,-a—v}:O, div W =0,
Xi

v
V=0 = ¢1(x), E|z=0 =@(x), Plimo =@3(x), Wl]—o=w(x), (1.7)

A(m—l) av(m—l)

pm=D = ym) ( i - A;.kCID("Il)) V;

an

(A(m) v A* (m)> i,
0x; (1.8)

(x,t)GSmX(O,T), mzla"'an

[v, @0D] = [v, @], [v, WD) = [, Y],
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U lsxo.n= D(x,1), [V, v] |sx@o.ry= P(x, 1), (1.9)

where [-, -] is the vector product, v = v(x) = (vy, v, 13) (forx € S, x € S)
is the unit normal vector pointing into the exterior of B,, or £2; Ag"), um
EM_ @m Hm [y are the restrictions of the corresponding matrices and
vector-functions on €2,,. In (1.5) B = B(x) is a continuously differentiable
positive function on S.

The problem of exact boundary control for the system (1.2)—(1.5) ((1.6)—(1.9))

is formulated as follows:

Given the initial distribution f = {fi, f2, f3, fa}(¢ = {@1, @2, @3, @4}), time
T >0, and a desired terminal state g = {g1, g2, &3, g4} (¥ = {¥1, V2, V3, Yu})
with f, g(¢, ¥) in appropriate function spaces, find a vector-valued functions
Ox,1), G(x,t)(D(x,t),P(x,t)) in a suitable function spaces such that the
solution of (1.2)—(1.5) ((1.6)—(1.9)) satisfies the conditions

ou E H _ v O v —
{u, YR } li=r= g(x) <{v, YRR } li=r= W(X)>-

Our purpose is to obtain simultaneous exact boundary control of these prob-
lems, {D(x, 1), P(x, t)} serving as a control in problem (1.6)—(1.9), while the
vector-valued functions

O(x,t) = % Dx,t),G(x,t) =[v, P(x,1)]

is a control in (1.2)—(1.5).

Spatial energy estimates for a semi-infinite piezoelectric beam have been stud-
ied by A. Borrelli and M.C. Patria [2].

Boundary controllability for some partial case of the system (1.1) with another
boundary and interface conditions was investigated in [14].

For A; = 0, the piezoelectric system (1.2) decouples into a pair of hyperbolic
systems: the Maxwell system and the hyperbolic system of second order.

The exact controllability problem for the Maxwell system has been studied by
D. Russell [27] for a circular cylindrical region, by K. Kime [16] for a spherical
region, and by J. Lagnese [20] for a general region. Stabilization for the Maxwell
system with the Silver-Miiller absorbing boundary conditions and exact control-

lability for corresponding initial boundary value problem have been studied by
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V. Komornik [17], P. Martinez [24] and N. Weck [28]. The uniform exponential
decay of solutions of Maxwell’s equations with boundary dissipation and exact
boundary controllability was proved in [7], [8].

Stabilization and exact boundary controllability for the system of elasticity
have been studied by J. Lagnese [18], [19], F. Alabau and V. Komornik [1]
and M. Horn [5] among others. In [7], [9] boundary observation, stabilization
and exact controllability were studied for a class of hyperbolic systems which
includes the system of elasticity.

Boundary controllability in transmission problems for a class of second order
hyperbolic systems has been studied by J. Lagnese [19]. Uniform stabilization
and exact control for the Maxwell system in multilayered media were investigated
in [8]. The question of boundary controllability in transmission problems for the
wave equation has been considered by J.-L. Lions [23], and S. Nicaise [25], [26].

The main novelty of this note is that we study the simultaneous exact con-
trol. Simultaneous exact control for the wave equation has been established by
D. Russell [27] for a circular cylindrical region and by J.-L. Lions [22], F. Khodja
and A. Bader [15].

In [9]-[13] simultaneous controllability were studied for a class of hyperbolic
systems of second order, for a pair of Maxwell’s equations and for a class of
evolution systems which includes the Schrédinger equation.

This article is organized as follows: simultaneous boundary observation for the
problems (1.2)—(1.5) and (1.6)—(1.9) with zero boundary conditions (Q = G =
D = P = 0) is established in Section 2. In Section 3 the simultaneous exact
controllability is studied by means of the Hilbert Uniqueness Method, introduced
by J.-L. Lions [21], [22].

2 Boundary observability

Throughout this paper H(€2) and H,(S) denote the usual Sobolev spaces.
We denote by 7, the Hilbert space of pairs u = {u;(x), uz(x)} of three-

component vector-valued functions

u; € Lr(2), curlu; € L,(R,), m=0,1,--- ,n,
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with the inner product

(u, v) Z/ (curl uy, curl vy) + (curl u,, curl vy)

+ (B™up,v) + n"™ (ua, v2) Jdx

From the results of [3] it follows that the expressions [v, u1], [v, uz], (v =
vix),x e S,x € S,,,m=1,2,---,n) are well defined on S, S,, and belong to
H_1(S), H_1(Sp).

ThlS enables us to introduce in H the closed subspaces H, H,:

Hy = {u={ur,uz} € Ho:[v,ul" 1=, uf™], [v,uy" "]
= [vusl on S, m=1,2,---,n; [v,u;1=0 on S},
the space H, 1 is defined just as | with the only difference that [v, u;] vanishes
on S.

We denote by H the real Hilbert space of quadruples w = {w1, wa, w3, w4}
of three-component vector-valued functions w; (x) such that

(m) € Hi(2y), u)(m) wgm) (m) € L,(R2,), m=0,1,---.,n,

(m)

where w;"" is the restriction of w; on €2,,. The inner product in H  is given by

- Bv('") aw“’” - -
o= S (G ) oot

8xl~
+ (B™u{, wi™) + p™ ", wf;m))}dx +/ﬂ(v1, w)dS.
N

The space H is defined just as # with the only difference that the first vector-
valued function w; vanishes on S.

In H and H we define unbounded operators A and A:

D(A) consists of the elements u = {uy, u», us, us} € H such that

(m)

— A7l € Hy(Q), ud” € Hi(R). {us, us} € 31,

0
(Aijﬂ - A:'Fu3) v + Bu; =0, [us,v] =0 on S,
8Xj
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uim_l)zuﬁm), xeS,, m=12,--,n
_ aulm Y _ aul™
<A;;1 0 Y= (a2 )
Xj Xj

A 0 (a0
u = Uz, P ij 5. iU ’
2P 8)6,' / 8)Cj i3

1 8142 1
B curl uy — Aia— , —u " curl us
Xi

for u = {uy, us, us, us} € D(A).
The operator A is defined just as A with the only difference that elements

v = {v1, 02, v3, v} € DA) (v € H, {3, 04} € H)
satisfy another boundary conditions
vp=v,=0, [v,uu]=0 on S.

The skew-selfadjointness of A and A can be verified in the standard way.

Let U(¢) and 1~1(t) be the strongly continuous groups of unitary operators
generated by A and A.

We set

M ={w e D(A") : A*w = 0},
M = {w e D(A*) : A*w = 0.

Denote by M and M, the orthogonal complements of M and M in H and
respectively.

Let us consider the problem (1.2)—(1.5) with homogeneous boundary condi-
tions (Q = G = 0). The kernel M of AA* is nonempty, since it contains the
quadruples w = {w;, 0, Vg1, Vgy}, where g1 € Hy(R2), g2 € Hp(2) N I(-)Il (),
w is a solution of the following problem

0 (40" 9 AV €Q 0,1
N ij o = i ) X ms m=9,1,---,n
8x,~ / ax.,- 8x,~ &1
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wim_l)zwim), xeS, m=12---,n
_ 2.1)
_now!™h aw!™
P L e YL G
)Cj an

aU)l *
(Aija—vi + ﬂw1> ls= AgVgiv s -
Xj

It is obvious that ‘U(z) takes M; N D(A) into itself. Indeed, if w € M and
veM,ND(A), then

d
T (U, w) g = (AU, w)yr = (UM, A*w),. = 0.
We remark that element v = {vy, vy, v3, v4} € M; N D(A) possess the fol-

lowing property:

dv™
axk

div {B<’">v§’")+Ak }:o, div o =0, m=0,1,---,n (2.2)

in the sense of distributions.
Indeed, element w = {wy, 0, Vg1, 0} where g; € Hy(2), supp g1 C Q2,, wy
is a solution of the problem (2.1), belongs to M. Let v € M; N D(A). Then

dvy™ (m)
0=<v,w>g{=f Ax + B™v{" Vg, | dx
Qp

axk

for an arbitrary g; € H(2), supp g1 C 2, which implies

div {B“")vg’”) + Akav_P} =0
Xy
in the sense of distributions.

It can be shown in a similar way (element {0, 0, 0, Vg,} belongs to M for
an arbitrary g, € H,(2), supp go C €2,,) that div vftm) = 0 in the sense of
distributions.

Let us show that elements v = {vy, vy, v3, v4} € M; N D(A) satisfy the

boundary condition

(v4,v) |s= 0. (2.3)
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We note that element w = {0, 0, 0, Vg,} belongs to the kernel of A* for an
arbitrary g, € H>(2), g2 = 01in QoUQU---UQ,_;.
Thus, for v = {vy, v2, v3, V4} € M; N D(A) we have

0=, wlyy=[ v Vg)dx = /Mgz (vg, ) dS,
Q, S

which implies (2.3).
Our next goal is to show that elements v = {vy, v2, v3,v4} € M} N D(A)

satisfy the following interface conditions

pm V@M vy = ume™ vy xeS,, m=1,2,--,n
_ av(m—l) av(m) (24)
BV g — L v = [ B™u + A —— ).
8xk 8xk

Since w = {0, 0,0, Vg,} belongs to the kernel of A* for an arbitrary g, €
o
H,(2) N H{(L2), it follows that

0 = (v,wy = Z/ ™ @™, Vgr)dx
Qm

m=0

= / nO@, v)grdS — / nP @y g ds
S N

4o g / M(n—l)(vz(‘nfl)’ V)grdS — / M(ﬂ)(vf‘l’l)’ v)g» dS.

Now we choose g, such that g =0on Sy, -+, Siu—1, Smat, -+ » Sp. Then
(m=1) o, (m—1) _ (m) g, (m) dS =0
2 (vy V) = u"™(vy V)1 £2dS =
and we have
(m—1) ,, (m—=1) _ (m), (m) —
7 (vy V) =p" (v, ,v) on Sy, m=1,2,--- ,n.

Moreover, element w = {w;, 0, Vg;, 0} belongs to the kernel of A* for an

Comp. Appl. Math., Vol. 22, N. 2, 2003
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o
arbitrary g; € H»(2) (w; is a solution of (2.1)). We have

‘ Jo'™
0 = (v.w)y = Z/ (Ak 1 +B(m)U§m),Vg1)dx
m=0 $2m axk

n B av(m—l)
-y / By D A 20
p— Sm an

a (m)
— (B<m>v§’”)+Ak i ,v)}glds.

E)xk
We choose g; suchthat g, =0on Sy, ---, S;—1, Sma1, -+, Sy. This gives us
that
_ gD ™
B(’"_l)vgm b + Ak—] v = B(’”)vgm) + A L _v] on S
axk axk

Let us consider now the problem (1.6)—(1.9) with homogeneous boundary
conditions (D = P = 0). We remark that the kernel M of A* contains the
quadruples w = {w;, 0, Vg1, Vg, }, where g1 € H»(2), g» € H2(2) N I(-)Il (2),
w is a solution of (2.1) with the only difference that the functions w; satisfy the

boundary condition:
w |s= 0. (2.5)

It can be shown in the same way that elements v = {vy, vy, v3, V4} € 1\711 N
D(A) satisfy (2.2), (2.4).

Let us show that elements v = {vy, vy, v3, V4} € 1\7}1 N @(ﬁ) satisfy the
additional boundary condition

3
(BU3 + A u) ls= 0. (2.6)
axk

We remark that element w = {wy, 0, Vg1, 0} belongs to the kernel of A* for
an arbitrary g; € Hr(Q), g1 =0in Qo U QU --- U Q,_;, w; is a solution of
(2.1) with boundary condition (2.5).
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Thus, for {vy, vy, v3, 14} € ]\711 N D(ﬁ) we have

av
0= (vw) = / (Aka—x:+Bv3m) Vg1> dx

81)1
= [ g |Bvs+ A —,v|dS,
s dxk
which implies (2.6).

We arrive at the following assertion.

Theorem 2.1. Suppose that f ={fi, fo, f3,. fa} € My N DA (p =
{01, 02, 03, 04} € M1 n D (}7{)) Then there exists a unique solution
{ulx, 1), E(x,t), Hx, )} (v(x, 1), ®(x,1), V(x,1)) of (1.2)—(1.5) ((1.6)—
(1.9)) with zero boundary conditions such that for allt > 0

2
u(x,r) e Hz(Qm) (x 1), E(x,1), H(x,t) € Hi($2m), o (x 1) € La(S2p)

2

(v(x 1) € Hy(Qp), —(x 0, ®(x, 1), V(x, 1) € H(Q2p), i 2()6 1 e Lz(Qm))

m=0,1,---,n;
dv
(H,v):O((BCI>+Ak8—,v):0>, xeS, t>0.
Xk

Moreover, {u, E, H}({v, ®, V}) satisfies the additional interface conditions
(2.4), where

vi=u, iv=E, u=H (vi=v,v3=0,04=V)
and

II{M E HY|ar = 11 fllsr (Il{v , @, ‘I’}Ilg{—H(pllg{)

Let f = {f1, fo. f3. fu} € H and f" = {f', f3. fi. fi'} € D(A), such that
[|f — f"lls2r — 0asn — oo. Then, U(t) f" satisfies the following identity

r d
/ {<U(t)f",d—v> +(U(r>f",ﬂt*V>g{}df=—<f",V<0>>ﬂ
0 I [y
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where V(¢) € L,(0, T; D(A*)), V,(t) € L,(0,T; H), V(T) = 0.

From this we easily obtain that

! dv
f {<’U(t)f, d_> +(umf, AV), } — (VO 2.7
0 U lgr
i.e., U(t) f is the weak solution of the abstract Cauchy problem
du
Ezﬂl’h M|t:0=f‘

We note that U (¢) takes M into itself. Indeed,if g € M and V(t) = (T —1t)g,
then from (2.7) it follows that

T
/0 UMW) f. g)yrdt =T {f. 8)s0
Thus,

(U@D) [, 8)gr = ([ 8)yy for £ >0.

In the same way we get the corresponding properties for ﬂ(t).

Let us now concern ourselves with the simultaneous boundary observability
for a pair of piezoelectric systems. The proof is based on the invariance of
the piezoelectric system relative to the one-parameter group of dilations in all
variables. This property of the system leads to the following identity:

2 (0 2 4 (Ve vyu+ Pu_ [, o _A'E
JE— . M u’ [ —
or 8 P o |7V oy,

ou
+2(tE+,u[Vg, H], — {BE—i—A 8_} — curl H)

Xi

ou oH
+2|tH — Vg,BE+Ak8— /.La—t+CuI'1E
Xk

ou
4+ 2(E, Vg) div {BE +Ak8_} +2u(H,Vg)div H

9 2 du du
=§{t P +(A >+(BE E)+ulHP?

gl Bx] ax;
ou ou
+20| —,(Vg, Vou+u ) +2un([Vg, H], BE + Ay —
ot Xy

u
at
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O a0 2 4 Ve Vyu+u a2~ AE
—_— — —_— , u M .
o |\ 3 T8 Tox;

n ag 2 A ou Ju
dx; P P4 9x," ax)

— div {Zt[H, El+ Vg(BE,E)+Vgu|H|* —2BE(E,Vg)

ou
ot

—2uH(H,Vg) +2 [E [vg’ A"aa_;ﬂ}

du  du 9%g du  du
— (Ag—l)(A-—,—)—Z (A >+(3—Ag),0

Y ox;” ax; ax,ox; \" 7 ox; ox,

u

|

82 82 , .
- {2 b EVEF — (Ag ~ D(BE, B) + 2" £ uH BT — (Ag - 1)u|H|2}

0X; 0Xx X 0x;
3’g 9 9 9
—2(E. At (A==, V) Vg — (Ag — DA — ), 2.8)
x; Xk 8x, Xk 0xk

where g(x) is an arbitrary smooth function, V = ( ail’ azz’ (m) For g(x) =
O|2

27Hx —x9%, (2.8) represents a conservation law.
Let f = {f1, fo, f5, fa} € My N D(A) and {u(x, 1), E(x, 1), H(x, 1)} is the
corresponding solution of (1.2)—(1.5) with zero boundary conditions.

From (2.8) after integration over €2,, x (0, 7)) and summation over m we get

TZ/ { (A ou au)-l—(BE E)+,u|H|}

lj ’
m=0 8 9
+2Z/ { ( (Vg,V)u+u>
du T
+u [Vg,H],BE+Ak§ dx|,Z (2.9)
k

Z/ {3m—1(M,E,H)—3m(u,E, H)}dSdt

m=1

/ /B (u, E, H)det—i—Z/ / Fuu, E, H; g)dx dt,

m=1

where F,, (u, E, H; g) is the restriction of the last three terms on the right-hand
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side of (2.8) on €2, and

(m)
+(Vg, V)u™

B,(u, E,H) =2 (t

T+, A(m)au b — AFE™,
0x; !
N 3_g ) au(m) B A(m)au(m)’ dum
dv ot pq dx,  0x, (2.10)

ag
+ 2t(v, [H™, E™]) + = o & (Bm Em_ pom)y

ag m m m m m
+ oo MH™E = 2B E™, v)(E™, Ve)

du™
- 2u<'">(H<’"),v)(H<'">,Vg>+2([Vg,Ak 3 ],[v, E“")]).
Xk

The next assertion is of a technical nature and can be proved by direct compu-
tations.
Lemma 2.2. The following representation holds:

2;m—l(l’t E H)_Bm(uv E’ H)
8g — . QumD gy m=D
- (g R

8v a)Cj 8)6,'

N (A(m) <8u(’") 3u(ml)> <3u(m) 3u(m1)>>
ij - . ’ - ,
0x; 0x; 0x; ax; @.11)

(m)
+ (" —phy <|[H<m> vlP* + e 1)|<H<’">,v>|2)

+ ((B(m) — Bm— 1)) E(m), E(m))

+ (B(mfl)(E(m) _ E(mfl)), EMm _ E(W*I)) }

Let us now concern ourselves with an estimate of the integral of
Fmu, E, H; g) over Q,, x (0, T).
We consider the elliptic problem
aw mes 2

AW =1 on £, — |s= ,
ov mes S
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which admits a solution W(x) € C3(2) N C'(Q).
We set
1 0,2
g(x)zSW(x)—i—Elx—x <, 5 > 0.

Direct computations give us that (the index m is omitted for simplicity of

notations)
f(EH)SAauau 2882WA8u du 88142
m\U, ) ; = ij o a - ij o 2 a - .
& Tox; o ox,ox; \ax; ax, ) o
92 . 92 .
+ 25 b EVE* 428 wH' H/ —§((BE, E) + n|H|?)
0x; 0y X;0x;j
W du du ou
25| E, Ap— Ay—,V|VW — A, — ).
+ < 0x; 0x; k8x5+< kaxk ) kaxk>
We have
2w du 9
Y <A,-j—”, —”>
9x,0x; dx; 0dx, 2.12)
< 5|0+ =L cyccomy | (a,; 2L, 2
(o} - ij N~ s~ )
- ! CoO’l / axj 3)(,'
where o1 > 0, Cy is such that
3 3
Z(Aijnj, ni) = COZ 1% n € R?,
ij=1 i=1
and
3’W(x)
C(A) = max |[|A;(x0)]l, C(W)=  max .
xei, j=1,23 xeQi,j=123| 0x;0x;
We note that C(W) > 1/3.
Next, we get the estimate
W du du du
26( E, Ar— 4+ |Ar—, V| VW — A, —
ax;0x;  0x; Xy Xy
< 805(1 +2C(W)C1(A)|EI? (2.13)

+ st r2cmne ()~ (4,20 O
o B \Mox; ox )
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where o7 is an arbitrary positive number,
Ci(A) = max |[|Ag]].
1(A) = max[|A]

We have

92 , 92
bi;E'EX 425
0X; 00Xy 0x;0x;

268 wH H’

. (2.14)
< 86C(W)u|H|* + 86C(W)||B||b—(BE, E).
0

Thus, from (2.12)—(2.14) we get the estimate

27
Fmw,E,H;8) <6 [1 + 014+ ——C(A)CH(W)
Cooq

du Jdu
Y 8)6]' ’ axi

L]
Coor

Ci(A(1 + 2C(W))} (A ) +8[6C(W) — 11 u|HI*> (2.15)
+ 4 |:6C(W)bi||B|| +op(1 + 2C(W))C1(A)bi] (BE, E).
0 0
We now choose o, and 0,. We set

[cca [b
o1 = C(W) % 0y = C—((’)

From the inequality (2.15) it follows that

n T n T
S [ s gavar<sey [ f
—Jo Ja, —=Jo Ja,

m) gym
A O U g g pony o0 ol g g, (216)
4 ij 8)6,'

ou )
SSCIT” u, 55E7H ”j—[’

where § is an arbitrary positive number and

A)(1+2 |C(A 1
c = C1(A)( :bC(W)) +max[1+28C(W) %O),GC(W)HBIIb—O}.
~/Cobo

From here on we will assume that €2 and S,, satisfy the following conditions:
there exists §; > 0 such that
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i &6C <1, (2.17)

.. oW 0 o
(i) 51a—+(x—x ,v) > Oforsomepointx’ € Q,x € S,,,m=1,2,--- ,n,
"

+(x —x%v)>0,x €S, x"is defined in (ii).

mes 2
(i) &
mes S

We note that the above conditions are valid when §; = O for star-shaped
surfaces S, Sy, - -+, S, and strongly star-shaped surface S, i.e.,
(x—x"v)>0, xes.
Moreover, if S, S,, .-, S, are strongly star-shaped with respect to a point

xY e Q, then, the above conditions hold with §; > 0 for a class of domains

which includes star-shaped domains.

Henceforth we set
1 02
g(x)zélW(X)+§ lx —x"7,

where §; is defined in (2.17).
Our next goal is to estimate the second integral on the left-hand side of (2.9).

The following inequality is proved by standard arguments

22/{ ( , (Vo, V)u+u>

0
Y ([w, H), BE + Aka—”)}dx <G
Xk

) (2.18)

k)

H

v 8.0
u,—,E, H
ot

|

C(Q) = max{lx — x°| + 8 |[VW ()|}, @1 =maxpu, bl = max || B(x)]|,
Q xeR

xeQ

where

C, =

{ 1+ C(Q)
max 42, ———
(&)

¢y > 01is such that

CZZH” ||H1(Q y = Z/ (A(m)

814(’") au(m)

)dx+/,3|u(">|2ds
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u™ e Hy(Qp), u™ Y =u"™onS,, m=1,2,---, n.

Now, we are concern with an estimate of the surface integral (over S x (0, T'))
in (2.9).

Using the boundary conditions (1.5) (Q = G = 0) and additional boundary

condition
(H,v) |sx0,m=0,

we get

T
/ an(u,E,H)det = —T/ﬂlu(x,T)|2dS
0 N S

T g du |* ’
+ o\ 13, + wl[H, v]|
0 JS (2.19)
+ BI(Ve.V) |2 ag A ou Ju
9 u - L I A 2 A~
§ av jaxj 0x;
0
— a—gwu, WI(E, v)]> = Blu+ (Vg, VW} dsdt.
v
Let x > 0 be such that
ag
— > xIVgl, xeS.
v
We have
1 Ju Ju
Ve, Vul> < B—|Vg|* [ Aii—, — ). 2.20
BI(Vg, V)ul _ﬂcol g ( s ax,~> (2.20)

Assume that 8 = B(x) satisfies the following condition

- Cox

px) < Q)

Thus, from (2.20) we obtain the inequality

Bl(Vg, Vul> < x|Vgl| A..a_u du <3_g Aa_ua_u
& = X1vs Yox; ox; )~ av U Vax; ax )
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from which it follows that

T
/ /Bn(u, E, H)dSdt
<[ LEpl
ot

Suppose that the coefficients of the systems (1.2) satisfy the following mono-

2.21)

+ u|[H, v]|2} dsdt — T/,Blu(x, T)|?dS.
S

tonicity conditions

(0= APy =0,
(B™ — By n)>0, neR m=12--,n (2.22)
M(m) > M(m_l)-

Using these conditions and Lemma 2.2, we obtain
Bm—l(u’E$H)_me(uaE7H)§Oa m=1,2,-'-,l’l. (223)

Thus, from the identity (2.9) and the inequalities (2.16), (2.18), (2.21), (2.23)

we get

A-=86CHT —-T)

L
+ [ phucs. T>|2d5} /f { a—”;

2C,
1-6,C;

We now consider the problem (1.6)—(1.9) with zero boundary conditions. Let
¢ = (o1, 02, 93, 2} € My N D(A) and {v, 3, ®, ¥} = U(1)g.

In this case we have

T
//Bn(v,qD,lIJ)det
Jdv dv ,
/ / {( Yox; ox )+(Bc1> @) — p|(W, v)| }det.
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In the same way we get the estimate

(1 —=86C)(T - Tl)

>[5
[ (2 s

Our next goal is to obtain the simultaneous boundary observation for a pair of

systems (1.2), (1.6).
Let f € M; N D(A), ¢ € M; N D(A) and

U el —uwys W o wl = T
u’ _7 b ES 9y U’ _7 9 == .
ot o1 v

(A 9v 8v>+(B<I> D) + p|W
Vox;" D uer (2.25)

We can immediately verify the identity

Z/ { (a" 8”)+<A,, 88” , ;v)—i-(BE ®) + u(H, \If)}dx|

/ /{( ( ij _v — A}"(D) v,~> + (D, [v, H])}dS drt. (2.26)
ox;

The following formula can be proved by direct computations:

(a—” (A L <1>) )+<<1>[ H))
or \ "oy, A
2

: a”+ Ay 20 e |+ te P
= - |— ij— — AT® | vi| +<|®—[H,v
2| ot ECET 2
. . 2.27)
Llou]> 1] v U
— A — iareu - e
2o 2 M, 2 2

L ]|2+(A LLINEP )
— —|[H,v Vi, Af Dy ).
2 Yox;

We have

1 v |

v 1
(A,ja v,,AkCka> < 2 T1e ijr
|Af@u]> < 9CT(A)| D).

1 2
vi| + —(1 + &) |AfPu|”,
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We set

Then (2.27) implies the inequality

ou v
(_ (A._ - A;"CD) vi) + (@, [v, H])

’ 12}
ot 8xj
2 2

12 (a2 are ) ul Mo — v - (2.28)
— = i - —|®—-[H V]| — = |— .
—2|at ’a 2 2| ot

1 1—36 aw > &
V2 )| Ay = LjoP.

2 209C2(A) +1—68y) | 7 dx; 2

Henceforth we assume that matrices A;; satisfy the following condition
A vjviEl > aglgl, & eR. (2.29)
Taking (2.29) into account, from (2.28) we find that

<8_u <A8_v — ATCD) v,-) + (D, [v, H])

ar’ " Y ox;
2

<18—"+(A o — AF® ) —|—1|d>—[H v]|?

~ 20t Yox; 2 ’

Lo Lfou 1 o v v\ _ S0
BET SILH. V]I = ( 50)C3( T ox ) 5|21

where
agp

Cy=——3 :
209CT(A) + 1 — &)

From this and the identity (2.26) we obtain

Z/ B 0V 4 (a2 2V 4 (BE, ®) + u(H, W) Vax =]
1 axj’ ox; ’ ' =0

2
/ /{ (”a mATe )”f
9 w d
! 0 v>+5|d>|2}d5dt

_Z - 2 _
2/0 /5{3 + 1, H]I" +2(1 50)C3<,,a 3
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We multiply (2.24) and (2.25) by

1 1
d = . dy =
' 20(@ max{p, um) 7T 2C(2) max {

9

s 20— ao)c; }

respectively, and add the inequalities thus obtained to (2.30); using the inequality

3u v du 0v T
Zf +(Aua . )~|—(BE ®) + w(H, W)} dx |'=]

sDomZ:;)/m{p

2
Jdv dv
— +(A " )+(B<I> d>)+,u|\ll|}

2
ou du
—| + <A1]a S >+(BE E)+ u|H|?

lja

where
Dy = max({l, b1, ", 9C(A)Cy '},
we arrive at the estimate
[di(1 —6,C)(T — T1)—Do]ll{u i ,E, H)|l3
+ [d2(1 = 6,C(T — Tl)_D0]||{U 8 LD, W[5 (2.31)

ALl ot o)

From (2.31) we deduce the following uniqueness property.

+|® —[H, v]|2}d5dt.

Theorem 2. 3 Assume that S,, and Q satisfy conditions (2.17). Suppose that the

) )
matrices Al I B and the coefficients "™ satisfy the monotonicity conditions

(2.22), A{} satisfy the condition (2.29),

Cox

0<Bx =< Q)
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Let f(x) € M N D(A), px) € ]\711 N D (ﬁ). Suppose that {u(x,t),
E(x,t), H(x,t)}and {v(x, t), ®(x, t), ¥(x, t)} are solutions of problems (1.2)—
(1.5) and (1.6)—(1.9) with zero boundary conditions, respectively, and that

ou av
— + Alj__A;ch U,'ZO, CD—[H,])]:O on SX(O,T)
ot axj

In this case, if T > T* = T} + —22— max {%, é}, then

1-61C

ulx,t)=Ex,t)=Hx,t) =v(x,t)) =d(x, 1) =¥(x,t) =0
in 2x(0,T).

From Theorem 2.3 it follows that for T > T* the expression

! du v,
II{f,w}lle(/ f{§+<A ——Al.CD)v,-
0 N

i axj
2
+ |® —[H, v]lz}det)

2

(2.32)

defines a norm on the set of initial data f = {fi, f>, f3, f4} and
© = {@1, ¢2, @3, @4} of problems (1.2)—(1.5) and (1.6)—(1.9) with zero boundary
conditions. In (2.32)

u el —unys W oowl = T
y A 9 = ) vv - ) = .
Sy ot ¢

We denote by F the Hilbert space obtained by completing M| N D(A) x Min
D(.ﬁ) with respect to the norm (2.32). We have

LA ez = 13 +llelly < CILA @y FCE=5H x 3.

Our next purpose is to prove simultaneous exact controllability for the problems
(1.2)—(1.5), (1.6)—(1.9).
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3 Exact controllability

We denote by ' the dual space of ‘F with respect to E. Let us consider the pair
of problems: (1.2)—(1.4) with boundary conditions

8 *
{(A”a_ —A ) v ﬁu} s 3.1)
= 0, 1), [E,v]|sxo,n=[v, P]

and (1.6)—(1.8) with boundary conditions

av
M Isxo.my= Q(x,1), [V, v] Isxo.,ry= P(x, 1), (3.2)

where Q(x, 1), P(x,1) € Lo(S x (0, 7)), { f(x), p(x)} € F'.
We rewrite systems (1.2) and (1.6) in the form

% {u,u',E,H} = A{u,u’, E, H}, % (v,v,®, W} = Afv, v, d, U}
By definition,
{u@®), u'(t), E@t), H(t), v(t), V' (1), D(t), ¥ (1)} € Loo(0, T F')
is a solution of (1.2)—(1.4), (3.1) and (1.6)—(1.8), (3.2) if the identity
(@), u' (1), E(t), H(®), v(1), V'(1), (1), ()}, {U@) f. UDPY),
(e (i o9))
b Js Q. at Y 0x; i Vi 3.3)
4—@Jﬁwﬂ—54mwr+ﬁﬁwﬁﬁ5m
holds for all {f, o}eF.0<t<T.In(3.3)

((fo @b AF @Yy = (fo Fly + (0. )it

A1 S 5 5.8 = G
u, —, ) = ) v, —, ) = .
o1 o1 v

In a similar way we define a solution of (1.2), (1.4), (3.1) and (1.6), (1.8), (3.2)
with zero data fort = T':

{u(®), u'(t), E(t), H(t), v(t), v'(1), @(1), ¥(1)} € Loo(0, T; F')
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is a solution of (1.2), (1.4), (3.1), (1.6), (1.8), (3.2) with zero data for t = T if

(@), u' (1), E(), H(®), v(1), V'(1), (1), ()}, {U@®) f. UDPY),

_ ! 0 (Vg
(e O DI

+ (P,[H,v] — 5)}d5dr

forall {f, 3} e F,0 <t <T.

Let {g, ¥} be an arbitrary element of F, and let {u, v’, E, H, v, v, &, ¥} be
solution of (1.2), (1.4), (3.1), (1.6), (1.8), (3.2) with zerodatafort = T,T > T,
and boundary functions

w om
Q=—( +(A —A}kp)vi),?z—([h,\)]—l?),

at Y ox;

where

M eonl = ua om Uy
w, —,ée€, == ) n, —, 9 = .
ot & ar P4

We set
M{g, v} ={u,u',E,H,v,v, &, ¥V} | .
From (3.4) it follows that
(Mig, v}, (F, 9))y = le. ¥} {F. 8)) (3.5)

for any {f, @} € F. This implies that M is an isomorphism of F onto the whole
of F'.

We return to problems (1.2)—(1.4), (3.1) and (1.6)—(1.8), (3.2). Suppose that
the initial data { f, ¢} belong to ‘F’. We set

{g. v} =M"{f o}

dw om * - _ —
Q=_(¥+(Aija_w_Aip)ui>, P = —({h.v] - p).

ow om
w, _9eah =U(t)ga m, —

9t at,p,LI}ZU(l)vf
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From (3.3) witht = T > T* we find that

((w(T), w' (T, E(T), H(T), v(T), v'(T), ®(T), W(T)}, {UT) f, WD)},
= (M{g. v} {f. &), — (lg. ¥} (F. 9)),

for any { f , @} € F. By (3.5), the right-hand side of the last identity is equal to
zero, that is, {u(T), u'(T), E(T), H(T), v(T), v'(T), ®(T), ¥(T)} generates
the zero functional on F.

We arrive at the following assertion.

Theorem 3.1. Assume that Ag-"), B, u(m), S and Q satisfy the conditions
of Theorem 2.3. If T > T¥*, then for any initial data {f, ¢} € F' of prob-
lems (1.2)—(1.5) and (1.6)—(1.9) there exists a control {D(x,t), P(x,t)} €
C'(0, T; Ly(8))x C°(0, T; L(S)) such that the corresponding solution of prob-
lem (1.6)—(1.9) satisfies

ov

an’\Ij ==05
57 }le=r

{v,
while the vector-valued functions
ad
Qx, 1) = gﬂ(x, D, G, 1) =[v,Pkx, 0]

drive the system (1.2)—(1.5) to a state of rest at the same time T :

u
’_aE’H ::0.
{” 31 }|tT

To prove this assertion, it suffices to construct functions Q(x, t), P(x, t) as
before, by setting

@(x,t):/ O, )dt + ¢1(x).
0

We remark that, in view of the linearity of the systems, it suffices to consider

controls that reduce the systems to a state of rest.
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